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Abstract: Diabetes is a chronic metabolic disorder characterized by raised glucose levels in the blood,
resulting in grave damage over time to various body organs, including the nerves, heart, kidneys, eyes,
and blood vessels. One of its therapeutic treatment approaches involves the inhibition of enzymes
accountable for carbohydrate digestion and absorption. The present work is aimed at evaluating
the potential of some reported metabolites from Garcinia mangostana (mangosteen, Guttiferae) as
alpha-amylase inhibitors. Forty compounds were assessed for their capacity to inhibit alpha-amylase
using in silico studies as well as in vitro assays. Molecular docking was carried out to analyze
their binding capacities in the 3D structure of alpha-amylase (PDB ID: 4GQR). Among the tested
compounds, 6-O-β-D-glucopyranosyl-2,4,6,3′,4′,6′-hexahydroxybenzophenone (8), aromadendrin-8-
C-glucoside (5), epicatechin (6), rhodanthenone (4), and garcixanthone D (40) had a high XP G.score
and a Glide G.score of −12.425, −11.855, −11.135, and −11.048 Kcal/mol, respectively. Compound 8
possessed the XP and Glide docking score of−12.425 Kcal/mol compared to the reference compounds
myricetin and acarbose which had an XP and Glide docking score of −12.319 and 11.201 Kcal/mol,
respectively. It interacted through hydrogen bond formations between its hydroxyl groups and
the residues His 101, Asp 197, Glu 233, Asp 300, and His 305, in addition to water bridges and
hydrophobic interactions. Molecular mechanics-generalized born surface area (MM-GBSA) was used
to calculate the binding free energy and molecular dynamic studies that indicated the stability of the
alpha-amylase-compound 8 complex during the 100 ns simulation in comparison with myricetin- and
acarbose-alpha-amylase complexes. Additionally, the in vitro alpha-amylase inhibition assay findings
validated the in silico study’s findings. This could further validate the potential of G. mangostana as a
candidate for diabetes management.

Keywords: diabetes; alpha-amylase; Garcinia mangostana; xanthones; industrial development; molec-
ular docking; molecular dynamics

1. Introduction

Diabetes mellitus is a metabolic disorder that results from impaired pancreatic β-cells
and is characterized by high blood glucose [1,2]. According to some investigations, almost
7 million people are diabetic, and about 3 million are pre-diabetic [3]. The WHO (World
Health Organization) has estimated that Saudi Arabia is one of the top three countries in
the Middle East and one of the top ten in the world for diabetes rate [4].
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It is well-known that diabetes raises the possibility for the development of various
critical life-menacing health issues as a consequence of the impairment and disruption
in several organs’ functions (hearts, kidneys, skin, nerves, or blood vessels), resulting in
micro- and macro-vascular elaborations that involve diabetic retinopathy, nephropathy,
and neuropathy, as well as hypertension, atherosclerosis, and strokes [5]. These complica-
tions are accountable for the mortality of the majority of diabetic patients. Additionally,
elevated levels of blood glucose have been shown to stimulate cancer cell progression and
proliferation [6].

Despite the available treatment options, diabetes remains one of the largest health
concerns, with an increasing prevalence in recent decades [7]. Several oral hypoglycemic
medications are used to manage high blood glucose, including biguanides, sulfonylureas,
and acarbose [8]. Acarbose is an FDA-approved drug used for treating type 2 diabetes;
it works by inhibiting the HPA (human pancreatic alpha-amylase) and intestinal alpha-
glucoside hydrolase competitively [9]. By inhibiting both enzymes, acarbose slows glucose
absorption, which results in decreased blood glucose levels [10]. Alpha-amylase functions
by catalyzing the α-(1–4) bond hydrolysis in starch and belongs to the glycosyl-hydrolase
family-13 [11,12]. Humans have two distinct forms of alpha-amylase that are secreted
by the pancreas and salivary glands [13]. These two isoforms have prime functions in
digesting starch. Digesting starch starts in the mouth with the HSA (human salivary α-
amylase) [14]. Following this step, pancreatic alpha-amylase further digests starch into
a mixture of maltotriose, maltose, and other branched small, oligo-saccharides, which
are then broken down by α-glucosidases to glucose. For this reason, understanding how
the enzyme alpha-amylase works and inhibiting it could be a promising approach for
decreasing blood glucose and designing novel inhibitors that specifically prohibit HPA.

The proposed mechanism of alpha-amylase involves several amino acids known as
catalytic amino acids. These are two aspartate residues and glutamic acid [15]. According
to previous studies, five major binding subsites span the active site of alpha-amylase, as
well as one minor subsite [16]. As mentioned above, this enzyme is, in fact, a potential
target that has been utilized for treating diabetes.

It has been stated that the usage of the available α-amylase inhibitors (AAIs) is accom-
panied by undesired adverse effects, including flatulence, abdominal pain, diarrhea, and
meteorism [17]. Therefore, research efforts have focused on exploring safe and effective
natural AAIs.

Recently, advanced computational investigations have permitted the screening of
diverse metabolites to select the potential hits that can be further considered for in vitro
verification. In addition, they play a fundamental role in drug development and discovery
because of their economic, fast throughput, and labor-saving features compared to their
in vivo and in vitro counterparts [18]. Molecular docking is a recognized in silico structure-
dependent method that permits the verification of novel agents of therapeutic benefit,
the prediction of target–ligand interaction at the molecular level, or the delineation of
structure–activity relations [19].

Additionally, it was stated that in vitro estimation has various merits, including the
strict monitoring of physical and chemical circumstances, minimized cost, high throughput,
and reduced animal usage [20].

Natural metabolites reported from plants, microorganisms, and animals have become
more valuable targets for discovering treatments for various health disorders, including
diabetes. It is worth noting that natural products are utilized worldwide to manage blood
glucose levels in diabetic patients. For example, the extracts of Cecropia obtusifolia, Equi-
setum myriochaetum, Leptolobium panamense, Agarista mexicana, Cucurbita ficifolia, Brickellia
veronicaefolia, Bauhinia forficate, Senna auriculata, Abelmoschus esculentus, and Parmentiera
aculeata are used in treating diabetes in various countries [21]. Their mechanisms of action
are through α-amylase/α-glucosidase prohibition, the modulation of glucose transporters
expression and glucose uptake, the stimulation of pancreatic β-cell proliferation and insulin
secretion, insulin resistance control, and oxidative stress regulation [22].
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Additionally, unique phytoconstituents, such as ginsenosides, berberine, curcumin,
gingerols, stevioside, capsaicin, resveratrol, catechins, anthocyanins, genistein, hesperidin,
and phenolic compounds, separated from various species revealed anti-diabetes capacities
through different mechanisms of action [23].

Garcinia mangostana contains diverse classes of metabolites including xanthones,
flavonoids, and benzophenones, with an array of bioactivities including antimicrobial,
cytotoxic, antioxidant, and antidiabetic activities [24–32].

Xanthones are the principal constituents reported from this plant. These metabolites
feature a flat, planar tricyclic skeleton of aromatic rings having different functionalities on
the A and C rings (e.g., hydroxy, methoxy, or isoprenyl). Xanthones, including oxygenated,
isoprenylated glycosides, bisxanthones, and xanthonolignoids, are most associated with
the G. mangostana fruit [33]. These reported metabolites have been stated to demonstrate di-
versified bioactivities related to common health disorders. Among them, γ-mangostin and
α-mangostin are the major isoprenylated derivatives that are separated from arils, stems,
pericarp, and seeds and displayed numerous bioactivities. α-mangostin has been included
in different formulations such as supplements, capsules, lotions, and creams that are popu-
lar for consumption for various health-promoting purposes [34]. Many studies reported
the potential of α-mangostin as a chemo-preventive and anticancer agent. It is evident
that α-mangostin acts on specific targets, thereby modulating specific signaling pathways,
such as MMPs, CDKs, STAT3, ROS, MAPK, AMPK, JNK2/AP-1/Snail, and PI3K/AKT [34].
Recent in vitro and in silico investigations revealed the potential of α-mangostin to sup-
press DENV-2 (dengue-virus serotype-2) production at various phases of its replication
cycle, and it was thought that it might be used as a therapeutic/prophylactic agent against
DENV-2. It was found to interact with different DENV protein targets, including NS2B-
NS3 protease, NS5 methyltransferase, and glycoprotein E [35]. Chi et al. proved that
α-mangostin and some of its synthesized derivatives revealed significant in vitro potential
as AChE (acetylcholinesterase) and BuChE (butyrylcholinesterase) inhibitors [36]. It also
induced the improvement of the impaired EDV (endothelium-dependent vasodilation) and
up-regulation of the NO/eNOS (nitric oxide/endothelial-nitric-oxide synthase) pathway in
diabetic mouse aortas through the inhibition of the aSMase/ceramide pathway, supporting
its anti-diabetic capacity [37]. Furthermore, its treatment suppressed aerobic glycolysis
in AIA (adjuvant-induced arthritis) rats, resulting in the relief of inflammation-linked hy-
poxia and the amendment of pathological neovascularization, validating its anti-rheumatic
potential [38]. In a docking study, γ-mangostin and α-mangostin revealed potential on
aldose reductase, PPAR (peroxisome-proliferator-activated receptor)-γ receptor, and DPP
(dipeptidyl-peptidase)-4 enzymes with affinity values similar to the tested ligands [39].
Djeujo et al. demonstrated that α-mangostin possessed a marked α-glucosidase inhibition
potential, in addition to its protective action on oxidation damage and protein glycation [38].
In addition to that, α-mangostin nanosponges revealed noticeable α-glucosidase inhibition
(IC50 0.9352 µM) which was 3.11-fold bigger than acarbose. In vivo studies showed that
α-mangostin-loaded nano-sponges prolonged the plasma antidiabetic response, thus im-
proving patient compliance by the slow release of α-mangostin and less frequent doses
needed [40]. γ-mangostin’s long-term administration lessened the diabetic mice’s fasting-
blood glucose without nephro- and hepato-toxicity, and PPARγ, AMPK, α-glucosidase,
and α-amylase were the significant targets for its stimulatory binding. It exerted its hypo-
glycemic activity by boosting the uptake of glucose and lessening carbohydrate digestion
through α-amylase/α-glucosidase inhibition with insulin sensitization [41]. γ-mangostin
was reported to be a selective and potent SIRT2 inhibitor which displayed a potent antipro-
liferation capacity and increased the α-tubulin acetylation in MCF-7 and MDA-MD-231
cancer cells as well as inducing neurite outgrowth in N2a cells [42]. The docking study
by Akawa et al. established the hSIRT2 (sirtuin-2) inhibition potential of α-, β-, and γ-
mangostins, revealing their possible future development and design as sirtuin inhibitors
for managing Alzheimer’s [43]. In addition, γ-mangostin attenuated Aβ (amyloid-β)
42 oligomers that caused OS (oxidative stress) and inflammation, thereby protecting the
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neurons from toxic injury and supporting its protective effectiveness in AD (Alzheimer’s
disease) [44].

Additionally, G. mangostana’s benzophenones demonstrated cytotoxic activity and in-
hibitory potential for α-amylase, fatty acid synthase (FAS), and AGEs (Advanced glycation
end products) formation [45,46].

In continuation of the effort to discover the bioactivities of G. mangostana phyto-
constituents, some metabolites reported from this plant by our group were screened in
the current work to specify the potential metabolites that can function as alpha-amylase
inhibitors using in vitro assays, and computational studies [24–32] (Figures 1–4). The com-
putational investigations used included grid generation followed by the docking of ligands
as a second stage of screening with different scoring methods. Subsequently, the free energy
of binding between the ligand and protein was calculated using MM-GBSA. After that,
the metabolite with the highest potential was computationally verified by MD (molecular
dynamics) simulations. Lastly, the in silico results were confirmed by carrying out in vitro
alpha-amylase inhibitory assays for the top 10 hits.
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2. Materials and Methods
2.1. Preparation of Protein

To carry out the docking assessment, the crystal structure of the alpha-amylase (PDB-
ID: 4GQR) was imported from the protein_data_bank (Protein Data Bank; available online).
Before docking, protein preparation was carried out through the Schrödinger suite protein
preparation wizard tool [32]. The hydrogen and heavy atoms were subjected to optimiza-
tion through restrained minimization. Missing hydrogen atoms were included, and the
correct charges were allocated using the OPSL4 force field. Molecules of water beyond 5 Å
from HETgroups were removed.

2.2. Ligand Preparation

Lig Prep was used to convert the 40 compounds from 2D to 3D structures [47]. Water
molecules beyond 3 Å from HET groups were deleted, H-bonds were optimized using
PROPKA at pH 7.0, and the OPLS4 force field was utilized for restrained minimization.
Metals HET states and cofactors were set at 7.0 ± 2.0 pH.

2.3. Receptor Grid Generation and Molecular Docking

Grid generation and ligand docking were performed with the use of Glide [48]. The
grid box was defined by selecting the co-crystallized inhibitor of 4GQR, and the binding re-
gion was defined using Glide’s Receptor-Grid-Generation tool. For docking the 31 prepared
ligands, the grid generated by Glide was used in the Glide software. The selected protocol
was XP (extra-precision). The default 1.0 radii scaling factor (vdW) and 0.25 potential
charge cut-off were set. The co-crystallized ligand, myricetin, and acarbose were redocked
using the extra precision (XP) protocol. The remaining settings were kept at default.

MM-GBSA (molecular mechanics-generalized born surface area) was calculated uti-
lizing Prime for re-scoring the ligands’ docked poses [48]. The following equation was
utilized to calculate the binding free energy (∆Gbind):

∆Gbind = EComplex (minimized) − Eligand (minimized) − Eprotein (minimized)

where the protein-ligand complex is (Complex), the free protein is (Eprotein), and the free
ligands are (Eligand).
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2.4. Molecular Dynamic Simulation (MDS)

The molecular dynamic simulations were performed utilizing the Schrodinger package
Desmond software [49]. The chosen protein-ligand complexes were immersed into the
simple point charge water box, which extended 10 Å beyond the atoms of the complex.
System neutralization was achieved by adding Cl and Na counter ions. The simulation
was performed at a 300 K temperature, with 1.01325 bar pressure. The force field was set
at OPLS4 over 100 ns/trajectory, with the number of atoms, pressure, and temperature
maintained constant (NPT ensemble). Figures and plots were sketched with the Maestro
Desmond simulation interaction diagram tool.

2.5. Prediction of ADMET Properties

Maestro Schrodinger QikProp module [50] was used for obtaining the ADME proper-
ties of the compounds. Absorption, metabolism, distribution, elimination, and many other
processes are crucial to the drug development process as they determine the compounds’
drug-likeness.

2.6. Alpha-Amylase Inhibition Assay

To verify the docking findings, compounds 3–6, 8–10, 13, 15, 17, 23, 28–31, 35, 37,
39, and 40 that were formerly purified by our group from G. mangostana pericarps were
assessed for their alpha-amylase inhibition potential using an EnzChek®Ultra-Amylase-
Assay Kit (Thermo-Fisher-Scientific Inc., Waltham, MA, USA), as formerly stated [24–32].

3. Results and Discussion

Seeking novel natural α-amylase inhibitors is of ultimate interest to the pharmaceutical
industry. These metabolites could serve as potential components of pharmaceuticals
or nutraceuticals, which could lessen diabetes-linked health burdens and improve the
economic advantage of the industry. In this research, an in silico assessment of G. mangostana
metabolites as α-amylase inhibitors were carried out.

3.1. In Silico ADME Properties of Selected Ligands

The examined metabolites of G. mangostana were analyzed for their ADME properties
(absorption, distribution, metabolism, excretion) using QikProp and are detailed in Table 1.
Analyzing the ADME predicts the drug-likeness, physicochemical properties, and biologi-
cal functions of the compounds, which helps in the evaluation of the usefulness of the drug.
Descriptors or factors such as molecular weight, drug-likeness, dipole moment, hydrogen
bond donors and acceptors, aqueous solubility, brain/blood partition coefficient, binding
to human serum albumin, central nervous system activity, and human oral absorption
were predicted for the selected compounds. Some of the obtained values were within the
recommended range, while others (highlighted) had some issues, such as poor oral absorp-
tion, concern with the blocking of the HERG K+ channels, or a few metabolic reactions,
except for some values (Table 1). However, the analysis of the ADME descriptors for some
compounds that have a high binding docking score like 8 needs more derivatization in the
molecular structure to enhance its descriptors, such as donor hydrogen bonds, blockage of
HERG K+ channel, a few possible reactions, and percentage of human oral absorption. It is
clear that compound 8 has poor human oral absorption since most of the parameters that
determined its absorption are outliers based on Lipinski’s rule of five [51].
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Table 1. In silico predicted ADME properties of the tested metabolites.

Molecule # Stars # rtvFG CNS mol_MW SASA donorHB accptHB QPlogPo/w QPlogHERG QPPCaco QPlogBB # Metab QPlogKhsa PercentHuman
OralAbsorption

Recommended range (0.0–5.0) (0–2) (−2 inactive)
(+2 active) (130–725) (300–1000) (0–6) (2.0–20.0) (−2–6.5) concern

below −5
<25 poor,
>500 great (−3–1.2) (1–8) (−1.5–1.5) (<25% poor;

>80% high)
2,3′ ,4,5′ ,6-
Pentahydroxybenzophenone (1) 0 0 −2 262.218 470.594 3 4 0.554 −4.527 21.754 −2.322 5 −0.373 54.131

Garcimangosone D (2) 0 1 −2 392.362 602.925 5 12 −0.474 −4.889 20.469 −2.663 6 −0.814 34.68
2,4,3’-Trihydroxy
benzophenone-6-O-β-D-
glucopyranoside (3)

1 1 −2 408.361 613.179 6 13 −1.068 −4.798 7.724 −3.154 7 −0.905 23.626

Rhodanthenone (4) 4 1 −2 424.36 616.186 7 13 −1.664 −4.537 2.94 −3.583 8 −0.982 0
Aromadendrin-8-C-
glucoside (5) 5 0 −2 450.398 681.978 7 14 −1.532 −5.347 2.688 −3.702 11 −0.852 0

Epicatechin (6) 0 0 −2 290.08 519.049 4 6 0.098 −4.869 21.252 −2.3 6 −0.426 51.276
2,4,6,3′ ,4′ ,6′-
hexahydroxybenzophenone (7) 0 0 −2 278.218 474.191 3 4 0.561 −4.376 13.745 −2.542 6 −0.35 37.642

6-O-β-D-Glucopyranosyl-
2,4,6,3′ ,4′ ,6′-
hexahydroxybenzophenone (8)

5 1 −2 440.36 663.47 7 13 −1.65 −5.119 1.514 −4.259 9 −1.028 0

2R,3R-5,7-Dihydroxy-8-C-β-D-
glucopyranosyl-4-methoxy-2,3-
dihydroflavon-3-ol (9)

2 0 −2 464.425 708.735 6 14 −0.782 −5.418 8.732 −3.231 11 −0.769 13.292

Mangostanaxanthone I (10) 4 0 −2 546.702 951.529 2 5 7.657 −6.17 366.708 −2.059 16 1.967 91.76
Parvifolixanthone C (11) 2 0 −2 478.584 815.402 2 5 5.954 −5.517 369.062 −1.714 13 1.369 94.798
9-Hydroxycalabaxanthone (12) 0 0 0 408.45 671.549 1 5 4.793 −5.212 1503.476 −0.575 6 0.896 100
α-Mangostin (13) 1 0 −2 410.466 693.506 2 5 4.655 −5.125 882.919 −1.013 10 0.813 100
Rubraxanthone (14) 1 0 −2 410.466 676.001 2 5 4.469 −5.042 596.126 −1.209 10 0.733 100
Garcinone E (15) 2 0 −2 464.557 796.788 3 5 5.513 −5.427 485.861 −1.511 13 1.178 94.349
β-Mangostin (16) 2 0 −1 424.493 748.032 1 5 5.511 −5.493 1511.156 −0.829 10 1.103 100
Gartanin (17) 1 0 −2 396.439 687.965 2 4 4.512 −5.282 304.523 −1.524 10 0.9 100
8-Hydroxycudraxanthone
G (18) 1 0 −2 410.466 696.392 1 4 5.004 −5.163 369.475 −1.415 10 1.095 89.241

Cudraxanthone G (19) 2 0 −1 394.466 706.416 1 4 5.273 −5.489 1075.829 −0.897 9 1.085 100
8-Deoxygartanin (20) 1 0 −1 380.44 667.452 2 4 4.546 −5.262 782.505 −1 9 0.813 100
Smeathxanthone A (21) 1 0 −2 396.439 710.514 2 4 4.445 −5.747 146.974 −2.007 10 0.905 91.759
Mangostinone (22) 1 0 −2 380.44 697.748 2 4 4.513 −5.815 352.029 −1.507 9 0.841 100
Tovophyllin A (23) 2 0 −2 462.541 784.186 2 5 5.712 −5.601 755.786 −1.111 9 1.323 100
Garcimangosone B (24) 2 0 0 476.568 784.948 0 5 6.434 −5.468 2337.985 −0.369 6 1.526 100
γ-Mangostin (25) 1 0 −2 396.439 675.17 3 5 3.803 −5.104 289.754 −1.511 10 0.595 93.281
Garcinone C (26) 1 0 −2 414.454 700.302 4 5 3.29 −5.268 123.883 −2.072 9 0.397 83.673
GarcinoneD (27) 1 0 −2 428.481 671.867 3 5.25 3.932 −4.683 433.902 −1.372 9 0.524 100
Mangostanaxanthone IV (28) 0 0 −2 426.465 691.651 3 5 4.098 −4.918 588.906 −1.233 8 0.594 100
Mangostanaxanthone V (29) 1 0 −2 496.556 788.467 5 6 4.363 −4.975 185.916 −2.009 9 0.724 80.147
Mangostanaxanthone VI (30) 2 0 −2 480.557 798.713 4 5 4.955 −5.285 295.03 −1.792 11 0.954 100
Mangostanaxanthone VI (30) 1 0 −2 480.557 794.228 4 5 4.842 −5.262 275.224 −1.827 11 0.918 100
Mangostanaxanthone VII (31) 0 0 −2 412.438 689.283 4 5 3.301 −5.171 184.105 −1.805 8 0.396 86.814
Garcixanthone A (32) 1 0 −2 422.477 716.018 1 5 4.725 −5.209 396.428 −1.407 9 0.942 100
Isobavachin (33) 0 0 −1 324.376 562.774 2 4 3.082 −4.496 389.48 −0.954 7 0.412 91.356
Garcimangostin A (34) 1 0 −2 412.438 710.47 3 4 3.756 −5.504 69.776 −2.389 11 0.667 81.934
Mangostanaxanthone VIII (35) 0 0 −1 440.492 724.392 2 5 4.855 −5.094 1113.098 −0.982 8 0.827 100
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Table 1. Cont.

Molecule # Stars # rtvFG CNS mol_MW SASA donorHB accptHB QPlogPo/w QPlogHERG QPPCaco QPlogBB # Metab QPlogKhsa PercentHuman
OralAbsorption

1,3,6,7-tetrahydroxy-8-
prenylxanthone (36) 0 0 −2 328.321 550.081 3 5 2.08 −4.565 147.3 −1.514 7 0.055 77.93

1,3,8-Trihydroxy-2-(3-methyl-2-
butenyl)-4-(3-hydroxy-3-
methylbutanoyl)-xanthone (37)

0 0 −2 412.438 677.829 0 4 4.66 −5.009 139.018 −1.856 8 0.962 92.589

Garcixanthone B (38) 1 0 −2 380.44 657.216 1 3 5.031 −4.999 605.344 −1.083 9 1.088 93.235
Garcixanthone C (39) 1 0 −2 428.438 704.892 1 4 4.215 −5.258 75.781 −2.296 9 0.871 85.268
GarcixanthoneD (40) 1 0 −2 412.438 706.392 4 5.25 3.144 −5.245 86.596 −2.214 11 0.436 80.031

# Stars: number of property or descriptor values that fall outside the 95% range of similar values for known drugs. More stars reveal that a molecule is less drug-like than molecules with
fewer stars; SASA: total solvent-accessible surface area in square angstroms utilizing a probe with a 1.4 Å radius; Dipole: computed dipole moment of the molecule; Acceptor H-bond:
estimated number of hydrogen bonds that the solute would accept from water molecules in an aqueous solution; Donor H-bond: H-bonds estimated number that the solute would
donate to H2O molecules in an aqueous solution; QPlogS: predicted aqueous solubility, log S; QPlogPo/w: predicted octanol/water partition coefficient; QPlogkhsa: prediction of
binding to human serum albumin; QplogBB: predicted brain/blood partition coefficient; No. of Metabolites: number of likely metabolic reactions; % Human Oral Absorption: predicted
human oral absorption on 0 to 100% scale; CNS: predicted central nervous system activity on a –2 (inactive) to +2 (active) scale; QPlogHERG: predicted IC50 value for blockage of HERG
K+ channels; #rtvFG: reactive functional groups number; the specific groups are listed in the jobname.out file. The presence of these groups can lead to false positives in HTS assays and
to reactivity, decomposition, or toxicity problems in vivo.
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3.2. Protein and Ligand Preparation

The 2D structures’ conversion to 3D, and ionization and tautomerization via LigPrep
resulted in minimized 3-dimensional molecular structures, and the minimized 3D structures
were docked with the alpha-amylase crystal structure PDB-ID: 4GQR. The alpha-amylase
was also prepared via the protein preparation wizard tool, where H bonds were optimized
and geometry was minimized. To confirm the assignment of the correct formal charges and
force field treatment, missing hydrogens and the correct ionization state were added.

3.3. Molecular Docking Studies

After selecting the grid box in the prepared alpha-amylase via the Receptor-Grid-
Generation tool from Glide in Maestro, the resultant 3D structures were docked into the co-
crystallized binding area of the alpha-amylase inhibitor. The docked ligands were arranged
and scored based on the most negative docking XP G.score, as shown in Table 2. These
scores represented the ligands bound to the alpha-amylase with the best conformations
and relative binding affinities. Among the tested compounds, 4, 5, 6, 8, and 40 had high XP
G.scores and Glide G.scores of −11.048, −11.855, −11.135, −12.425, and −10.989 Kcal/mol,
respectively. Compound 8 possessed the highest XP and Glide docking score (−12.425
Kcal/mol) compared to the reference compounds myricetin and acarbose, which had XP
and Glide docking scores of −12.319 and 11.201 Kcal/mol, respectively.

Table 2. Results of in silico screening against alpha-amylase (PDB: 4GQR) and in vitro
inhibition assay.

Compound No. XP G.Score Glide
G.Score

Docking Score
(Kcal/mol)

Glide
Emodel

Prime
Energy

MMGBSA
dG Bind

IC50 (µM)

6-O-β-D-Glucopyranosyl-
2,4,6,3′,4′,6′-
hexahydroxybenzophenone (8)

−12.425 −12.425 −12.227 −73.234 −21,238.5 −24.48 7.1

Myricetin −12.319 −12.319 −12.319 −68.813 −21,398.5 −51.23 -
Acarbose −12.201 −12.201 −12.201 −75.139 −20,979.6 −15.9 6.7
Aromadendrin-8-C-
glucoside (5)

−11.855 −11.855 −11.823 −58.225 −21,216.7 −36.82 8.3

Epicatechin (6) −11.135 −11.135 −11.108 −61.064 −21,253.4 −43.73 8.9
Rhodanthenone (4) −11.048 −11.048 −10.887 −65.449 −21,207.1 −44.87 10.4
Garcixanthone D (40) −10.989 −10.989 −10.764 −53.919 −21,260.7 −41.35 11.1
Mangostanaxanthone V (29) −10.254 −10.254 −10.088 −70.702 −21,346.8 −38.65 11.9
2R,3R-5,7-Dihydroxy-8-C-β-
D-glucopyranosyl-4-
methoxy-2,3-dihydroflavon-
3-ol (9)

−10.107 −10.107 −10.094 −52.556 −21,192.9 −26.05 12.8

1,3,8-Trihydroxy-2-(3-methyl-
2-butenyl)-4-(3-hydroxy-3-
methylbutanoyl)-
xanthone (37)

−9.99 −9.99 −8.574 −59.986 −21,411.4 −33.11 14.2

2,4,3’-Trihydroxy
benzophenone-6-O-β-D-
glucopyranoside (3)

−9.77 −9.77 −9.615 −64.384 −21,203.7 −19.85 15.8

Garcimangosone D (2) −9.696 −9.696 −9.541 −56.996 −21,194.9 −23.33 -
γ-Mangostin (25) −9.518 −9.518 −7.058 −54.095 −21,255.6 −2.33 -
Isobavachin (33) −8.79 −8.79 −8.79 −59.656 −21,270.1 −35.87 -
2,4,6,3′,4′,6′-
Hexahydroxybenzophenone (7)

−8.647 −8.647 −8.11 −43.182 −21,308.1 3.74 -

Garcixanthone C (39) −8.617 −8.617 −6.406 −55.483 −21,348.2 −3.66 17.1
Garcimangostin A (34) −8.367 −8.367 −8.248 −60.875 −21,243.7 −29.37 -
Garcinone E (15) −8.245 −8.245 −8.114 −59.531 −21,285.8 −33.75 18.8
1,3,6,7-Tetrahydroxy-8-
prenylxanthone (36)

−8.213 −8.213 −7.915 −50.339 −21,298.3 −33.28 -

Garcixanthone B (38) −7.978 −7.978 −7.904 −58.072 −21,314.5 −25.91 -
Smeathxanthone A (21) −7.976 −7.976 −7.864 −56.159 −21,321.2 −39.59 -
Mangostanaxanthone VII (31) −7.871 −7.871 −6.501 −61.697 −21,260.9 −4.38 19.5
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Table 2. Cont.

Compound No. XP G.Score Glide
G.Score

Docking Score
(Kcal/mol)

Glide
Emodel

Prime
Energy

MMGBSA
dG Bind

IC50 (µM)

Mangostinone (22) −7.843 −7.843 −6.507 −47.68 −21,267.2 −13.3 -
Tovophyllin A (23) −7.646 −7.646 −6.164 −46.506 −21,311.1 −35.81 20.4
Gartanin (17) −7.635 −7.635 −5.417 −52.868 −21,268 −11.2 21.2
Mangostanaxanthone VI (30) −7.577 −7.577 −7.479 −61.529 −21,297.6 −24.81 21.9
2,3′,4,5′,6-
Pentahydroxybenzophenone (1)

−7.502 −7.502 −7.094 −49.619 −21,321.2 −28.82 -

8-Deoxygartanin (20) −7.293 −7.293 −4.769 −53.856 −21,244.6 −17.72 -
Cudraxanthone G (19) −7.12 −7.12 −7.12 −55 −21,237.8 −44.68 -
Mangostanaxanthone I (10) −7.107 −7.107 −6.924 −53.946 −21,323.1 −48.36 28.3
Garcinone C (26) −7.098 −7.098 −6.962 −53.746 −21,319.8 −37.48 -
8-Hydroxycudraxanthone
G (18)

−6.667 −6.667 −6.66 −49.088 −21,268.2 −41.81 -

β-Mangostin (16) −6.62 −6.62 −5.284 −38.5 −21,270.8 −24.24 -
Parvifolixanthone C (11) −6.566 −6.566 −6.381 −56.272 −21,326.6 −39.95 -
Mangostanaxanthone
VIII (35)

−6.541 −6.541 −6.483 −45.301 −21,299.1 −30.71 40.6

α-Mangostin (13) −6.323 −6.323 −5.038 −41.996 −21,302.6 −29.84 44.1
Mangostanaxanthone IV (28) −6.293 −6.293 −4.907 −42.202 −21,323.6 −24.42 46.5
Garcinone D (27) −5.823 −5.823 −4.457 −49.712 −21,335.2 −34.69 -
Garcixanthone A (32) −5.082 −5.082 −3.764 −47.142 −21,352.5 −37.06 -
Garcimangosone B (24) −4.978 −4.978 −4.976 −45.586 −21,289.8 −39.15 -

The docking of a molecule into the binding site of its target protein is a useful way
to identify the correct binding pose among any predicted poses of a compound. The
docking of the native inhibitor, myricetin (Figure 5), 8 (Figure 6), and acarbose (Figure 7),
in the alpha-amylase was performed. For docking validation, the selected native inhibitor
(myricetin) was prepared and redocked alongside the tested compounds, and the docking
poses were examined by comparing the docked pose with the original pose of myricetin in
the crystal structure. The RMSD was 0.2007. The native inhibitor, myricetin, through its
hydroxyl groups, formed hydrogen bonds with the amino acid residues Tyr 62, Trp 59, His
101, Gln 63, and Asp 197, as well as pi-pi stacking with the residues Tyr 62 (Figure 5a,b).
Compound 8 similarly interacted through its alcoholic and phenolic hydroxyl groups with
Trp 58, Trp 59, Gln 62, Asp 179, Glh 233, and Asp 356 (Figure 6a,b). Both compounds
form similar interactions with the catalytic residues and give the same effect, which is the
hydrolysis of α-1−4 glycosidic bonds in starch. However, the difference in the binding with
other residues could explain the differences in the docking scores. Acarbose (Figure 7a,b)
binds to the catalytic region of the human alpha-amylase and forms hydrogen bonds
between its alcoholic groups with Gln 63, Ile 148, Glu 149, Tyr 151, Asp 197, Glh 233, and
Asp 300.

The docking of the tested compounds in the active site is a robotic method aimed at
getting the right binding pose among several predicted poses for the compounds. However,
we repeated the docking of the tested compounds with different docking protocols and
different calculation methods (docking score, Glide G.score, XP G.score, and Glide emodel)
in order to have an accurate rank based on the affinities of the tested compounds with the
protein. Moreover, the MM-GBSA calculation was performed to predict and determine
the binding energies: the values with more negative scores represent a stronger binding
(Table 2).
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Figure 5. (A) Putative binding mode of the native inhibitor (myricetin) in the binding site of
alpha-amylase (PDB: 4GQR). The native inhibitor is displayed as green sticks. The amino acid
residues of the binding site are represented as thin tubes with color elements; pi-pi stacking and
H-bonds are represented in cyan and yellow dotted lines, respectively. (B) 2D depiction of the
ligand–protein interactions.
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Figure 6. (A) Putative binding mode of 8 in the binding site of alpha-amylase (PDB: 4GQR). The
inhibitor is displayed as green sticks. The amino acid residues of the binding site are represented
as thin tubes with color elements; pi-pi stacking and H-bonds are represented in cyan and yellow
dotted lines, respectively. (B) 2D depiction of the ligand–protein interactions.
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Figure 7. (A) Putative binding mode of acarbose in the binding site of alpha-amylase (PDB: 4GQR).
The inhibitor is displayed as green sticks. The amino acid residues of the binding site are represented
as thin tubes with color elements; pi-pi stacking and H-bonds are represented in cyan and yellow
dotted lines, respectively. (B) 2D depiction of the ligand–protein interactions.

3.4. Molecular Dynamics (MDs)

Though efforts have been undertaken to improve the docking calculations and pre-
dictions, we still end up with a motionless perspective of the compound’s binding pose
in the protein’s binding site. The best way to compute and evaluate the atom movements
during a specific period of time is by using molecular dynamic simulation by incorporating
the classic equation of motion established by Newton [52]. The dynamic behavior of the
protein–ligand complex stability in the system was stimulated via the MD simulation,
and, for these purposes, the inhibitor with the best docking scores (8), the native inhibitor
(myricetin), and acarbose were subjected to MD studies using the Desmond software
(Supplementary Materials). The MD simulations were run with a simulation time of 100 ns,
and the structures of the complexes were optimized at pH 7.0 ± 2.0. The stability of the
complexes was predicted by analyzing the interaction map and the root mean square
deviation plot of the protein and ligand.

The RMSD plot of the human alpha-amylase with myricetin (Figure 8a), the plot of
the alpha-amylase with 8 (Figure 8b), and acarbose (Figure 8c) indicates the stability of
the complexes during the 100 ns simulation with regard to the reference time of 0 ns. The
plot reveals the RMSD of the alpha-amylase on the left y-axis, while the y-axis on the
right shows the ligand RMSD profile aligned on the protein backbone. There was a slight
fluctuation in the native inhibitor’s plot (Figure 8a) and the tested compound (Figure 8b) at
the time of the simulation, but they were within the acceptable range of 1–3 Å; therefore, it
can be considered non-significant.
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Figure 8. RMSD analyses for (A) native inhibitor (myricetin); (B) compound 8; (C) acarbose with the
alpha-amylase (PDB 4GQR) of MD simulation trajectory.

Figure 9a describes the detailed scheme of myricetin atom interactions with the amino
acid residues. Interactions that lasted for more than 30.0% of the simulation time in
the chosen frame (0.00 through 100.00 ns) are represented. The docked poses were kept
throughout the simulation time of 100 ns. Molecular interactions in the form of H bonds
between residues Trp 59 (59%), Gln 63 (83%), Asp 197 (89 and 89%), His 300 (31%), and Asp
300 (31% through water bridge) are displayed; myricetin is shown to have a hydrophobic
interaction in the form of π-π interaction with Tyr 62. Figure 9b shows interactions that
are classified into three main types and represented as stacked bars: hydrogen bonds
(green), ionic (red), water bridges (blue), and hydrophobic (violet). The stacked bar charts
were normalized over the course of the trajectory. A hydrogen bond with the residue Asp
197 was maintained for more than 100% of the trajectory time; this might be because of
the various hydrogen bonds of the same subtype. Another hydrogen bond was formed
with the residue Gln63 and maintained for more than 50% of the trajectory time. The same
residues also formed water-bridged interactions. Multiple hydrophobic interactions were
formed with different amino acid residues, including Trp 58, Trp 59, and Leu 162.

Figure 10a shows a detailed scheme of the binding interaction of 8 with the protein
residues that persist for at least 30% of the simulation time. Molecular interactions in the
form of H bonds between residues Gln 63 (66%), His 101 (35%), Glu 233 (54% and 33%),
His 305 (66%), and Asp 356 (73% and 67%) are displayed; hydrophobic bonds are shown
with Trp 59. Figure 10b shows interactions that are classified into three main types and
represented as stacked bars: hydrogen bonds (green), hydrophobic (violet), and water
bridges (blue). The stacked bar charts were normalized over the course of the trajectory.
The hydrogen bonds with the following residues showed varying degrees of maintenance
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throughout the trajectory time: Gln 63 (76%), His 101 (35%), Glu 233 (110%), His 299 (30%),
His 305 (90%), Asp 356 (130%). The particularly high interaction percentage (>100%) might
have resulted from the formation of multiple hydrogen bonds of the same subtype. Most
of these residues were also formed by water-bridged interactions. Multiple hydrophobic
interactions were formed with different residues, including Trp 58 (20%), Trp 59 (96%), Tyr
62 (24%), and Leu 165 (18%).
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Figure 9. Analysis of molecular interactions and types of contacts with alpha-amylase after MD
simulation. (A) Detailed schematic interaction of myricetin with the binding site residues of alpha-
amylase in color scheme, where orange represents the charged, blue represents the polar, and light
green represents the hydrophobic residues (PDB ID: 4GQR). (B) Normalized stacked bar chart
of alpha-amylase binding site residues interacting, with the native inhibitor showing the main
types of bonding interaction: hydrogen bonds (green), hydrophobic (violet), ionic (red), and water
bridges (blue).

Metabolites 2022, 12, x FOR PEER REVIEW 15 of 19 
 

 

 

Figure 9. Analysis of molecular interactions and types of contacts with alpha-amylase after MD 

simulation. (A) Detailed schematic interaction of myricetin with the binding site residues of alpha-

amylase in color scheme, where orange represents the charged, blue represents the polar, and light 

green represents the hydrophobic residues (PDB ID:4GQR). (B) Normalized stacked bar chart of 

alpha-amylase binding site residues interacting, with the native inhibitor showing the main types 

of bonding interaction: hydrogen bonds (green), hydrophobic (violet), ionic (red), and water bridges 

(blue). 

Figure 10a shows a detailed scheme of the binding interaction of 8 with the protein 

residues that persist for at least 30% of the simulation time. Molecular interactions in the 

form of H bonds between residues Gln 63 (66%), His 101 (35%), Glu 233 (54% and 33%), 

His 305 (66%), and Asp 356 (73% and 67%) are displayed; hydrophobic bonds are shown 

with Trp 59. Figure 10b shows interactions that are classified into three main types and 

represented as stacked bars: hydrogen bonds (green), hydrophobic (violet), and water 

bridges (blue). The stacked bar charts were normalized over the course of the trajectory. 

The hydrogen bonds with the following residues showed varying degrees of maintenance 

throughout the trajectory time: Gln 63 (76%), His 101 (35%), Glu 233 (110%), His 299 (30%), 

His 305 (90%), Asp 356 (130%). The particularly high interaction percentage (>100%) might 

have resulted from the formation of multiple hydrogen bonds of the same subtype. Most 

of these residues were also formed by water-bridged interactions. Multiple hydrophobic 

interactions were formed with different residues, including Trp 58 (20%), Trp 59 (96%), 

Tyr 62 (24%), and Leu 165 (18%). 

 

Figure 10. Analysis of molecular interactions and types of contacts with alpha-amylase after MD 

simulation. (A) Detailed schematic interaction of 8 with the binding site residues of alpha-amylase 

in color scheme, where orange represents the charged, blue represents the polar, and light green 

represents the hydrophobic residues (PDB ID:4GQR). (B) Normalized stacked bar chart of the alpha-

Figure 10. Analysis of molecular interactions and types of contacts with alpha-amylase after MD
simulation. (A) Detailed schematic interaction of 8 with the binding site residues of alpha-amylase
in color scheme, where orange represents the charged, blue represents the polar, and light green
represents the hydrophobic residues (PDB ID:4GQR). (B) Normalized stacked bar chart of the alpha-
amylase binding site residues interacting, with 8 showing the main types of bonding interaction:
hydrogen bonds (green), hydrophobic (violet), and water bridges (blue).

Figure 11a shows a detailed scheme of the binding interaction of acarbose with the
protein residues that persist for at least 30% of the simulation time. Molecular interactions
in the form of H bonds between residues Gln 63 (31%), Asp 197 (99% and 92%), Gln 233
(30% and 59%), Asp 300 (54% through water bridges), and Asp 356 (79% and 41% through
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water bridge) are displayed. Figure 11b shows interactions that were classified into three
main types and represented as stacked bars: hydrogen bonds (green), hydrophobic (violet),
and water bridges (blue). The stacked bar charts were normalized over the course of
the trajectory. The hydrogen bonds with the following residues showed varying degrees
of maintenance throughout the trajectory time: Gln 63 (70%), Thr 163 (35%), Asp 197
(190%), Glu 233 (80%), Asp 300 (30%), and Asp 356 (75%). The particularly high interaction
percentage (>100%) might be due to the formed hydrogen bonds with the same subtype.
These residues also formed prominent water-bridged interactions: Gln 63 (30%), Tyr 151
(35%), Thr 163 (60%), Asp 300 (120%), His 305 (30%), and Asp 356 (100%).
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Figure 11. Analysis of molecular interactions and types of contacts with alpha-amylase after MD
simulation. (A) Detailed schematic interaction of acarbose with the binding site residues of alpha-
amylase in color scheme, where orange represents the charged, blue represents the polar, and light
green represents the hydrophobic residues (PDB ID:4GQR). (B) Normalized stacked bar chart of
alpha-amylase binding site residues interacting with acarbose showing the main types of bonding
interaction: hydrogen bonds (green), hydrophobic (violet), and water bridges (blue).

3.5. In Vitro Alpha-Amylase Inhibitory Assay

The alpha-amylase inhibitory potential of 10 docked metabolites with the highest
negative docking scores was assessed. The results revealed that all examined compounds
revealed potent to weak alpha-amylase inhibitory potential, with IC50 ranging from
7.1–46.5 µM. It was noted that compounds 4, 5, 6, 8, and 40 had the highest XP G.score and
Glide G.score, demonstrating the most powerful in vitro effectiveness (IC50s 7.1–11.1 µM)
compared to acarbose (IC50 6.7 µM) where 8 was the potent one with IC50 7.1 µM (Table 2).
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4. Conclusions

An in silico study helps in understanding how the metabolites may bind and exert
their inhibitory potential. It is obvious that a combined in vitro and in silico approach is
substantial for screening the active metabolites to detect the supposed molecular interaction
affinity. Molecular docking is an in silico technique that is generally employed to foresee
the orientation among the ligand and receptor. It is utilized in drug discovery because it
is a time-saving and inexpensive technique. This presented investigation demonstrated
the marked AAI potential of various mangosteen metabolites. Additionally, combined
drug-likeness, physicochemical, pharmacokinetic, and molecular docking investigations, as
well as MM-GBSA, were carried out on alpha-amylase to define new possible anti-diabetes
therapeutic candidates. The docking results revealed H-bonds and other interactions
relating to the binding energy’s significance and metabolite complexes’ stability, and
different amino-acid residues in the enzyme active site that grant them AAIs. The current
results revealed that. from the screened metabolites, compound 8 was a significant alpha-
amylase inhibitor in the in vitro assay as well as in the molecular docking studies, as it
had better binding sites and interactions with this enzyme. However, further in vivo and
mechanistic investigations of this compound are warranted to validate its antidiabetic
potential in the prevention or treatment of diabetes. The present findings added additional
in vitro and in vivo evidence of the potential of G. mangostana and its phenolic metabolites
in reducing postprandial glycemia.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12121229/s1. Details of molecular dynamics simulation
for 6-O-β-D-glucopyranosyl-2,4,6,3′,4′,6′-hexahydroxybenzophenone (8), myricetin, and acarbose.
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