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Abstract: In recent years, the importance of the gut microbiome in human health and disease has
increased. Growing evidence suggests that gut dysbiosis might be a crucial risk factor for coronary
artery disease (CAD). Therefore, we conducted a systematic review and meta-analysis to determine
whether or not CAD is associated with specific changes in the gut microbiome. The V3–V4 regions of
the 16S rDNA from fecal samples were analyzed to compare the gut microbiome composition between
CAD patients and controls. Our search yielded 1181 articles, of which 21 met inclusion criteria for
systematic review and 7 for meta-analysis. The alpha-diversity, including observed OTUs, Shannon
and Simpson indices, was significantly decreased in CAD, indicating the reduced richness of the gut
microbiome. The most consistent results in a systematic review and meta-analysis pointed out the
reduced abundance of Bacteroidetes and Lachnospiraceae in CAD patients. Moreover, Enterobacteriaceae,
Lactobacillus, and Streptococcus taxa demonstrated an increased trend in CAD patients. The alterations
in the gut microbiota composition are associated with qualitative and quantitative changes in bacterial
metabolites, many of which have pro-atherogenic effects on endothelial cells, increasing the risk of
developing and progressing CAD.

Keywords: coronary artery disease; atherosclerosis; gut microbiome; dysbiosis; SCFA; LPS

1. Introduction

Various studies on coronary atherosclerosis have revealed that chronic vascular in-
flammation, which begins with a coronary endothelial injury, is an essential process in
the development of coronary artery disease (CAD) [1]. Despite advances in various drug
therapies and interventions, CAD remains one of the most common causes of death world-
wide [2]. In recent years, data from rigorous preclinical studies and epidemiological studies
linking changes in the gut microbiome to vascular endothelial dysfunction and vascular
inflammation have accumulated [3].

The gut microbiome comprises over 2000 species, most of which fall into the four
main phyla: Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria [4]. A diverse,
well-balanced gut microbiota is crucial to human health. Gut microbiota consisting
of a 100,000,000,000,000 microbes living in a symbiotic host relationship regulate host
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metabolism, insulin sensitivity, intestinal endocrine, and neurological function. Gut bacte-
ria produce neurotransmitters, influence the maturation and training of the host immune
system, neutralize exogenous toxins, and protect against overgrowth pathogens [5–7]. Ac-
tive microbial metabolites, such as short-chain fatty acids, vita-mins, autoinducers, indole
derivates, bile acid metabolites, microbial amino acids, and polyamines, directly regulate
human physiology [8].

Disruption of the diversity and abundance of the gut microbiota, termed gut dysbiosis,
underlies many diseases, including metabolic syndrome associated with obesity and dia-
betes. Gut dysbiosis underlies inflammatory bowel disease (IBD), irritable bowel disease
(IBS), colon cancer, asthma, autism, Parkinson’s disease, Alzheimer’s disease, schizophre-
nia, depression and cardiovascular diseases [5,9–12]. An imbalance in the abundance of
specific bacterial taxa in the gut microbiota correlates with a deficiency or excess of bacterial
metabolites that fundamentally affect the physiological status of the host cells, including en-
dothelial cells. To exemplify, specific tryptophan-derived gut microbiota metabolites, such
as indole metabolites and butyrate, serve as regulators of the intestinal barrier, increasing
the expression of tight junction proteins that ensure the tightness of the epithelial bar-
rier [13–15]. Hence, the depletion of butyrate-producing bacterial taxa, e.g., Lachnospiraceae,
may compromise intestinal barrier integrity and leakage of bacterial metabolites into the
bloodstream [16]. One of the most critical consequences of intestinal barrier dysfunction in
gut dysbiosis is endotoxemia and the activation of immune processes leading to chronic
subacute inflammation [17,18]. Apart from immune cells, low-grade endotoxemia affects
endothelial cells, contributing to the initiation and progression of atherosclerosis [19,20].
Many studies have shown alterations in the composition and diversity of the gut microbiota
in CAD [21].

Nevertheless, it is still uncertain which bacterial taxa are altered in CAD and whether
these alterations are consistent across different study populations. Studies of gut microbiota
composition are always affected by factors related to the study population, such as age,
diet, chronic diseases, medications, and physical activity [22]. In addition, gut microbiota
studies are complicated by the choice of sequencing methods and bioinformatic pipelines,
which significantly influence the results [23].

A recent study on simulated microbiome datasets highlights the importance of using
consistent analytical pipelines. Nearing et al. [24] have shown that the appropriate tools
for the differential abundance of microbial taxa testing impact the result. Therefore, this
meta-analysis and systematic review aimed to provide an overview of the literature linking
changes in gut microbiota with CAD using consistent analytical tools across all the datasets.

2. Materials and Methods
2.1. Systematic Review

This systematic review is registered in the International Prospective Register of System-
atic Reviews “PROSPERO” ID CRD42020187549. The study was conducted following the
Preferred Reporting Items of Systematic reviews and Meta-Analyses (PRISMA) guidelines.

2.1.1. Search Strategy

A comprehensive literature search was performed. The search terms were “(Human
Microbiomes OR Human Microbiome OR Human Microflora OR Microbial Community
Structure OR Human Flora OR Composition, Microbial Community) AND (atherosclerosis
or atherogenesis or Coronary atherosclerosis or Coronary Artery Disease or Coronary
Atherosclerosis) AND ischemic heart disease NOT Review” for Medline on PubMed. The
search terms were appropriately modified for other databases and are included in the
Supplementary Materials (Supplementary S1). The search strategy was applied to the
following databases: PubMed, Scopus, Web of Science, Embase, CINAHL, and Cochrane.
We used Google Scholar to search for grey literature; the last search was conducted on
14 December 2021. Before proceeding with the selection of eligible studies, all duplicates
were removed.
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2.1.2. Inclusion and Exclusion Criteria

We have included studies that analyzed the differences in the profile of the intestinal
microbiome between patients with CAD (both stable and unstable) and healthy controls.
Only human studies were included, and neither publication status nor language restrictions
were imposed. The primary outcome measure was a comparison of relative abundances of
bacterial phyla, families, and genera of human gut microflora. We excluded papers in which
CAD was diagnosed by clinical symptoms or ECG only, without coronary imaging methods.
Articles in which the control group included subjects with coronary artery disease, or the
study group consisted of cadavers, were also excluded.

2.1.3. Assessment of Eligibility and Data Extraction

After removing the duplicates, two authors (MC and RB) independently screened
obtained studies by titles and abstracts for relevance to the topic of our systematic review.
The studies obtained by screening were read in full text, and eligibility was determined
based on inclusion and exclusion criteria. The records that did not fulfill the criteria were
removed without using automatic tools. Discrepancies were discussed, and a third author
(KL) arbitrated if disagreement was not resolved. We have included peer-reviewed papers
and those still awaiting review (grey literature). The eligibility assessment of studies is
summarized in Figure 1. The study quality was assessed using a modified Newcastle
Ottawa Scale (Supplementary).
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2.2. Meta-Analysis

The meta-analytical pipeline has been run using Snakemake version 6.6.1. [25]. The
characteristics of the studies included in the meta-analysis and systematic review are pro-
vided in Table 1. Only studies that provided raw sequences from 16S rRNA sequencing were
included in the meta-analysis. The results were obtained by analyzing the samples using two
approaches. First, all datasets were analyzed separately, and their results were combined in
the random-effects meta-analysis (single study approach). In the second approach, all the
samples were analyzed as one combined dataset (combined studies approach).

2.2.1. Readings Preparation and zOTU Picking

We have removed primers using cutadapt [26]. Primers used for the single study
approach are provided in the table available in the supplementary. For the combined study
approach, we have used 338F (5′-CTACGGGNGGCWGCAG-3′) and 805R (5′-GACTACHV
GGGTATCTAATCC-3′) primers, except the Mayo dataset where 926R (5′-CCGTCAATTCM
TTTRAGT-3′) was used. Sawicka-Smiarowska dataset [27] was excluded from the combined
study approach due to the choice of primers in the study, which did not allow for obtaining
sequences that were globally aligned with other studies. Next, all of the readings were
truncated to 250 bps leaving us with globally trimmed data (e.g., all reads starting and
ending at the same position). Furthermore, reading preparation and zOTU picking have
been performed using usearch v11.0.667 and UNOISE. zOTU refers to correct biological
sequences with a 100% identity threshold [28,29]. The taxonomy was resolved using
DECIPHER IDTAXA [30] with Genome Taxonomy Database (version 06-RS202) [31] as
a reference. For downstream analyses, the data have been imported into the phyloseq
object [32] and filtered to leave only zOTUs present in at least 20% of the samples and with
at least five counts.

2.2.2. Differential Abundance Testing

Differential abundance (DA) testing was performed using three approaches: (1) DE-
Seq2, which models the data using the negative binomial distribution, (2) MetagenomeSeq,
which uses a zero-inflated Gaussian model, and (3) ANCOM-BC, which uses an offset-
based log-linear model and currently appears to be the best method for controlling the
false-discovery ratio without losing statistical power. Only bacteria detected as statistically
significant metagenomeSeq, Ancom-BC, or DESeq2 in at least three of 7 studies were in-
cluded. A comprehensive discussion of the DA testing approaches is out of the scope of
our manuscript, and we refer the reader to the large body of research already published on
the topic [33]. For all the approaches, we have assumed a significance level of p < 0.05. We
have used the Benjamini and Hochberg method to adjust for multiple testing.

2.2.3. Statistical Analysis

Alpha diversity indices (observed zOTUs, Fischer, Chao1, Shannon, ACE, and Simp-
son indices) were calculated on data rarefied to the depth of 5000. Beta diversity was
assessed using Unweighted UniFrac. The statistical significance was determined using
the Wilcoxon test for the alpha diversity and PERMANOVA with 999 permutations for
the beta diversity. PERMANOVA was run with the vegan R package [34]. The single
study approach calculated relative abundances using the mean difference in centered log
ratios (CLR). The obtained relative abundances were used to estimate odds ratios using
Agresti’s generalized odd ratios [35] as implemented in the genodds package [36]. Next,
odd ratios were summarized in a random-effects meta-analysis performed using the meta
R package [37].

3. Results

Our search has yielded 1181 articles. After removing the duplicates, 897 unique studies
were identified, out of which 21 met inclusion criteria for systematic review. Among these
21 articles, 7 had raw data available and could be used to conduct a meta-analysis. (Figure 1).
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In the systematic review, the relative abundance of gut microbiota from all 21 eligible papers
were compared. Bacterial taxa detected as significant in at least four studies are included
in Figure 2. In the meta-analysis, only bacteria detected as significant in at least three of
the seven eligible articles were reported. The complete results of the systematic review are
provided in Table 1, and the characteristics of studies included in the meta-analysis are
available in the Supplement.
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Figure 2. The results of a systematic review. The red circles describe the percentage of articles
with increased bacterial relative abundance in CAD patients. Oppositely, green circles describe
the percentage of articles with decreased bacterial relative abundance in CAD patients. One circle
represents one study analyzed.

3.1. Characteristics of Included Studies

Many factors may affect the gut microbiome composition. We compared all eligible
studies by the following: age, gender, BMI, and diabetes mellitus. The complete results are
provided in the Supplement.

The average age of participants was between the sixth and seventh decade of life. In
five articles, differences in age between groups were significant; in 13 other articles were
insignificant, and there were no available data for comparison in three articles.

In the majority of studies, participants were male. In five articles, differences in gender
between groups were significant, ten others were insignificant, and six articles had no
available data for comparison. The BMI of participants generally had values typical for
overweight (BMI = 25–30). In four articles, differences in BMI were significant, in ten the
differences were insignificant, and in seven, there were no available data for comparison.
There were relatively limited data on the prevalence of diabetes in participants. In four
articles, differences in diabetes were significant, in five the differences were insignificant,
and in 12, there were no available data for comparison.

3.2. Systematic Review Results

A comprehensive comparison between CAD patients and controls regarding the rel-
ative abundance at the phylum level demonstrated changes related to four phyla, i.e.,
Proteobacteria, Bacteroidetes, Actinomycetota, and Firmicutes. The increase of Gammapro-
teobacteria has been reported in six (28.6%) studies and the rise of the Enterobacteriaceae
family within the Proteobacteria phylum in four (19%) studies in CAD patients. Moreover,
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four (19%) studies recorded the rise of the Escherichia genus of the Enterobacteriaceae family.
Overall, seven (33.3%) articles reported an increased abundance of Gammaproteobacteria
taxa (Figure 2, Table 1).

Bacteroidetes phylum decline in CAD was reported in five (23.8%) studies (Table 1;
Figure 2). On the contrary, one cross-sectional study reported an increased abundance
of Bacteroidetes in CAD compared to the control group. Remarkably, at the genus level,
a decrease in the relative abundance of Bacteroides in CAD has been recorded in nine
(42.8%) studies. Overall, a decline in the relative abundance of the Bacteroidetes taxa was
recorded in 16 (76.2%) of all 21 articles analyzed, making the decrease in these taxa strikingly
CAD-related. Furthermore, conflicting results regarding the Prevotellaceae family and
Prevotella genus within the Bacteroidales order were associated with CAD, where the
relative abundance of these taxa were decreased in two (9.5%) studies and increased in two
other studies.

The results regarding the Firmicutes phylum were conflicting. In two (9.5%) stud-
ies, the relative abundance of Firmicutes was increased, whereas in three other (14.3%)
decreased in CAD compared to the control group. Within the Firmicutes phylum, there
were conflicting results concerning the Bacilli class. In two (9.5%) studies, the taxon was
increased, whereas in two others decreased in CAD compared to the control group. How-
ever, within the Bacilli taxon, the increased relative abundance of the Lactobacillales order
was associated with CAD patients in four (19%) studies and the Lactobacillus genus in three
(14.3%) studies in contrast to the control group. Moreover, within the Firmicutes phylum,
the decrease in the relative abundance of the Lachnospiraceae family of class Clostridia in
CAD patients versus the control group was demonstrated in five (23.8%) studies. On the
contrary, within the Firmicutes phylum, the Christensenellaceae family abundance was in-
creased in CAD in three (14.3%) studies. The systematic review analysis also demonstrated
the increased relative abundance within the Streptococcaceae family and the Streptococcus
genus among CAD patients in four (19%) studies compared to the control group. These
results indicate a quantitative disturbance within the Firmicutes, mainly concerning an
increase in the abundance of Lactobacillus and Streptococcus, as well as bacteria from the
Christensenellaceae family, with a concomitant decrease in the abundance of bacteria from
the Lachnospiraceae family.

The less prominent changes in the gut microbiota of CAD patients concerned the Cori-
obacteriales order of the phylum Actinobacteria, which was decreased in four (19%) studies
in CAD patients. Changes in the abundance of other bacterial groups, i.e., Desulfovibrio,
Parabacteroides, and Fusobacterium in CAD, were recorded in only a few articles (Table 1).

Table 1. Key characteristics of included studies. Legend: RoB—the risk of bias, NOS—Newcastle-
Ottawa Scale, “+” significant difference in diversity, “−” no significant difference in diversity, PCI—
percutaneous coronary intervention, CABG—coronary artery bypass graft, IBD—inflammatory bowel
disease, GIT—gastrointestinal tract, ACS—acute coronary syndrome, UA—unstable angina, SA—
stable angina, CAD—coronary artery disease, Ctrl—control, “N”increased relative abundance in
CAD patients, “H“ decreased relative abundance in CAD patients.
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3.3. Meta-Analysis Results

The gut microbiome profile in CAD patients and controls was compared using 16S
rDNA gene sequencing in fecal samples. Although 16S rDNA can deliver the resolution
required for taxonomic classification at species and strain levels, it generally involves
sequencing the entire 16S rRNA gene. Since the study focused only on the V3-V4 region,
the meta-analysis of species or lower taxonomic groups was not performed.

Three of the evaluated alpha-diversity measures were decreased in CAD patients.
These included Shannon (p = 0.00025) and Simpson indices (p < 0.0001), both of which
measure evenness and observed OTUs (p = 0.0015), indicating richness. Other measures
(Chao1, ACE, and Fisher indices) evaluated in this study did not significantly differ be-
tween groups (Figures 3 and 4). All (except Toya et al. [50]) datasets showed significant
differences in beta-diversity (measured with UniFrac) between controls and patients with
CAD. However, PCoA plots (Figure 5) showed notable overlap between patients with CAD
and healthy controls, without a clear boundary between samples.

The meta-analysis combined CAD with three phyla, i.e., Bacteroidetes, Actinobacteria,
and Verrucomicrobiota (Figures 6–8). The relative abundance of Bacteroidetes was decreased,
whereas Actinobacteria and Verrucomicrobiota were increased in CAD compared to the
control group. The Bacteroidetes depletion in CAD was also confirmed at the class, order,
and genus levels (Figure 2) supporting the systematic review results. The Actinobacteria
overrepresentation in CAD was further confirmed by the increased relative abundance of
the order Actinomycetales and the family Bifidobacteriaceae.

Increased Verrucomicrobiota phylum in CAD versus the control group was also
associated with increased Verrucomicrobiales order and Akkermansia genus. However, the
confidence interval for Akkermansia significantly overlapped between the increase and
decrease of abundance, indicating the low reliability of this result (Figure 6).
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Additionally, the meta-analysis showed an increase in Proteobacteria at the level of
Enterobacteriales and Enterobacteriaceae family. The alterations within the Firmicutes phy-
lum concerned the Lachnospiraceae family and Enterocloster genus, which were decreased
in CAD versus the control group. Additionally, the reduced abundance of the CAG-81
genus from a class of Clostridia was observed in CAD patients. Overall, the meta-analysis
combined gut microbiota in CAD patients with main bacterial phyla, i.e., Proteobacteria,
Bacteroidetes, Actinobacteria, Firmicutes, and Verrucomicrobiota, at different taxonomic
ranks. The convergent results of systematic review and meta-analysis concerned Enter-
obacteriaceae, Bacteroidetes, and Lachnospiraceae. In contrast with the systematic review, the
meta-analysis showed differences within the Verrucomicrobiota phylum in CAD patients
versus the control group.

4. Discussion

The growing evidence indicates that altered gut microbiota plays a crucial role in
coronary CAD as a risk factor for the disease’s outcome [58]. The gut microbiota in healthy
individuals claims gut homeostasis, imparts resistance to the colonization of new species,
and maintains a symbiotic relationship with the host. On the contrary, the shift in the diver-
sity and abundance of gut microbiota facilitates the overgrowth of potentially pathogenic
bacteria causing inflammatory processes and the evolution of various diseases [59]. An
imbalance in the quantity of specific bacterial taxa in the gut microbiota correlates with
a deficiency or excess of bacterial metabolites that fundamentally affect the physiologi-
cal status of the host cells, including endothelial cells. Depending on the concentration,
bacterial metabolites, e.g., trimethylamine-N-oxide (TMAO), lipopolysaccharide (LPS),
or indoxyl sulfate, may yield direct toxic effects on the endothelium or indirect toxicity
through their modulatory effects on hormones and biologically active compounds of the
host organism [60].

The gut microbiota is dominated by five bacterial phyla, namely Bacteroidetes, Firmi-
cutes, Actinobacteria, Proteobacteria, and Verrucomicrobiota, with Firmicutes and Bac-
teroidetes accounting for more than 90% of the overall gut microbiome [61]. Interestingly,
the most common alterations reported in CAD are related to decreased Bacteroidetes and
increased Firmicutes abundance [52].

The systematic review and meta-analysis performed in the study confirmed a sig-
nificant decrease in the Bacteroidetes taxa in CAD. The decrease of Bacteroidetes in the gut
microbiota carries profound health implications. These Gram-negative obligate anaerobic
bacteria have several beneficial effects on the human body and play an essential role in
maintaining a healthy gut ecosystem [52]. First, Bacteroidetes is involved in the degradation
of non-digestible dietary carbohydrates and host-derived carbohydrates from gastrointesti-
nal tract secretions yielding butyrate and acetate, which can lower serum lipid levels by
blocking cholesterol synthesis [62,63]. Moreover, the Bacteroidetes taxa esterify absorbable
cholesterol to coprostanol, a nonabsorbable sterol excreted in feces, thus lowering the
blood level of cholesterol [62]. Notably, the high efficiency of cholesterol to coprostanol
metabolism is suggested to reduce the risk of CAD [64]. Second, the Bacteroidetes capsular
polysaccharide antigen (PSA) is vital in activating the T-cell-dependent immune response
that can affect the development and homeostasis of the host immune system [65,66]. PSA of
Bacteroides promotes CD4+ T cell differentiation, the balance of Th1 and Th2 populations,
and the differentiation of regulatory T cells (Treg) [67,68]. On an atherosclerotic-prone
mice model, Yoshida et al. [46] demonstrated that mice supplementation with Bacteroides
ameliorated endotoxemia, reduced TLR4 expression and activation, and lowered plasma
levels of pro-atherogenic cytokines such as IL-2, IL-4, IL-6, IL-17A, INF-γ, and TNF-α.
Third, some Bacteroides species directly impact microbial LPS synthesis in the human
gut, lowering systemic endotoxemia involved in the onset and progression of atheroscle-
rosis. Penta- and tetra-acylated lipids A in LPS of Bacteroides are structurally distinct
from the hexa-acylated LPS of E. coli and, in contrast with E. coli LPS, elicit reduced TLR4
response. TLR4 expression increases after LPS exposure in a dose-dependent manner, and
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TLR-mediated dendritic cell activation and maturation upregulates the histocompatibility
complex, costimulatory molecules, cytokine production, and T cell activation. The quantity
of Bacteroides tends to be negatively correlated with fecal LPS levels [46,68]. Arumugam
et al. [69] demonstrated a higher incidence of symptomatic atherosclerosis in individuals
with decreased Bacteroides abundance. Hence, reduced Bacteroides in the gut microbiome
seem to be an important factor predisposing to CAD.

The current meta-analysis demonstrated decreased relative abundance of the Lach-
nospiraceae family of Firmicutes phylum in CAD versus the control group, which is in
concordance with other studies [50,54]. Lachnospiraceae, similarly to Bacteroidetes taxa,
produce butyrate and reduce cholesterol to coprostanol, lowering blood cholesterol lev-
els [70]. Therefore, the Lachnospiraceae decrease in CAD may amplify the adverse effects
of Bacteroides depletion of the gut microbiota. Toya et al. demonstrated that advanced
CAD patients had a reduced relative abundance of Lachnospiraceae NK4B4 and other Lach-
nospiraceae family members, which may suggest a possibility that butyrate depletion could
lead to an increase in inflammation. Moreover, the meta-analysis demonstrated in CAD
patients decreased Enterocloster genus, comprising re-classified Clostridium species.

According to the systematic review, CAD was associated with an increased abundance
of Enterobacteria, Lactobacillus, and Coriobacterium taxa. Lactobacillus is a well-known
lactic acid producer with beneficial effects on human health, as demonstrated in several
studies [71,72]. However, none of these studies evaluated current Lactobacillus levels before
supplementation with these probiotics. Hence, there is a possibility that the overgrowth of
specific Lactobacillus strains in gut microbiota may have adverse effects on human health.
According to Ferrarese et al. [73], some probiotic strains such as L.acidophilus, L.ingluviei,
L. fermentum, and L. delbrueckii are linked to a paradoxical significant weight-gain effect
both in animal and human studies. According to Quiepo-Ortuno’s [74] study on an animal
model, leptin and ghrelin, energy metabolism hormones, seem to be regulated by lactic
acid-producing bacteria. Their study demonstrated a positive correlation between the
abundance of Bifidobacterium and Lactobacillus and serum leptin levels and a significant
negative correlation between the number of Clostridium, Bacteroides, and Prevotella and
serum leptin levels.

Leptin is a hormone produced primarily by adipose cells and enterocytes that helps
regulate energy balance by inhibiting hunger, which diminishes fat storage in adipocytes.
However, obesity promotes insulin resistance and increases serum insulin levels, and
high insulin levels increase leptin levels, eventually leading to leptin resistance in the
nervous system and adipose tissue. This causes leptin to not reduce food intake and body
weight in obese individuals [75]. Therefore, an increased abundance of Lactobacillus and
Bifidobacterium and a decreased abundance of Bacteroides taxa in obese individuals may
result in leptin resistance that fuels obesity, a well-known risk factor of CAD. Whether the
increase in Lactobacillus is related to leptin levels in humans needs to be determined.

Moreover, it has been shown that the therapeutic effects of statins are attenuated by
the abundance of Lactobacillus and Bifidobacterium, which renders these drugs relatively
ineffective in decreasing LDL, confirming the putative role of lactic acid bacteria in leptin
resistance [76]. Puurunen et al. [77] demonstrated that high plasma leptin levels predict
the short-term occurrence of congestive heart failure, cardiac death, and acute coronary
syndrome in patients with CAD independently of established risk factors.

On the contrary, ghrelin is a hormone produced by enteroendocrine cells in the gas-
trointestinal tract that stimulates food intake, fat deposition, and growth hormone release.
Moreover, ghrelin and its receptor GHS-R1a have a cardioprotective effect on the cardiovas-
cular system via the modulation of sympathetic activity and hypertension, enhancement
of vascular activity and angiogenesis, inhibition of arrhythmias, reduction in heart fail-
ure, and inhibition of cardiac remodeling after myocardial infarction [78]. Interestingly, a
meta-analysis aimed to summarize the available data regarding the circulating levels of
ghrelin in patients with CAD published by Niknam et al. [79] also combined significantly
lower circulating ghrelin levels with CAD. According to Torres-Fuentes et al. [80], lac-
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tate produced by Lactobacillus and Bifidobacterium attenuates ghrelin-mediated signaling
through the GHSR-1a. On an animal model, Queipo-Ortuño et al. [74] demonstrated that
serum ghrelin levels were negatively correlated with Bifidobacterium and Lactobacillus and
positively correlated with Bacteroides and Prevotella. These data strongly suggest that an
overabundance of lactic acid bacteria in the gut microbiome of patients with CAD may
negatively impact patients’ energy metabolism leading to weight gain and obesity. Notably,
the abundance of Lactobacillus in the gut microbiome is regulated by proatherogenic TMAO,
a well-known predictor of cardiovascular disease. Hoyles et al. [81] demonstrated that
TMAO stimulates the growth of lactic acid bacteria and lactate production. The level of
TMAO, in turn, depends on the abundance of bacterial taxa producing TMAO precursor,
i.e., trimethylamine (TMA) from dietary choline, mainly Gamma- and Betaproteobacteria,
and some Firmicutes [82]. Interestingly, TMAO also stimulates the growth of Enterobacteri-
aceae and may account for the increased abundance of Enterobacteriaceae and Lactobacillus
taxa in CAD [81]. Additionally, increased Enterobacteria correlates with increased fecal in-
dole and serum indoxyl sulfate, a cardiotoxic uremic toxin [83]. The increase in the plasma
levels of these uremic toxins is reported to accelerate the development of atherosclerotic
plaque [21]. Moreover, an increased abundance of Gram-negative Enterobacteriaceae taxa
may be an essential source of endotoxin. In gut dysbiosis, the endotoxin leaks into the
circulation, inducing inflammation and accelerating CAD progression [57].

Jie et al. [44] performed a metagenomic shotgun-sequencing on stool samples from
218 patients with atherosclerotic CVDs and 187 healthy controls and identified, apart
from Enterobacteriaceae, an increased abundance of Streptococcus spp. in atherosclerotic
cardiovascular disease which is in concordance with the current study. The link between
the gut Streptococcus species with atherosclerosis has been demonstrated in the current
study and is well-established in other studies [44,84,85]. Hashizume-Takizawa et al. [84]
on the hyperlipidemic mouse model demonstrated that atherosclerotic plaque formation
increased significantly in the S. sanguis-challenged mice compared to the control group.
Moreover, challenged mice showed increased expression levels of mRNAs of proinflamma-
tory cytokines in the aorta and atherosclerosis-related mediators in the blood. The role of
73 Streptococcus species in aortic inflammation and atherosclerosis progression has been
confirmed recently by computed tomography-derived coronary artery calcium score in a
large cohort of middle-aged Swedes and validated in a geographically separate case-control
study of symptomatic atherosclerotic disease. The study supported that gut Streptococcus
spp. were independently associated with endogenous and exogenous atherogenic plasma
metabolites, inflammatory and infection markers, and bacterial homologs in the oral cavity,
which were associated with worse oral health [86].

The Coriobacteriales order, which according to the systematic review, was more abun-
dant in CAD patients than controls, includes pathobionts of human gut microbiota. With
Collinsella as its dominant taxon, these bacteria can affect host metabolism by altering
intestinal cholesterol absorption, decreasing glycogenesis in the liver, and increasing triglyc-
eride synthesis. Karlsson et al. [86], using shotgun sequencing of the gut metagenome,
demonstrated increased Collinsella genus in patients with stenotic atherosclerotic plaques
in the carotid artery. According to a study on an animal model, the presence of Cor-
riobacteriaceae in the mouse gut correlated with decreased hepatic glycogen and glucose
levels, enhanced triglyceride synthesis, and the activity of Cyp3a11, a hepatic detoxification
enzyme [87]. Lahti et al. [88] identified a positive correlation between the abundance
of human serum cholesterol and the genus Collinsella. According to biochemical lipid
analysis, the Collinsella genus explicitly correlates with total cholesterol and LDL but not
HDL, supporting data generated in studies on animal models [86,89].

There are several limitations to our study. First, most studies included in our systematic
review were based on 16s rRNA sequencing focused on the V3-V4 regions, which can
barely classify microbiota to the strain level. Specific metabolites of bacterial strains may
exert pronounced effects on gut homeostasis. Hence, accurate characterization of the gut
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microbiota at the species level may be of great importance concerning preventing CAD by
regulating the abundance of bacterial taxa.

Another limitation is the difference in characteristics of the studied populations in
the included studies. Several studies have shown significant differences in age, gender
distribution, BMI, and diabetes mellitus frequency, which are also risk factors for CAD. All
these factors are also associated with changes in the gut microbiome [90–93]. Hence, it can
be hypothesized that these factors, but not CAD itself, cause the microbiome alterations
detected in our study. However, since most of the included studies did not show significant
differences in the frequency of these risk factors, we consider this hypothesis unlikely.

The meta-analysis and systematic review pointed out differences in the gut microbiota
composition in CAD patients compared to healthy controls. One of the most striking
differences was the decrease in the beneficial Bacteroides and Lachnospira combined
with the increase in enterobacteria, Actinobacteria, and Verrucomicrobiota in CAD patients.
These alterations in the gut microbiota composition are associated with quantitative changes
in atherogenic bacterial metabolites, e.g., LPS, TMAO, and uremic toxins, that increase the
risk of developing or progressing CAD.

The gut microbiota composition, however, can be modulated by an appropriate diet.
Therefore, knowledge and understanding of the role of the gut microbiota in CAD pathome-
chanism are crucial in preventing the coronary artery disease and slowing its progression.
Targeting personalized medicine with dietary selection or supplementation with beneficial
bacterial species could help reduce cardiovascular morbidity and mortality. However,
before this can happen, an in-depth understanding of how the gut microflora changes
under the diet and impacts mutual interactions with the host organism is imperative.
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