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Abstract: Patients treated for traumatic brain injury (TBI) are in metabolic crises because of the trauma
and underfeeding. We utilized fractional gluconeogenesis (fGNG) to assess nutritional adequacy
in ad libitum-fed and calorically-restricted rats following TBI. Male Sprague–Dawley individually
housed rats 49 days of age were randomly assigned into four groups: ad libitum (AL) fed control
(AL-Con, sham), AL plus TBI (AL+TBI), caloric restriction (CR) control (CR-Con, sham), and CR
plus TBI (CR+TBI). From days 1–7 animals were given AL access to food and water containing 6%
deuterium oxide (D2O). On day 8, a pre-intervention blood sample was drawn from each animal,
and TBI, sham injury, and CR protocols were initiated. On day 22, the animals were euthanized,
and blood was collected to measure fGNG. Pre-intervention, there was no significant difference in
fGNG among groups (p ≥ 0.05). There was a significant increase in fGNG due to caloric restriction,
independent of TBI (p ≤ 0.05). In addition, fGNG may provide a real-time, personalized biomarker
for assessing patient dietary caloric needs.

Keywords: TBI; tracer; glycemia; D2O; metabolism; fasting

1. Introduction

In 2019, traumatic brain injuries (TBI) resulted in 223,135 hospitalizations, and 60,611
deaths [1]. TBI recovery can span days to weeks, or longer [2]. Practitioners in neurological
intensive care units (neuro ICU) are responsible for the caloric needs of TBI patients. Such
needs are technically difficult and of low priority given other, urgent exigencies. Hence,
TBI patients typically deal with both standard of care (SOC) underfeeding [3,4] and injury
provoked metabolic crises [4–13]. The interplay between dietary energy deficit and recovery
from TBI is relatively unstudied.

In healthy non-diabetic humans, fractional gluconeogenesis (fGNG) ranges between 40%
and 60% following an overnight fast [14], and rises to 90% with prolonged fasting [15,16].
Previously, it has been observed that neuro ICU patients suffering from TBI had increased
fGNG compared to non-injured control subjects [6,12]. Because of the inadequacy of Harris–
Benedict (H–B) equations for predicting the energy needs of individual patients [3,4], as well
as difficulties in using indirect calorimetry for assessing metabolic rate, or assessing nitrogen
balance in the critical care setting, clinicians have described the need for a biomarker
of dietary energy adequacy in TBI patients, among others [17]. In the clinical setting,
measurements of fGNG could provide a biomarker to avoid under- or overfeeding of
trauma patients [6,18]. While it is unknown why fGNG raises quickly in TBI patients, they
typically face dual challenges of injury-induced metabolic crises and undernutrition [6,19].

The purpose of this study was to determine if increased endogenous glucose produc-
tion via fGNG is due to TBI, dietary energy inadequacy from caloric restriction (CR), or a
combination of the two stressors. We hypothesized that TBI in conjunction with CR would
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result in a greater increase in fGNG than CR alone. We found that caloric restriction raised
fGNG independent of TBI.

2. Experimental Design

Procedures conducted on the animals were approved by the University of California,
Berkeley Animal Care and Use Committee (2018-08-11312). Male Sprague–Dawley rats
were purchased from Charles River, USA (Wilmington, MA) at 49 days of age simulate
an adolescent, not completely developed brain, and housed individually. Cages were
maintained at a constant temperature and humidity with a 12-h light–dark cycle (Light:
7:00 a.m. to 7:00 p.m.). Figure 1 shows the schematic for our study design. The animals
were given free access to 6% deuterium oxide (D2O, heavy or labeled water) for the entirety
of the study, and ad libitum (AL) access to standard chow mix (PicoLab Rodent Diet 20:
62:13:25% carbohydrate, fat, and protein) for the first 7 days.
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Figure 1. An experimental schematic of the study. Animals were housed individually, and on day
1 we provided 6% D2O drinking water that was maintained for the entirety of the study (21 days).
Days 1–7 were considered pre-study where the animals were given AL access to food; food intake
and water intake were measured daily. On day 8 the rats were randomized into the study groups: Ad
libitum (AL) fed control (AL-Con, sham), AL plus TBI (AL+TBI), CR control (CR-Con, sham), and
CR plus TBI (CR+TBI). Following a blood draw, the animals received a TBI or a sham intervention.
Following the TBI or sham intervention, half rations were provided to the animals selected for CR
treatment. From days 9–21, the animals were allowed to recover in their cages. On day 22 the animals
were euthanized, and blood was collected.

On day 8, a free rotation closed-head traumatic brain injury (TBI) [20] was induced.
Following TBI, animals were randomly assigned to four groups based on injury and
nutritional interventions: 1. Sham injury control with AL feeding (AL-Con), 2. TBI and AL
feeding (AL+TBI), 3. TBI and half ration caloric restriction (CR+TBI), 4. Sham injury and
caloric restriction (CR-CON). Individual rat weights were recorded periodically throughout
the study (Table 1). The half-ration, CR treatment, was designed to mimic human patient
treatment in a Neuro ICU [6,18]. For the first 7 days, food trays were weighed to calculate
half ration for the groups that received CR (Table 2). Then, the average of each rat’s daily
food consumption prior to TBI was calculated and rounded up the nearest half gram and
divided by two to determine the CR group daily allotment. Per the NIH Subcommittee
on Laboratory Animal Nutrition, the AL food consumption of a Sprague–Dawley rat is
considered to be the food necessary to meet the animals’ daily energy requirements [21],
in other words, caloric adequacy. Thus, by limiting the animals’ food intake by 50% we
caused caloric deficits in the CR groups.
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Table 1. TBI and CR significantly decreased body weight 24 h post-injury.

Group Number of Animals Pre-Intervention 24 h
Post-Intervention

13 Days
Post-Intervention

Total
Weight Change

AL-Con 3 249.3 ± 2.1 g 248.7 ± 0.6 g 294.3 ± 6.7 g 45.0 ± 6.2 g

AL+TBI 6 252.2 ± 15.8 g 241.2 ± 15.5 g * 285.3 ± 16.1 g 33.2 ± 20.6 g

CR-Con 6 292.16 ± 14.8 g *+ˆ 291.5 ± 15.3 g 278.3 ± 10.6 g −13.83 ± 13.2 g *+

CR+TBI 5 244.8 ± 13.9 g 233.0 ± 12.1 g * 216.6015.8 g *$+ −28.20 ± 7.0 g *+

Body weight changes (grams) from pre-intervention to 24 h and 13 days post-intervention, and relative body
weight changes. * Significantly different from AL-Con p ≤ 0.05, + significantly different from AL+TBI p ≤ 0.05,
$ significantly different from CR-Con p ≤ 0.05, ˆ significantly different from CR+TBI p ≤ 0.05.

Table 2. TBI and CR significantly decreased food consumption 24 h post-injury.

Group Number of Animals Pre-Intervention 24 Hours
Post-Intervention

13 Days
Post-Intervention

AL-Con 3 22.5 ± 0.8 g 18.0 ± 2.6 g 21.1 ± 1.4 g

AL+TBI 6 22.7 ± 1.2 g 12.3 ± 4.5 g *& 21.0 ± 1.5 g

CR Con 6 25.0 ± 1.2 g 12.8 ± 0.4 g *& 12.8 ± 0.4 g *+&

CR+TBI 5 21.9 ± 1.9 g 11.0 ± 1.0 g *& 11.0 ± 1.0 g *+&

Food consumption (grams) from pre-intervention, 24 h, and 13 days post-intervention. * Significantly different
from AL-Con p ≤ 0.05, + significantly from AL TBI p ≤ 0.05, & significantly different from pre-intervention food
consumption p ≤ 0.005.

Food was removed from animal cages 24 h before euthanasia while 6% D2O remained
continuously available for the animals. Animals were euthanized on day 22 via carbon
dioxide asphyxiation followed by decapitation. Subsequently, blood was collected in EDTA
tubes and spun at 3000 g for 18 min to separate the plasma which was stored at −20 ◦C
until analysis

2.1. Traumatic Brain Injury Model

Prior to injury, the animals were anesthetized using 3.5% isoflurane atomized in
oxygen at a low rate of 1 L/min for approximately 15 min. If breathing rate remained
elevated or toe-pinch reflex was present, the animals continued under anesthesia for an
additional minute, or until the toe-pinch reflex was no longer detected. Animals were then
quickly moved to a perforated foil platform 8 cm above a 7.6 cm thick medium-density
foam pad in a prone position. The bolt was positioned on the rat’s head along the midline
and aligned with the ears to target between the lambda and bregma skull landmarks.
After confirming the toe-pinch reflex had not been regained, a 450 g weight was dropped
from 135 cm onto a 3 cm of bolt throw. Sham animals underwent the same course of
anesthesia and placement on the apparatus with no weight drop. Immediately post-impact,
the animals were returned to a clean cage in the supine position and observed.

2.2. Labeled Water and Body Water Enrichment Analysis

Animals were given AL access to 6% D2O drinking water for the entirety of the study
(days 1–22). There were no bolus D2O injections administered due to the fast nature at
which D2O incorporates into body water pools [22]. Assessment of body water enrichment
was as described by Miller et al. [22,23]. Briefly, 120 µL of plasma was placed into the cap of
inverted screw-capped tubes and placed in a heat block for overnight distillation at 80 ◦C.
Distilled samples were diluted 1:300 in doubly-distilled (dd) H2O and analyzed on a liquid
water isotope analyzer (Los Gatos Research, Los Gatos, CA, USA) against a standard curve
prepared with samples containing different percentages of D2O.
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2.3. Fractional Gluconeogenesis Measurement

A glucose penta-acetate derivative was used to measure deuterium incorporation
into the glucose molecule via GNG. For this, 25 µL of plasma was placed into a 1.5 mL
Eppendorf tube containing 50 µL of ethanol. A liquid-to-liquid ethanol extraction was
performed and the organic layer containing glucose was extracted and transferred to a
2 mL glass vial and dried under nitrogen (N2) gas. The dried glucose was derivatized
using 100 µL of a 2:1 mixture of acetic anhydride and pyridine. The GC vial was sealed
and heated at 60 ◦C for 20 min. After 20 min, the sample was dried under N2 and then
reconstituted in 500 µL of ethyl acetate.

Isotopic enrichments of glucose penta-acetate derivative were measured on an Agilent
6890/5973 Gas Chromatograph–Mass Spectrometer (GC-MS) utilizing positive chemical
isolation (PCI) and selected ion monitoring (SIM) on a DB-17 GC column. The starting oven
temperature was 110 ◦C, increased by 35 ◦C every minute till 225 ◦C, and held for 5 min.
The mass-to-charge ratios (m/z) of 169 and 170 were monitored for the glucose penta-acetate
derivative.

To calculate fGNG, body water enrichment was used in conjunction with SIM mea-
surements of m/z 169 and 170 of the glucose penta-acetate derivative, as previously de-
scribed [24]. Briefly, the 169 fragment of the glucose penta-acetate derivative contains
six hydrogen atoms at carbons 1, 3, 4, 5, and 6. Unlike other fragments of the glucose
derivative, the 169 fragment lacked the hydrogen on carbon 2 (C2), which is proportional
to the total glucose production in the body due to the required glucose-6-phosphate to
fructose-6-phosphate isomerization that takes place at that position [24]. Deuterium en-
richment (m/z 170) at all carbon sites excluding the hydrogen/deuterium on C2 is most
indicative of gluconeogenesis as they represent new glucose production solely from the
gluconeogenic pathway. Thus, the average enrichment of the glucose penta-acetate frag-
ment was calculated using the equation below by the SIM of m/z 170/169 and subsequently
dividing by 6 because of the six possible sites on the glucose molecule at which a hydrogen
atom could potentially exchange with a deuterium atom (Equation (1)).

169 fragment enrichment = [(M + 1) (m/z 170 /(M) (m/z 169)]/6 (1)

To calculate fGNG, the average 170/169 glucose penta-acetate fragment enrichment
was divided by the body water enrichment (Equation (2)).

fGNG = 169 fragment enrichment/Body Water Enrichment (2)

2.4. Blood Glucose Analyses

Whole blood was collected in EDTA tubes. Aliquots of these samples were added 1:2
to tubes containing 8% perchloric acid (200:400 µL) to stop metabolism, vortexed, and then
immediately centrifuged at 2000× g for 10 min. Perchloric acid extracts were neutralized
with 2 N NaOH. Glucose concentrations were then measured with a hexokinase enzymatic
solution from Thermo Fisher Scientific (Waltham, MA, USA).

2.5. Kinematic and Behavioral Analyses

To measure the severity of the TBI impact on the animals we performed a multitude of
modified neurological severity score (mNSS) tests [25]. We utilized open field, beam-walk,
and inverted wire mesh holds to measure cognitive impairments due to TBI. Behavioral
analyses were performed at six time points: 30 min (min) pre-TBI, 30 min, 24 h, 48 h, 72 h,
and 10 days post-TBI. A light aversion assay [26] was administered to test the animals’
sensitivity to light 13 days post-injury.

2.6. Statistical Analyses

All statistical analyses were run utilizing SPSS (IBM SPSS Statistics for Macintosh,
Version 27.0 Armonk, NY, USA: IBM Corp). To find the difference in food consumption
between our pre-TBI, 24 h post-intervention, and final food consumption (13 days post-
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intervention), we performed a two-way ANOVA. Significance was set at p ≤ 0.05 and
confirmed with Tukey’s post hoc test. Similarly, we used a two-way ANOVA to measure
the differences in weight change between each group from pre-TBI, 24 h post-intervention,
and final weight (13 days post-intervention) measurements; significance was set at p ≤ 0.05
and confirmed with a Tukey’s post hoc test. Final glucose concentrations were measured
using a two-way ANOVA to find group differences, and significance was set at p ≤ 0.05.
We performed an independent t-test to measure the difference in fGNG between the AL
and CR groups, as well as an independent t-test to measure the difference in fGNG between
the control and TBI groups. Finally, we utilized a two-way ANOVA using feeding status
and TBI status as the independent variables to find an interaction effect between TBI and
CR, and fGNG. Significance was set at p ≤ 0.05 and confirmed with Tukey’s post hoc test.
We performed a two-way ANOVA to find group differences on all behavioral testing. For
all behavioral testing, we conducted a two-way ANOVA using TBI and feeding status as
the independent variables. Significance was set at p ≤ 0.05 and confirmed with Tukey’s
post hoc test.

3. Results
3.1. TBI Leads to Alterations in Light Sensitivity 13 Days Post-Injury

Of the numerous state-of-the-art pre- and post-TBI behavioral assessments performed,
injured animals showed behavioral change only due to light exposure via the light aversion
assay after recovering from TBI; that is, animals spending less time in the light field at
500 lux (TBI: 35+ 15 s vs. Con: 45 ± 15 s p ≤ 0.05) and 750 lux (TBI: 31.2 ± 13 s vs.
Con: 42 ±10 s p ≤ 0.05) than the control animals. By contrast, there were no differences in
inverted wire mesh hold time (TBI: 7 ± 3.1 s, AL 6 ± 2.4 s p ≥ 0.05), total distance traveled
in the open field (TBI: 400 ± 254.7 cm vs. Con 378 ± 266.9 cm p ≥ 0.05), and time to reach
the end of the walking beam (TBI: 5 ± 2.4 s vs. Con: 5.2 ± 2 s p ≥ 0.05) between the TBI and
Con groups. Hence, it appears that the free rotation, closed-head traumatic brain injury
method we used produced a mild TBI.

3.2. TBI and CR Significantly Alter Body Weight and Voluntary Food Consumption Post-TBI

On the day of the intervention (day 8), there were no weight differences between
AL-Con, AL+TBI, and CR+TBI groups. Despite the randomization of treatment, the CR-
Con group had a significantly higher starting weight (p ≤ 0.05) (Table 1). Subsequently,
24 h post-TBI there was a significant decrease in weight in both TBI groups, (p ≤ 0.05),
with no changes in the CR-Con group, and a significant increase in weight in the AL-Con
group (p ≤ 0.05). Thirteen days post-intervention there were significant weight gains by
the AL groups (AL-CON and AL+TBI; p ≤ 0.001). There was no difference in the weight
change between the AL groups (p ≥ 0.60). Additionally, 13 days post-intervention there
was a significant decrease in weight in the CR groups (p ≥ 0.001), with no difference in
the amount of weight loss between the two groups (p ≥ 0.37). There was a significant
effect of caloric restriction on weight change (AL: 37.11 ± 17.61 g vs. CR: −20.36 ± 12.76 g;
p ≤ 0.001), with no significant effect of TBI on weight change (CON: 5.77 ± 31.36 g vs. TBI:
5.27 ± 35.49 g; p ≥ 0.95). We were not able to find an interaction between CR and TBI. Thus,
caloric restriction, not TBI, has a significant effect on weight changes post-TBI. Our data
show that animals on a CR diet deviated negatively from the natural growth projection
of animals their age, while AL animals had a similar growth progression to age-matched
animals [21].

Food consumption behaviors are reported in Table 2. There were no differences in food
consumption between groups prior to the intervention (p ≥ 0.23). There was a significant
decrease in food consumption from pre- to 24 h post-intervention in the AL+TBI group
(p ≤ 0.005), and the two caloric restriction groups (CR-Con and CR+TBI, p ≤ 0.005), with no
change in food consumption in the AL-Con group (Table 2). At the conclusion of the study,
13 days post-intervention, as expected via study design there was a significant decrease in
food consumption in the CR groups (p ≤ 0.001). However, there was no difference in food
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consumption between AL-Con and AL+TBI (Table 2). Thus, the CR+TBI treatment group
mimicked what was observed in a state-of-the-art neural ICU.

3.3. Caloric Restriction Increases Fractional Production of Endogenous Glucose via
Gluconeogenesis with No Effect on Blood Glucose Concentrations

The average pre-intervention fGNG for the AL (35.40 ± 1.10%) and CR (36.62 ± 1.71%)
groups were not significantly different (p ≥ 0.55). At the conclusion of the study, 13 days
post-intervention, there was a significant increase in fGNG with CR (AL: 61.25 ± 5.68%
vs. CR: 79.46 ± 4.47%, p ≤ 0.001) (Figure 2), with no changes in fGNG due to TBI (Con:
71.23% ± 5.38 vs. TBI: 69.47 ± 4.77%, p = 0.50). There was a similar increase in fGNG
between the CR-Con (79.83 ± 4.43%) and CR+TBI (79.10 ± 4.52%) groups (p ≥ 0.78),
both being significantly higher than the AL-Con (62.64 ± 6.33% p < 0.001) and AL+TBI
(59.85 ± 5.01% p ≤ 0.001) groups (Figure 3), and there was no interaction effect between
CR and TBI on fGNG. Notably, the 24-h fast imparted on all animals caused a signifi-
cant increase in fGNG post-intervention in both the AL-Con (Pre: 35.6 ± 1.1% vs. Post:
62.64 ± 6.33%. p ≤ 0.001) and AL+TBI (Pre: 35.2 ± 1.1% vs. Post: 59.85 ± 5.01% p ≤ 0.001).
Thus, there is a significant effect of feeding on fGNG independent of TBI. At the conclu-
sion of the study, there were no significant differences in blood glucose concentrations
with CR or TBI (AL-Con: 167.5 ± 17.9 mg/dL, AL+TBI: 176.5 ± 25.1 mg/dL, CR-Con:
162.3 ± 24.0 mg/dL, and CR+TBI: 158.0 ± 10.0mg/dL: p > 0.5).
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p ≤ 0.001, && significantly different from pre-intervention ≤0.001.
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4. Discussion

The purpose of this study was to determine the individual and combined effects of CR
and TBI on fGNG. We found that fGNG was significantly impacted by CR, independent of
TBI. Hence, the results indicate that following CR, energy reserves are mobilized to support
blood glucose homeostasis by increasing fGNG. Further, our study shows the potential of
using fGNG via D2O administration to assess caloric needs, particularly in individuals that
are recovering from a TBI.

In nondiabetic individuals, gluconeogenic rates are known to respond to feeding, fast-
ing, and metabolic activity as glucose reserves become depleted and must be replenished
during and after periods of fasting [14]. Consequently, if dietary sources are inadequate to
maintain euglycemia, gluconeogenesis is reflexively elevated, making fGNG, not blood glu-
cose concentration, a biomarker of dietary energy adequacy [27]. Knowing, and supporting
body energy requirements following injury seems prudent considering the metabolic crisis
common with TBI that serves to deplete endogenous nutrient and body mass energy stores.
This experiment demonstrates that 50% caloric restriction in rats is sufficient feeding stress
to induce significantly elevated rates of fGNG.

4.1. TBI and Glucose Control

The results of the present investigation on TBI and control rats are comparable with
those obtained on human patients that suffered a TBI [6]. In the Neuro ICU glucose
flux was determined from a primed-continuous infusion of [6,6-D]glucose and fGNG
was determined from the incorporation of 13C from infused [3-13C]lactate into plasma
glucose [6,12]. TBI patients exhibited a fGNG of 67%, twofold greater than in the post-
absorptive controls [6]. Retrospectively, in consideration of results obtained in the present
investigation, the increase in fGNG values in post-TBI human patients may have been
due to caloric restriction, not the condition of TBI. The comparison of results obtained
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with primed-continuous infusions of [6,6-D]glucose and a [3-13C]lactate on humans in a
Neuro-ICU and on rats using the D2O method may be informative. The former, primed-
continuous infusion studies were short-term [6,12], 3-h experiments, whereas the D2O
labeled drinking water studies have the potential for long-term labeling measurements
spanning days to months [22]. Thus, D2O labeling has the potential to measure fGNG
for the duration of recovery, allowing the practitioner to adjust caloric support as patient
energy needs change. It is noteworthy that instead of labeling drinking water as presented
in the current study, patients could be continuously administered D2O water via nasal
gastric feeding or by a labeled saline iv drip.

Since Banting and Best discovered insulin a century ago [28], the biomedical world
has been dominated by monitoring and controlling glucose concentration. In the ICU,
tight glycemic control is a priority [29,30]. Initially, TBI patients can be hyperglycemic [9],
yet glucose cerebral metabolic rate (CMR) is severely decreased post-TBI [12]. With the
current SOC, practitioners titrate insulin to decrease blood glucose levels, which decreases
the blood glucose availability to the patient’s brain post-injury [31]. Further impacting
patient recovery, underfeeding exacerbates the metabolic crisis caused by the illness or
injury [32]. Post-TBI, the brain needs glucose, yet the body is vastly underfed causing an
increase in endogenous glucose production via GNG; however, insulin titration suppresses
the availability of the newly produced glucose exacerbating metabolic crises and further
influencing fGNG.

4.2. Clinical Ramifications of under/over Feeding, Benefits of Using fGNG as a Biomarker

Influential practitioners in critical care nutrition stress the need for a biomarker to
guide nutrition during the critical care and the anabolic phases of recovery [33]. fGNG may
have particular applications in the acute phase of critical care to tailor caloric administration
for non-diabetic patients and thus avoid underfeeding. Classically, healthcare professionals
have used the H–B equation to predict the caloric needs of patients [34]; yet, in clinical
settings, the H–B equation may vastly underestimate the caloric needs of critically ill
patients, especially those post-TBI [3,4,33]. In acute care TBI patients (<30 days post-injury),
resting energy expenditure has been underestimated by 87 to 200% [3]. For example, McEvoy
and colleagues [4] demonstrated that predictive equations can differ up to 550 kcal from
the patient’s actual energy requirements, leading to the underfeeding of patients. Such
significant energy deficits lead to catabolism of lean tissue that challenges the healing
process via lean body wasting [6,12].

While we have noted limitations in H–B equations for application in critical care
settings, in fact, all static measurements, such as blood glucose concentration, as well as
predictive equations based on regression to mean, utilized to evaluate energy needs, lack
the ability to provide personalized assessments of body energy state [17,35,36]. By contrast,
using a small, inexpensive dose of D2O, followed by mass spectrometry measurements
of glucose and body water isotopic enrichments, those treating patients during recovery
from illness and injury can readily and repeatedly assess the caloric needs of their patients
over the course of recovery. With this information, it may be possible to make an accurate
individualized caloric assessment to help maximize recovery. Importantly, by measuring
fGNG from a small blood sample in an existing hospital, Clinical Laboratory Improvement
Amendments (CLIA) laboratory, there is an opportunity for reimbursement using existing
current procedural terminology (CPT) codes.

fGNG measurements are not only an indicator of underfeeding but can also give
insight into whether the patient is overfed. Although overfeeding is not common during
the acute phase of illness or injury, there is evidence to suggest that overfeeding may be
detrimental to patient recovery [37]. In ICU patients, There is an increase in inflammation
and blood infections with overfeeding [37]. The dynamic nature of fGNG allows medical
staff to measure the fed (0~15%) or unfed state (greater than 40%) of a patient. If fGNG is
continuously monitored, in non-diabetic patients on a and in the lower range (0–10%), this
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could indicate that the patient is overfed. By measuring fGNG healthcare practitioners will
have the necessary evaluations to assess the dietary energy states of patients.

Finally, previous results showing elevated fGNG in TBI patients were likely due to
underfeeding, then trauma [6,12,18]. Lactate, a major gluconeogenic precursor [38,39], has
shown a vast (71%) increase in the rate of appearance in TBI subjects compared to control
subjects [6]. While some of this lactate is disposed of via direct oxidation [12,18], most
is converted into glucose via GNG [12]. With the mounting evidence of increased fGNG
post-TBI, likely stemming from underfeeding, the corpus is being sacrificed to provide
support for the brain post-injury.

4.3. Limitations

The study was designed to induce a moderate TBI mimicking a sports concussion.
However, the behavioral data and decreased voluntary food consumption 24 h post-injury
indicate that we administered a mild TBI [2,40]. Possibly a more severe injury may have
caused an alteration in fGNG even with adequate nutrition. Despite limited sample sizes,
we showed large effect sizes (p ≤ 0.001) and the fGNG values obtained from our control
animals were similar to those in previous studies [16,41]. Another limitation of our study
was the lack of macronutrient composition manipulation; rather, we used a SOC diet found
in a hospital setting.

4.4. Future Research Direction

The results of this study may encourage healthcare providers to conduct clinical trials
using fGNG as a biomarker of caloric adequacy in trauma patients. In addition to assessing
body energy needs using determinations of fGNG, such studies could include simultaneous
assessments of dietary energy need using traditional methods. In addition, future studies
could include manipulations of macronutrient composition to assess effects on fGNG, lean
body mass, and desired clinical outcomes. In these ways, assessments of fGNG by D2O
methodology may lead to better outcomes in the care of trauma patients

5. Conclusions

Caloric restriction increases fractional gluconeogenesis (fGNG) independent of injury
as imposed by TBI. Thus, fGNG may be a viable biomarker for the assessment of caloric
adequacy during recovery
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