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Abstract: The global threat of COVID-19 has led to an increased use of metabolomics to study
SARS-CoV-2 infections in animals and humans. In spite of these efforts, however, understanding
the metabolome of SARS-CoV-2 during an infection remains difficult and incomplete. In this study,
metabolic responses to a SAS-CoV-2 challenge experiment were studied in nasal washes collected
from an asymptomatic ferret model (n = 20) at different time points before and after infection using
an LC-MS-based metabolomics approach. A multivariate analysis of the nasal wash metabolome
data revealed several statistically significant features. Despite no effects of sex or interaction between
sex and time on the time course of SARS-CoV-2 infection, 16 metabolites were significantly different
at all time points post-infection. Among these altered metabolites, the relative abundance of taurine
was elevated post-infection, which could be an indication of hepatotoxicity, while the accumulation
of sialic acids could indicate SARS-CoV-2 invasion. Enrichment analysis identified several pathways
influenced by SARS-CoV-2 infection. Of these, sugar, glycan, and amino acid metabolisms were the
key altered pathways in the upper respiratory channel during infection. These findings provide
some new insights into the progression of SARS-CoV-2 infection in ferrets at the metabolic level,
which could be useful for the development of early clinical diagnosis tools and new or repurposed
drug therapies.

Keywords: COVID19; SARS-CoV-2; metabolomics; omics; animal models; ferret; host metabolic
responses

1. Introduction

Highly transmissible and pathogenic coronavirus (CoV) infections are well-established
sources of epidemics in humans and have caused global concerns. The severe acute
respiratory syndrome CoV (SARS-CoV) first emerged in Guangdong, China, in 2002 [1].
The SARS-CoV virus rapidly spread to 29 countries and caused 8096 infections and 774
deaths worldwide, according to the World Health Organization (WHO) [2]. The Middle
East respiratory syndrome CoV (MERS-CoV) was first recorded in Saudi Arabia in 2012
and has rapidly spread to 27 countries [3]. As of May 2022, the total MERS-CoV infections
reported globally was 2591 including 894 deaths, according to the WHO [4]. The novel
coronavirus disease, COVID-19, caused by SARS-CoV-2 was first reported in Wuhan,
China, and has rapidly spread worldwide causing over 522 million cases [5]. Although the
mortality rate is relatively low (1.2%), with 5.94 million deaths reported between 1 January
2020 and 31 December 2021, analysis of excess mortality for this two-year period has led to
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an estimate of 17.1–19.6 million deaths at 95% uncertainty interval [6]. Current estimates
are 6.5 million deaths recorded [5] and up to 26.5 million excess deaths globally [7].

The COVID-19 etiology is progressively being unraveled, but the underlying molecu-
lar mechanisms and the associated metabolic alterations remain poorly understood. The
COVID-19 infection reflects a broad spectrum of patient symptoms. Several pathophysio-
logical pathways are perturbed during the progression of disease. This complexity led us
to investigate this exciting topic using metabolomics. Metabolomics studies the changes in
holistic endogenous metabolites, presenting essential insights into a cell’s metabolic state
in response to physiological and pathological disturbances. Harnessing these metabolic
outputs can potentially lead to the discovery of signature metabolic biomarkers relevant to
pathogenesis. Such metabolic biomarkers could then be applied to personalized medicine,
the development of public healthcare strategies, and/or the designing of Point-of-Care
(PoC) testing regimens for more rapid testing [8,9].

Most metabolomics studies related to COVID-19 have focused on the identification
of new potential biomarkers of the disease. For example, Wu, et al. [10] reported altered
energy metabolism (due to reduced malic acid of the TCA cycle) and hepatic dysfunction
(due to reduced carbamoyl phosphate of the urea cycle and D-xylulose-5-phosphate of the
pentose phosphate pathway). Barberis, et al. [11] suggested that monolaurin could have
a potential defensive role against SARS-CoV-2 infection and demonstrated that people
with higher cholesterol levels are at a higher risk of developing SARS-CoV-2 infection. The
dysregulation of macrophage, platelet degranulation, complement system pathways, and
massive metabolic suppression have been reported in COVID-19 patient sera [12].

The dynamic shift of metabolic pathways is exhibited by living organisms to cope
with various perturbations. Monitoring the dynamic metabolic changes during disease
development has attracted increasing interest in recent years. Evidence from the literature
suggests that the metabolomics studies based on time-series data could possibly provide
insight into the interfacial stage between normal and diseased states and further facili-
tate the screening of biomarkers for early diagnosis. For example, Villoslada, et al. [13]
studied the metabolomic signatures associated with disease severity in multiple sclerosis.
Sphingomyelin and lysophosphatidylethanolamine were identified as putative biomark-
ers in the time series analysis for discriminating between multiple sclerosis patients and
healthy individuals [13]. Jacyna, et al. [14] investigated the urine metabolic profiles of
bladder cancer patients pre- and post-resection. It was reported that hippuric acid, pen-
tanedioic acid and uridine could potentially be used for sample differentiation [14]. Huang,
et al. [15] analyzed the time-series lipidomics data to study the development of hepatocel-
lular carcinoma in a hepatocarcinogenesis rat model. A ratio of lysophosphatidylcholine
18:1/free fatty acid (FFA) 20:5 was identified as the potential biomarker for hepatocellular
carcinoma [15]. Li, et al. [16] used time-series metabolomics to study progressive stages
of cholestatic liver fibrosis in a mouse model. Taurocholic acid, tauromuricholic acid,
lysophosphatidylethanolamine 20:2, sulfoglycolithocholic acid, and taurohyodeoxycholic
acid were associated with the progression of the hepatocyte injury index, and docosahex-
aenoic acid, arachidonic acid, proline, leucine, and linoleic acid were associated with the
progression of liver fibrosis index, liver hydroxyproline [16]. The metabolic profile during
progression of cardiac heart failure was studied to discover potentially new biomarkers
of the disease [17]. Twenty-three metabolites were altered in the rat model of myocardial
infarction-induced cardiac heart failure. The branched-chain amino acids, leucine and
valine, were found to differentiate between the rat failing hearts and healthy hearts [17].

In our previous study, we analyzed nasal wash samples from SARS-CoV-2-infected
ferrets [18]. Multivariate analysis of the acquired data identified 29 significant metabolites
and three significant lipids in the nasal wash samples. The presence of viral shedding
coincided with the challenge dose administered and significant changes in the citric acid
cycle, purine metabolism, and pentose phosphate pathways, amongst others, in the nasal
wash samples [18]. In the current study, time-series metabolomics data from a SARS-CoV-
2-infected ferret model were analyzed to provide insights into the viral progression and
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metabolic responses of ferrets to the virus infection. In addition, the study aimed to identify
sex-specific responses of male and female ferrets following SARS-CoV-2 exposure. For
that purpose, ten outbred male and ten outbred female ferrets (Mustela putorius furo) were
challenged with SARS-CoV-2 via the intranasal route [19], and nasal wash samples were
collected for metabolomics analysis at six time points (3 days pre-infection and 3, 5, 7,9 and
14 days post-infection).

2. Materials and Methods
2.1. Ferret Challenge and Sample Collection

Ten outbred male and ten outbred female ferrets (Mustela putorius furo, n = 20) at the
age of 4 months were used for this challenge experiment. The selection of ferrets was based
on previously reported observations using this model [20–23]. The study was reviewed
by the Animal Ethics Committee (AEC) at the Australian Centre for Disease Preparedness
(ACDP) (AEC 1990). All animal work in this study was conducted in a PC-4 containment
facility at the ADCP in Geelong, Australia. Animal housing, husbandry, and handling
for sample collections were as previously described [24]. Ferrets were acclimatized in
cages at the facility for 7 days prior the experiment. During this period, animals were
monitored daily and given food and water ad libitum, and environmental enrichment.
Before the challenge, ferrets were implanted with a LifeChip Bio-Thermo transponder
(Destron Fearing, Dallas, TX, USA); subcutaneous temperature, rectal temperature and
body weight were recorded.

SARS-CoV-2 (BetaCoV/Australia/VIC01/2020) was used for the challenge experiment
which was provided by the Victorian Infectious Diseases Reference Laboratory (The Peter
Doherty Institute, Melbourne, VIC, Australia) [25]. The viral preparation was conducted
as the method described by Au et al. [19]. All ferrets were challenged with SARS-CoV-
2 VIC01 via the intranasal route (0.5 mL total volume diluted in PBS) at a target dose
of approximately 9× 104 TCID50 (back-titered to 4.64× 104 TCID50). The inoculum was
back-titrated by TCID50 assay on Vero E6 cells to confirm the administered dose.

Following the virus challenge, ferrets were monitored daily for the presence of clinical
signs (e.g., reduced-interaction score, fever, sneezing, coughing and respiratory disease).
Animals were anesthetized for collection of nasal wash samples, as well as for the measure-
ment of rectal temperature and body weight on days 3, 5, 7, 9 and 14 post virus-challenge.
All samples were rapidly frozen, and then gamma-irradiated (50 kGy) to inactivate the
SARS-CoV-2 virus for safe removal of samples from the PC-4 containment laboratory. All
samples were stored at −80 ◦C before extraction and metabolomics analysis. Reverse-
transcription qPCR was performed as per Marsh, et al. [21].

2.2. Metabolomics Analysis

The metabolite extraction was carried out as previously described [18]. The frozen
nasal wash samples (100 µL) were thawed and extracted with 450 µL of ice-cold methanol
and ethanol solution (1:1, v/v) and 100 µL milliQ water (Merck, Darmstadt, Germany).
Samples were vortexed at 2000 rpm for 10 min before centrifugation at 20,000× g for 2 min
at 4 ◦C. The metabolite and lipid extracts were separated via the Captiva EMR-Lipid plate
(2 mL, Agilent, Mulgrave, VIC, Australia). A rinse of 200 µL Water: Methanol: Ethanol
(2:1:1) through the same Captiva EMR-Lipid tube was performed. The extracted solution
was dried under nitrogen stream, followed by the resuspension in 50 µL of 20% methanol
(in water). The resuspended samples were re-vortexed at 1000 rpm at room temperature
for 45 min and analyzed on an Agilent 6470 Liquid Chromatography Triple Quadrupole
Mass Spectrometer (LC-QqQ-MS) (Agilent Technologies, Mulgrave, VIC, Australia) for
central carbon metabolite (CCM) analysis. Furthermore, discovery metabolites (non-CCM)
were analyzed using the same suspension on an Agilent 6546 Liquid Chromatography
Time-of-Flight Mass Spectrometer (LC-QToF) with an Agilent Jet Stream source coupled to
an Agilent Infinity II UHPLC system (Agilent Technologies, Santa Clara, CA, USA). The
analysis was performed as per the previous method [18]. A series of blanks, mixed QC
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standards were prepared in the same way. Pooled biological quality control (PBQC) samples
were prepared by combining 5 µL aliquots from each biological sample. Internal standards
of 1 ppm L-phenylalanine (1-13C) and succinic acid (1,4-13C2) were used. The residual
relative standard deviation (RDS%) of the internal standards were 8.98% (L-Phenylalanine,
1-13C) and 6.54% (Succinic Acid, 1,4-13C2).

2.3. Statistical Analysis and Data Integration

Identification of metabolites from acquired data was conducted using MassHunter
Quantitative Analysis Software and Profinder (v0B.10.0: Agilent Technologies, Santa Clara,
CA, USA). The acquired CCM data were first subtracted by blanks, then normalized to
internal standards (L-phenylalanine 13C and succinic acid 13C). Untargeted metabolite data
were normalized to reference ions (positive mode =; negative mode =). The metabolomics
data were subjected to further statistical analysis using multivariate statistics. The data
were first imported, matched by sample identifiers (metadata), and log-transformed to
normalize the data using SIMCA 16.02 (MKS Data Analytics Solutions, Uméa, Sweden).
Partial least square-discriminant analysis (PLS-DA) was performed by finding successive
orthogonal components from the SARS-CoV-2 isolate and sample type-specific datasets
with maximum squared covariance and was subsequently used to identify the common
relationships among the multiple datasets. All models were cross-validated using CV-
ANOVA in SIMCA, which is a diagnostic approach for assessing the reliability of PLS and
OPLS models.

MetaboAnalyst 5.0 (Xia Lab, McGill University, Montreal, QC, Canada) was also used
for the univariate and multivariate analysis, biomarker analysis, enrichment and metabolic
pathway analysis [26]. Metabolite features with >50% missing values were excluded. A
Log10 normalisation and auto-scaling were applied to the filtered metabolite features.
Metabolites with a Benjamini–Hochberg adjusted p-value of ≤ 0.05 were considered to be
statistically significant [27]. Chemical clusters based on structural similarity were created
for metabolic examination using the ChemRICH analysis [28].

3. Results and Discussions

No clinical signs and perturbations on bodyweight were observed in ferrets after the
virus challenge. However, an increase of viral RNA shedding, and changes of metabolites
were recorded in the nasal wash, indicating the infection of the virus in ferrets. The upper
respiratory tract is one of the primary sites of SARS-CoV-2 infection [23,29]. The current
study involved the nasal wash as the representative of the site of the nasal tract to assess
biochemical changes during SARS-CoV-2 infection in the ferret model.

3.1. Viral Shedding following Challenge

Viral RNA was detected in the nasal wash of 20 ferrets from 3 days post-infection
(dpi) and continued to be detected at varying levels until 9 dpi (Figure 1). The peak in
viral RNA shedding was seen at 3 dpi and 7 dpi for all ferrets. A decline in viral RNA
was seen at 5 dpi and 9 dpi for all ferrets. The viral RNA declined below the limit of
quantification of the assay at 14 dpi, at which point no viral RNA was detected in their
nasal washes. Similar observations on viral RNA shedding have been reported in the
ferret model [19,23,30]. In humans, the mean time of viral shedding was reported to be
14 days [30,31]. However, there is a wide variability of SARS-CoV-2 shedding among
studies, reflecting the heterogeneity of human populations [32–34].
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Figure 1. Viral RNA shedding in nasal washes collected from SARS-CoV-2-infected ferrets (n = 20). 
Red and green dots represent female (n = 10) and male ferrets (n = 10), respectively, while all ferrets 
(both males and females) are annotated in blue. SARS-CoV-2 RNA was detected in nasal wash sam-
ples from ferrets at 3, 5, 7, and 9 dpi. The dotted line represents the limit of detection (LOD) of the 
reverse-transcription qPCR assay. 
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evident from the PCA analysis. The grouped data were then analyzed using a supervised 
partial least square-discriminant analysis (PLS-DA) (Supplementary Figure S2) and or-
thogonal PLS-DA (OPLS-DA) (Figure 2) to explore metabolic differences in infected fer-
rets as a function of time. The PLS-DA analysis of nasal wash samples did not yield any 
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Figure 1. Viral RNA shedding in nasal washes collected from SARS-CoV-2-infected ferrets (n = 20).
Red and green dots represent female (n = 10) and male ferrets (n = 10), respectively, while all ferrets
(both males and females) are annotated in blue. SARS-CoV-2 RNA was detected in nasal wash
samples from ferrets at 3, 5, 7, and 9 dpi. The dotted line represents the limit of detection (LOD) of
the reverse-transcription qPCR assay.

3.2. Central Carbon Metabolism Variance in the Nasal Wash Samples

The nasal washes from the infected ferrets were subjected to a central carbon metabolism
metabolite screening via a LC-QqQ-MS method. The samples indicated the presence of
82 out of the 223 common polar metabolites from the central carbon metabolism and
related pathways. The residual relative standard deviation (RSD%) of the internal stan-
dards was 8.99% (L-phenylalanine 1-13C) and 6.54% (succinic acid 1,4-13C2). The RSD%
of the QC standards (Supplementary Table S1) was <10% with the exception of lactic acid
(RSD% = 11.07%). Within the PBQC samples, a total of 34 metabolites indicated an RSD%
of <10% (Supplementary Table S2).

This dataset was processed via an unsupervised statistical approach using Principal
Component Analysis (PCA) (Supplementary Figure S1). Any sub-data clustering was not
evident from the PCA analysis. The grouped data were then analyzed using a supervised
partial least square-discriminant analysis (PLS-DA) (Supplementary Figure S2) and orthog-
onal PLS-DA (OPLS-DA) (Figure 2) to explore metabolic differences in infected ferrets as
a function of time. The PLS-DA analysis of nasal wash samples did not yield any better
sub-data clustering. Whilst the PLS-DA dataset was found to be statistically non-significant
(p-value > 0.05) when cross-validated (Supplementary Table S3), the OPLS-DA model
dataset was found to be statistically significant (p-value < 0.05, Supplementary Table S4).
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Figure 2. Orthogonal partial least square-discriminant analysis (OPLS-DA) of the central carbon
metabolism metabolite dataset of nasal wash samples collected from ferrets. (A) OPLS-DA scatter
plot and (B) OPLS-DA loadings plot. For this plot, R2X (cum) = 0.453, R2Y (cum) = 0.304, Q2 = 0.108.
The ellipse presented in panel (A) represents Hotelling’s T2 confidence limit (95%). The colored circles
in panel (A) represent each analyzed sample, while the black crossed circles in panel (B) indicate the
average group position for each sample cluster, with the white circles representing the distribution of
metabolite features between these groups.
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3.3. Chemical and Pathway Analysis of the Central Carbon Metabolism

The chemical analysis of the entire central carbon metabolism dataset indicated that
monosaccharides, tricarboxylic acids (TCA), benzoic acids, organic dicarboxylic acids, fatty
acids and conjugates, disaccharides, purines, amino acids and peptides, pyridines, car-
boxylic acids, pyrimidines, sulfonic acids, hydroxy acids, delta valerolactones, phosphate
esters, keto acids, and benzamides were significantly (p-value < 0.05) enriched chemi-
cal classes.

The entire central carbon metabolism dataset was used to identify the most relevant
pathways (Supplementary Table S5). Several pathways including the pentose phosphate
pathway, pentose and glucuronate interconversions, arginine biosynthesis, starch, and
sucrose metabolism, D-glutamine and D-glutamate metabolism, alanine, aspartate and
glutamate metabolism, citrate cycle, butanoate metabolism, valine, leucine, and isoleucine
biosynthesis, amino sugar and nucleotide sugar metabolism, phenylalanine, tyrosine, and
tryptophan biosynthesis, glyoxylate and dicarboxylate metabolism and nicotinate and
nicotinamide metabolism were found to be significantly relevant (p-value < 0.05, Figure 3).
Figure 4 illustrates the time-series observed for the central carbon metabolites contributing
to these pathways.
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Figure 3. Relevant pathways identified using the central carbon metabolism dataset in nasal washes
collected from ferrets. The red-colored circles represent significantly relevant pathways, while
the white circles represent the non-significant pathways. Noting, 1: Pentose phosphate pathway, 2:
Pentose and glucuronate interconversions, 3: Arginine biosynthesis, 4: Starch and sucrose metabolism,
5: D-Glutamine and D-glutamate metabolism, 6: Alanine, aspartate and glutamate metabolism, 7:
Citrate cycle (TCA cycle), 8: Butanoate metabolism, 9: Valine, leucine and isoleucine biosynthesis,
10: Amino sugar and nucleotide sugar metabolism, 11: Phenylalanine, tyrosine and tryptophan
biosynthesis, and 12: Glyoxylate and dicarboxylate metabolism.

In our previous study, pentose phosphate pathway, purine metabolism and citrate
cycle were identified to be the key metabolite pathways in the ferret nasal cavity dur-
ing SARS-CoV-2 infection [18]. The current study indicated that the sugar and glycan
metabolism pathways leading from and to the non-oxidative parts of energy pathways
were of key importance in the upper respiratory channel during the SARS-CoV-2 infection.
Particularly, in our studies, the pentose phosphate pathway (PPP) has shown to play a
key role during SARS-CoV-2 infection. Recently reported proteomic study indicated that
the enzymes such as transketolase (TKT) and transaldolase 1 (TALDO1), which contribute
towards the non-oxidative part of PPP, were upregulated in the cells infected with SARS-
CoV-2 [35]. Due to this phenomenon, biochemicals such as 2-deoxy glucose (2DG) and
benfooxythiamine (BOT), which inhibit the non-oxidative pathways of PPP, have shown
to inhibit SARS-CoV-2 replication [35,36]. In addition to this, recent correlation network
analysis in patients with COVID-19 has also shown that in addition to the viral infection,
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the upper respiratory microbiota also gets affected during SARS-CoV-2, which in turn has
been shown to be correlated with the upregulation of pathways such as PPP [37]. Although
we did not study the impact of SARS-CoV-2 infection on nasal microbial population and
metabolism, a further study of host-microbiome-virus interactomics is expected to shed
more light on this biochemical mechanism.

Metabolites 2022, 12, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 4. Time-series observed for metabolites related to the 13 significantly relevant central carbon 
metabolic pathways. (A) Pentose phosphate pathway, (B) Pentose and glucuronate interconver-
sions, (C) arginine biosynthesis, (D) starch and sucrose metabolism, (E) D-glutamine and D-gluta-
mate metabolism, (F) glyoxylate and dicarboxylate metabolism, (G) citrate cycle, (H) phenylalanine, 
tyrosine and tryptophan biosynthesis, (I) amino sugar and nucleotide sugar metabolism, (J) alanine, 
aspartate and glutamate metabolism, (K) butanoate metabolism, (L) valine, leucine and isoleucine 
biosynthesis, and (M) nicotinate and nicotinamide metabolism. 

In our previous study, pentose phosphate pathway, purine metabolism and citrate 
cycle were identified to be the key metabolite pathways in the ferret nasal cavity during 
SARS-CoV-2 infection [18]. The current study indicated that the sugar and glycan metab-
olism pathways leading from and to the non-oxidative parts of energy pathways were of 
key importance in the upper respiratory channel during the SARS-CoV-2 infection. Par-
ticularly, in our studies, the pentose phosphate pathway (PPP) has shown to play a key 
role during SARS-CoV-2 infection. Recently reported proteomic study indicated that the 
enzymes such as transketolase (TKT) and transaldolase 1 (TALDO1), which contribute 
towards the non-oxidative part of PPP, were upregulated in the cells infected with SARS-
CoV-2 [35]. Due to this phenomenon, biochemicals such as 2-deoxy glucose (2DG) and 
benfooxythiamine (BOT), which inhibit the non-oxidative pathways of PPP, have shown 
to inhibit SARS-CoV-2 replication [35,36]. In addition to this, recent correlation network 
analysis in patients with COVID-19 has also shown that in addition to the viral infection, 
the upper respiratory microbiota also gets affected during SARS-CoV-2, which in turn has 
been shown to be correlated with the upregulation of pathways such as PPP [37]. Alt-
hough we did not study the impact of SARS-CoV-2 infection on nasal microbial popula-
tion and metabolism, a further study of host-microbiome-virus interactomics is expected 
to shed more light on this biochemical mechanism. 

PPP-associated pathways such as glycan metabolism (reflected through the pentose 
and glucuronate interconversions) and amino sugar and nucleotide sugar metabolism ap-
peared to be key pathways in the ferret nasal cavity during SARS-CoV-2 infection. Some 
of the early genomic studies have shown that the SARS-CoV-2-triggered surface protein 
receptors (STSPRs) such as Ephrin type-A receptor 6 (EPHA6) are differentially expressed 
in the human lungs. The EPHA6 proteins have been indicated to be enriched for pentose 
and glucuronate interconversions [38]. Our study experimentally confirms the outputs of 
the bioinformatics-based observations of Forst, et al. [38] that, in the ferret upper 

Figure 4. Time-series observed for metabolites related to the 13 significantly relevant central carbon
metabolic pathways. (A) Pentose phosphate pathway, (B) Pentose and glucuronate interconversions,
(C) arginine biosynthesis, (D) starch and sucrose metabolism, (E) D-glutamine and D-glutamate
metabolism, (F) glyoxylate and dicarboxylate metabolism, (G) citrate cycle, (H) phenylalanine,
tyrosine and tryptophan biosynthesis, (I) amino sugar and nucleotide sugar metabolism, (J) alanine,
aspartate and glutamate metabolism, (K) butanoate metabolism, (L) valine, leucine and isoleucine
biosynthesis, and (M) nicotinate and nicotinamide metabolism.

PPP-associated pathways such as glycan metabolism (reflected through the pentose
and glucuronate interconversions) and amino sugar and nucleotide sugar metabolism
appeared to be key pathways in the ferret nasal cavity during SARS-CoV-2 infection. Some
of the early genomic studies have shown that the SARS-CoV-2-triggered surface protein
receptors (STSPRs) such as Ephrin type-A receptor 6 (EPHA6) are differentially expressed in
the human lungs. The EPHA6 proteins have been indicated to be enriched for pentose and
glucuronate interconversions [38]. Our study experimentally confirms the outputs of the
bioinformatics-based observations of Forst, et al. [38] that, in the ferret upper respiratory
tract, the pentose and glucuronate interconversions generally upregulate, particularly
around 5–7 dpi (Figure 4B). It has been shown in poultry studies that infection stress due
to high-density stocking elevated the pentose and glucuronate interconversion pathway,
during the upregulated interleukin (IL)-1β and IL-10 activities in the tracheal barrier and
plasma, possibly providing immune response against an infection [39]. Furthermore, the
treatment regimen involving bleomycin + pirfenidone drug supplementation for treating
lung fibrosis in mice indicated an upregulated pentose and glucuronate interconversion
pathway. This study indicated the positive role of this metabolic pathway in providing an
immune response to the host during respiratory disorders [40]. Thus, our study indicated a
likely increased immune response to SARS-CoV-2 infection. However, a further proteomic
study would be able to highlight the importance of this pathway in conferring its role
towards the host immune response.
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Similar to the pentose and glucuronate interconversion pathway, a recent bioinfor-
matics study indicated that the amino sugar pathway expression has been associated with
immunity-related pathways upon the expression of SARS-CoV-2 transmembrane serine
protease 2 (TMPRSS2) during COVID-19 [41]. This is an important aspect as it has been
shown that the blood plasma amino sugars are key parts of the bio-signaling N-acetyl
glycoproteins such as GlycA and GlycB and are important in providing the immune re-
sponse during SARS-CoV2 infection in patients [42]. Furthermore, it has also been observed
that glutaminolysis and glycolysis are essential for virus replication during SARS-CoV-2
infection, and inhibiting these pathways is important to counter virus replication [43]. Our
observations of depleted glutamine and glutamate pathways (Figure 4E) indicated a possi-
bly elevated immune response in the respiratory tract cells of the ferrets. Our metabolic
output confirms the output of these genomics-based studies through metabolic output.
Also, the time-series observations indicated an increased immune response by 7 dpi in the
ferret model. However, the proteomic studies will be able to provide further confirmation
of these observations.

3.4. Multivariate Analysis of the Central Carbon Metabolism and Discovery Metabolites

The post hoc ANOVA indicated the presence of 28 significant central carbon metabolism
metabolites (FDR-adjusted p-value ≤ 0.05) in the nasal washes (Supplementary Table S6).
The samples were further analyzed using a Liquid Chromatography Quadrupole Time-
of-Flight Mass Spectrometry (LC-QToF-MS) method to identify the discovery metabolites.
Eight additional significant metabolic features were identified (Supplementary Table S7).
The significant metabolites were used to identify the most relevantly disturbed metabolic
pathways due to the viral infection. These significant metabolites were then used to identify
the most significantly disturbed metabolic pathways. While the phenylalanine, tyrosine
and tryptophan biosynthesis, phenylalanine metabolism, and butanoate metabolism were
significantly (p < 0.05) enriched and impacted (Supplementary Table S8), other pathways
such as amino sugar and nucleotide sugar metabolism and citrate cycle were significantly
enriched and impacted, respectively.

3.5. Time-Series Metabolomics Analysis of the Progression of SARS-CoV-2 Infection

A two-way analysis of variance (ANOVA) was then conducted to decompose the
raw data to further determine the contribution of two independent parameters (sex and
time) and their interaction. The abundance of several metabolic features was significantly
affected by time (Figure 5). No metabolic features were significantly affected by sex or
interaction between sex and time.

The thirty significant features included D-sedoheptulose-7-phosphate, N-acetyl
D-galactosamine, uric acid, vanillic acid, taurine, phenylpyruvic acid, nicotinic acid, L-2-
hydroxyglutaric acid, 2,3-dihydroxyisovalerate, D-pantothenic acid, malonic acid, 2,3-
dihydroxybenzoic acid, L-maltose, L-malic acid, N-acetylneuraminic acid, m-hydroxybenzoic
acid, N-acetyl-alpha-D-glucosamine 1-phosphate, N-acetyl-D-glucosamine 6-phosphate,
citramalic acid, myo-inositol, L-sorbose, L-phenylalanine, succinic acid, L-serine,
3-hydroxyanthranilic acid, mevalonic acid, 2-deoxycytidine 5-diphosphate, isopentyl ac-
etate, D-galactosamine, and glyceric acid (Figure 5).

Of these metabolites, taurine, N-acetyl D-galactosamine, N-acetylneuraminic acid,
D-sedoheptulose 7-phosphate, citramalic acid and L-galactosamine increased from pre-
infection to 14 dpi. Other metabolites such as L-maltose, 2,3-dihydroxyisovalerate, nicotinic
acid, D-pantothenic acid, m-hydroxybenzoic acid, glyceric acid, and 2-hydroxyglutaric acid
decreased as the infection progressed. Vanillic acid, uric acid and 2,3-dihydroxybenzoic
acid decreased at 3 dpi, showed a slight increase at 5 dpi, and then decreased again.
Myo-inositol, L-sorbose, succinic acid and L-phenylalanine decreased post-challenge.
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The up- and down-regulation of these metabolites according to infection time could
be signatures of viral infection on the host. For example, the elevated taurine could be an
indication of hepatotoxicity due to SARS-CoV-2 infection. These observations are consistent
with previous studies of SARS-CoV-2, indicating the role of elevated taurine in liver injury,
which could be due to a high prevalence of abnormal aminotransferase enzymes [44].
Several members of the CoV family use sialic acids, such as N-acetylneuraminic acid and
N-acetyl-D-galactosamine, which are abundantly expressed on the host cell surface of the
respiratory tract, as attachment points [45,46]. Elevated sialic acids in the current study
indicate SARS-CoV-2 invasion. Particularly high levels of sialic acids were found at 3
dpi and 7 dpi, when the viral load was at the peak. Nicotinic acid with reported anti-
inflammatory properties is thought to influence the immune response [44]. The decline in
nicotinic acid at 3 dpi and 7 dpi indicates the infectious nature of SARS-CoV-2 represented
by high levels of viral load. Reduced levels of pantothenic acid could cause a lack of vitamin
B5 and, thus, compromise the mitochondrial energy metabolism [47]. Bruzzone, et al. [48]
reported increased levels of phenylalanine and succinic acid in COVID-19 patients. On
the contrary, the levels of these metabolites were found to decrease in the current study.
Nevertheless, this may all be related to dysregulation of hepatic central carbon metabolism.
Li, et al. [49] investigated the use of uric acid as a prognostic marker of COVID-19 patients.
Declined levels of uric acid from 7 dpi in nasal samples of ferrets in the current study align
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well with the observations by Li, et al. [49]. Hence, this metabolite could be used as a
marker to assess the severity of COVID-19 for both human and animal models.

4. Conclusions

The present study demonstrated the use of a ferret model to study the progression
of SARS-CoV-2 infection and the metabolic responses of the host to infection. The viral
RNA was detected at 3 dpi and remained detectable until 9 dpi with the absence of clinical
signs, indicating that ferrets are an appropriate model for studies of asymptomatic SARS-
CoV-2 infection [23]. Along with the change in viral shedding, differences in metabolic
responses of the host to different stages of the infection were observed via a time-series
metabolomic analysis. This highlighted the power of metabolomics approaches for the
systemic characterization of the disease via non-invasive sampling. In addition, this
approach provided some metabolite candidates (e.g., uric acid, sialic acids) that could
be used as a prognostic indicator of SARS-CoV-2 infection and a biomarker to access the
disease severity of COVID-19.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo12111151/s1, Figure S1: Principal component analysis (PCA)
of the central carbon metabolism metabolite dataset of nasal wash samples collected from ferrets;
Figure S2: Partial least square-discriminant analysis (PLS-DA) of the central carbon metabolism
metabolite dataset of nasal wash samples collected from ferrets; Table S1: Composition of QC
mix standards (1 ppm) applied to assess the variability of the LC-QQQ-MS metabolomic analysis
for central carbon metabolites; Table S2: Composition of PBQC metabolites applied to assess the
variability of the LC-QQQ-MS metabolomic analysis for central carbon metabolites; Table S3: Cross-
validation (CV)-ANOVA of the PLS-DA metabolomics model (Figure S2); Table S4: Cross-validation
(CV)-ANOVA of the OPLS-DA metabolomics model (Figure 2); Table S5: Pathway enrichment
analysis of the central carbon metabolic pathways using the central carbon metabolism dataset; Table
S6: Multivariate ANOVA analysis of a metabolomics-derived dataset of nasal wash samples collected
from ferrets at several time points; Table S7. Significant discovery of metabolites observed through
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dataset of nasal wash samples collected from ferrets.

Author Contributions: Conceptualization, D.J.B. and S.S.V.; methodology, D.J.B., G.G.A., A.J.M.
G.A.M., S.R.; investigation and analysis, A.V.K., T.V.N., G.G.A., A.J.M., G.A.M., S.R. and R.M.S.;
writing—original draft preparation, A.V.K., T.V.N., R.M.S., S.S.V. and D.J.B.; writing—review and
editing, all authors; project administration, D.J.B.; funding acquisition, S.S.V. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by funding (applicant: S.S.V.) from the Coalition for Epidemic
Preparedness Innovations (CEPI), CSIRO’s Future Science Platforms, and the US FDA’s Medical Coun-
termeasures initiative (contract number 75F40121C00144). The authors acknowledge the Australian
Centre for Disease Preparedness in providing their National Collaborative Research Infrastructure
Strategy (NCRIS)-funded facility used in the completion of the animal studies. The article reflects the
views of the authors and does not represent the views or policies of the funding agencies, including
the FDA.

Institutional Review Board Statement: This study was reviewed and approved by the Animal
Ethics Committee (AEC) at the CSIRO Australian Centre for Disease Preparedness (AEC approval
number #1989).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available on request from the corresponding author.
The metabolite data of this study are not publicly available due to animal ethics and intellectual
property restrictions.

Acknowledgments: The authors thank their colleagues at the Australian Centre for Disease Pre-
paredness for the animal studies from which samples were collected for metabolomics analysis.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/metabo12111151/s1
https://www.mdpi.com/article/10.3390/metabo12111151/s1


Metabolites 2022, 12, 1151 11 of 13

References
1. WHO. Update 95-SARS: Chronology of a Serial Killer. Available online: https://www.who.int/emergencies/disease-outbreak-

news/item/2003_07_04-en (accessed on 26 September 2022).
2. WHO. Summary of Probable SARS Cases with Onset of Illness from 1 November 2002 to 31 July 2003. Available online:

https://www.who.int/publications/m/item/summary-of-probable-sars-cases-with-onset-of-illness-from-1-november-2002
-to-31-july-2003 (accessed on 26 September 2022).

3. WHO. Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Available online: https://www.who.int/news-room/fact-
sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov) (accessed on 26 September 2022).

4. WHO. Middle East Respiratory Syndrome Coronavirus (MERS-CoV)—Qatar. Available online: https://www.who.int/
emergencies/disease-outbreak-news/item/2022-DON370 (accessed on 26 September 2022).

5. WHO. Weekly Epidemiological Update on COVID-19—25 May 2022. Available online: https://www.who.int/publications/m/
item/weekly-epidemiological-update-on-covid-19---25-may-2022 (accessed on 26 September 2022).

6. Wang, H.; Paulson, K.R.; Pease, S.A.; Watson, S.; Comfort, H.; Zheng, P.; Aravkin, A.Y.; Bisignano, C.; Barber, R.M.; Alam, T.; et al.
Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–21.
Lancet 2022, 399, 1513–1536. [CrossRef]

7. The Pandemic’s True Death Toll. Available online: https://www.economist.com/graphic-detail/coronavirus-excess-deaths-
estimates (accessed on 26 September 2022).

8. Lei, R.; Huo, R.; Mohan, C. Current and emerging trends in point-of-care urinalysis tests. Expert Rev. Mol. Diagn. 2020, 20, 69–84.
[CrossRef] [PubMed]

9. Holmes, E.; Wilson, I.D.; Nicholson, J.K. Metabolic Phenotyping in Health and Disease. Cell 2008, 134, 714–717. [CrossRef]
[PubMed]

10. Wu, D.; Shu, T.; Yang, X.; Song, J.-X.; Zhang, M.; Yao, C.; Liu, W.; Huang, M.; Yu, Y.; Yang, Q.; et al. Plasma metabolomic and
lipidomic alterations associated with COVID-19. Natl. Sci. Rev. 2020, 7, 1157–1168. [CrossRef]

11. Barberis, E.; Amede, E.; Tavecchia, M.; Marengo, E.; Cittone, M.G.; Rizzi, E.; Pedrinelli, A.R.; Tonello, S.; Minisini, R.;
Pirisi, M.; et al. Understanding protection from SARS-CoV-2 using metabolomics. Sci. Rep. 2021, 11, 13796. [CrossRef] [PubMed]

12. Shen, B.; Yi, X.; Sun, Y.; Bi, X.; Du, J.; Zhang, C.; Quan, S.; Zhang, F.; Sun, R.; Qian, L.; et al. Proteomic and Metabolomic
Characterization of COVID-19 Patient Sera. Cell 2020, 182, 59.e15–72.e15. [CrossRef]

13. Villoslada, P.; Alonso, C.; Agirrezabal, I.; Kotelnikova, E.; Zubizarreta, I.; Pulido-Valdeolivas, I.; Saiz, A.; Comabella, M.;
Montalban, X.; Villar, L.; et al. Metabolomic signatures associated with disease severity in multiple sclerosis. Neurol. Neuroimmunol.
Neuroinflammation 2017, 4, e321. [CrossRef] [PubMed]

14. Jacyna, J.; Kordalewska, M.; Artymowicz, M.; Markuszewski, M.; Matuszewski, M.; Markuszewski, M.J. Pre- and Post-Resection
Urine Metabolic Profiles of Bladder Cancer Patients: Results of Preliminary Studies on Time Series Metabolomics Analysis.
Cancers 2022, 14, 1210. [CrossRef] [PubMed]

15. Huang, X.; Zeng, J.; Zhou, L.; Hu, C.; Yin, P.; Lin, X. A New Strategy for Analyzing Time-Series Data Using Dynamic Networks:
Identifying Prospective Biomarkers of Hepatocellular Carcinoma. Sci. Rep. 2016, 6, 32448. [CrossRef]

16. Li, Y.; Xue, H.; Fang, S.; Wang, G.; Wang, Y.; Wang, T.; Shi, R.; Wu, J.; Ma, Y. Time-series metabolomics insights into the progressive
characteristics of 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced cholestatic liver fibrosis in mice. J. Pharm. Biomed. Anal.
2021, 198, 113986. [CrossRef] [PubMed]

17. Li, R.; He, H.; Fang, S.; Hua, Y.; Yang, X.; Yuan, Y.; Liang, S.; Liu, P.; Tian, Y.; Xu, F.; et al. Time Series Characteristics of Serum
Branched-Chain Amino Acids for Early Diagnosis of Chronic Heart Failure. J. Proteome Res. 2019, 18, 2121–2128. [CrossRef]

18. Beale, D.J.; Shah, R.; Karpe, A.V.; Hillyer, K.E.; McAuley, A.J.; Au, G.G.; Marsh, G.A.; Vasan, S.S. Metabolic Profiling from an
Asymptomatic Ferret Model of SARS-CoV-2 Infection. Metabolites 2021, 11, 327. [CrossRef]

19. Au, G.G.; Marsh, G.A.; McAuley, A.J.; Lowther, S.; Trinidad, L.; Edwards, S.; Todd, S.; Barr, J.; Bruce, M.P.; Poole, T.B.; et al.
Characterisation and natural progression of SARS-CoV-2 infection in ferrets. Sci. Rep. 2022, 12, 5680. [CrossRef]

20. Bauer, D.C.; Tay, A.P.; Wilson, L.O.W.; Reti, D.; Hosking, C.; McAuley, A.J.; Pharo, E.; Todd, S.; Stevens, V.; Neave, M.J.; et al.
Supporting pandemic response using genomics and bioinformatics: A case study on the emergent SARS-CoV-2 outbreak.
Transbound. Emerg. Dis. 2020, 67, 1453–1462. [CrossRef]

21. Marsh, G.A.; McAuley, A.J.; Brown, S.; Pharo, E.A.; Crameri, S.; Au, G.G.; Baker, M.L.; Barr, J.A.; Bergfeld, J.; Bruce, M.P.; et al.
In vitro characterisation of SARS-CoV-2 and susceptibility of domestic ferrets (Mustela putorius furo). Transbound. Emerg. Dis.
2022, 69, 297–307. [CrossRef]

22. Muñoz-Fontela, C.; Dowling, W.E.; Funnell, S.G.P.; Gsell, P.-S.; Riveros-Balta, A.X.; Albrecht, R.A.; Andersen, H.; Baric, R.S.;
Carroll, M.W.; Cavaleri, M.; et al. Animal models for COVID-19. Nature 2020, 586, 509–515. [CrossRef]

23. Muñoz-Fontela, C.; Widerspick, L.; Albrecht, R.A.; Beer, M.; Carroll, M.W.; de Wit, E.; Diamond, M.S.; Dowling, W.E.;
Funnell, S.G.P.; García-Sastre, A.; et al. Advances and gaps in SARS-CoV-2 infection models. PLoS Pathog. 2022, 18, e1010161.
[CrossRef]

24. Pallister, J.; Middleton, D.; Crameri, G.; Yamada, M.; Klein, R.; Hancock, T.J.; Foord, A.; Shiell, B.; Michalski, W.; Broder, C.C.
Chloroquine administration does not prevent Nipah virus infection and disease in ferrets. J. Virol. 2009, 83, 11979–11982.
[CrossRef] [PubMed]

https://www.who.int/emergencies/disease-outbreak-news/item/2003_07_04-en
https://www.who.int/emergencies/disease-outbreak-news/item/2003_07_04-en
https://www.who.int/publications/m/item/summary-of-probable-sars-cases-with-onset-of-illness-from-1-november-2002-to-31-july-2003
https://www.who.int/publications/m/item/summary-of-probable-sars-cases-with-onset-of-illness-from-1-november-2002-to-31-july-2003
https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov)
https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov)
https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON370
https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON370
https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---25-may-2022
https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---25-may-2022
http://doi.org/10.1016/S0140-6736(21)02796-3
https://www.economist.com/graphic-detail/coronavirus-excess-deaths-estimates
https://www.economist.com/graphic-detail/coronavirus-excess-deaths-estimates
http://doi.org/10.1080/14737159.2020.1699063
http://www.ncbi.nlm.nih.gov/pubmed/31795785
http://doi.org/10.1016/j.cell.2008.08.026
http://www.ncbi.nlm.nih.gov/pubmed/18775301
http://doi.org/10.1093/nsr/nwaa086
http://doi.org/10.1038/s41598-021-93260-2
http://www.ncbi.nlm.nih.gov/pubmed/34226622
http://doi.org/10.1016/j.cell.2020.05.032
http://doi.org/10.1212/NXI.0000000000000321
http://www.ncbi.nlm.nih.gov/pubmed/28180139
http://doi.org/10.3390/cancers14051210
http://www.ncbi.nlm.nih.gov/pubmed/35267519
http://doi.org/10.1038/srep32448
http://doi.org/10.1016/j.jpba.2021.113986
http://www.ncbi.nlm.nih.gov/pubmed/33690095
http://doi.org/10.1021/acs.jproteome.9b00002
http://doi.org/10.3390/metabo11050327
http://doi.org/10.1038/s41598-022-08431-6
http://doi.org/10.1111/tbed.13588
http://doi.org/10.1111/tbed.13978
http://doi.org/10.1038/s41586-020-2787-6
http://doi.org/10.1371/journal.ppat.1010161
http://doi.org/10.1128/JVI.01847-09
http://www.ncbi.nlm.nih.gov/pubmed/19759137


Metabolites 2022, 12, 1151 12 of 13

25. Caly, L.; Druce, J.; Roberts, J.; Bond, K.; Tran, T.; Kostecki, R.; Yoga, Y.; Naughton, W.; Taiaroa, G.; Seemann, T. Isolation and rapid
sharing of the 2019 novel coronavirus (SARS-CoV-2) from the first patient diagnosed with COVID-19 in Australia. Med. J. Aust.
2020, 212, 459–462. [CrossRef]

26. Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst
5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [CrossRef]

27. Karpe, A.V.; Beale, D.J.; Morrison, P.D.; Harding, I.H.; Palombo, E.A. Untargeted metabolic profiling of Vitis vinifera during fungal
degradation. FEMS Microbiol. Lett. 2015, 362, fnv060. [CrossRef] [PubMed]

28. Barupal, D.K.; Fiehn, O. Chemical Similarity Enrichment Analysis (ChemRICH) as alternative to biochemical pathway mapping
for metabolomic datasets. Sci. Rep. 2017, 7, 14567. [CrossRef]

29. Cevik, M.; Kuppalli, K.; Kindrachuk, J.; Peiris, M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ 2020, 371, m3862.
[CrossRef] [PubMed]

30. Hu, X.; Xing, Y.; Jia, J.; Ni, W.; Liang, J.; Zhao, D.; Song, X.; Gao, R.; Jiang, F. Factors associated with negative conversion of viral
RNA in patients hospitalized with COVID-19. Sci. Total Environ. 2020, 728, 138812. [CrossRef] [PubMed]

31. Cogliati Dezza, F.; Oliva, A.; Cancelli, F.; Savelloni, G.; Valeri, S.; Mauro, V.; Calabretto, M.; Russo, G.; Venditti, M.;
Turriziani, O.; et al. Determinants of prolonged viral RNA shedding in hospitalized patients with SARS-CoV-2 infection. Diagn.
Microbiol. Infect. Dis. 2021, 100, 115347. [CrossRef]

32. Cevik, M.; Tate, M.; Lloyd, O.; Maraolo, A.E.; Schafers, J.; Ho, A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics,
duration of viral shedding, and infectiousness: A systematic review and meta-analysis. Lancet Microbe 2021, 2, e13–e22. [CrossRef]

33. Agarwal, V.; Venkatakrishnan, A.J.; Puranik, A.; Lopez-Marquez, A.; Challener, D.W.; Horo, J.C.; Badley, A.D.; Halamka,
J.D.; Morice, W.G.; Soundararajan, V. Quantifying the prevalence of SARS-CoV-2 long-term shedding among non-hospitalized
COVID-19 patients. MedRxiv 2020. [CrossRef]

34. Gombar, S.; Chang, M.; Hogan, C.A.; Zehnder, J.; Boyd, S.; Pinsky, B.A.; Shah, N.H. Persistent detection of SARS-CoV-2 RNA in
patients and healthcare workers with COVID-19. J. Clin. Virol. 2020, 129, 104477. [CrossRef]

35. Bojkova, D.; Costa, R.; Reus, P.; Bechtel, M.; Jaboreck, M.-C.; Olmer, R.; Martin, U.; Ciesek, S.; Michaelis, M.; Cinatl, J. Targeting
the Pentose Phosphate Pathway for SARS-CoV-2 Therapy. Metabolites 2021, 11, 699. [CrossRef] [PubMed]

36. Mesri, E.A.; Lampidis, T.J. 2-Deoxy-d-glucose exploits increased glucose metabolism in cancer and viral-infected cells: Relevance
to its use in India against SARS-CoV-2. IUBMB Life 2021, 73, 1198–1204. [CrossRef]

37. Bai, X.; Narayanan, A.; Skagerberg, M.; Ceña-Diez, R.; Giske, C.G.; Strålin, K.; Sönnerborg, A. Characterization of the Upper
Respiratory Bacterial Microbiome in Critically Ill COVID-19 Patients. Biomedicines 2022, 10, 982. [CrossRef] [PubMed]

38. Forst, C.V.; Zeng, L.; Wang, Q.; Zhou, X.; Vatansever, S.; Tu, Z.; Zhang, B. Tissue Specific Age Dependence of the Cell Receptors
Involved in the SARS-CoV-2 Infection. bioRxiv 2021. [CrossRef]

39. Wang, M.-Y.; Zhao, R.; Gao, L.-J.; Gao, X.-F.; Wang, D.-P.; Cao, J.-M. SARS-CoV-2: Structure, Biology, and Structure-Based
Therapeutics Development. Front. Cell. Infect. Microbiol. 2020, 10. [CrossRef] [PubMed]

40. Sun, N.; Fernandez, I.E.; Wei, M.; Witting, M.; Aichler, M.; Feuchtinger, A.; Burgstaller, G.; Verleden, S.E.; Schmitt-Kopplin, P.;
Eickelberg, O.; et al. Pharmacometabolic response to pirfenidone in pulmonary fibrosis detected by MALDI-FTICR-MSI. Eur.
Respir. J. 2018, 52, 1702314. [CrossRef] [PubMed]

41. Cao, W.; Feng, Q.; Wang, X. Computational analysis of TMPRSS2 expression in normal and SARS-CoV-2-infected human tissues.
Chem.-Biol. Interact. 2021, 346, 109583. [CrossRef]

42. Lodge, S.; Nitschke, P.; Kimhofer, T.; Wist, J.; Bong, S.-H.; Loo, R.L.; Masuda, R.; Begum, S.; Richards, T.; Lindon, J.C.; et al.
Diffusion and Relaxation Edited Proton NMR Spectroscopy of Plasma Reveals a High-Fidelity Supramolecular Biomarker
Signature of SARS-CoV-2 Infection. Anal. Chem. 2021, 93, 3976–3986. [CrossRef]

43. Krishnan, S.; Nordqvist, H.; Ambikan, A.T.; Gupta, S.; Sperk, M.; Svensson-Akusjärvi, S.; Mikaeloff, F.; Benfeitas, R.; Saccon, E.;
Ponnan, S.M.; et al. Metabolic Perturbation Associated With COVID-19 Disease Severity and SARS-CoV-2 Replication. Mol. Cell.
Proteom. 2021, 20, 100159. [CrossRef]

44. Lawler, N.G.; Gray, N.; Kimhofer, T.; Boughton, B.; Gay, M.; Yang, R.; Morillon, A.-C.; Chin, S.-T.; Ryan, M.; Begum, S.; et al.
Systemic Perturbations in Amine and Kynurenine Metabolism Associated with Acute SARS-CoV-2 Infection and Inflammatory
Cytokine Responses. J. Proteome Res. 2021, 20, 2796–2811. [CrossRef]

45. Li, W.; Hulswit, R.J.; Widjaja, I.; Raj, V.S.; McBride, R.; Peng, W.; Widagdo, W.; Tortorici, M.A.; Van Dieren, B.; Lang, Y.
Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc. Natl.
Acad. Sci. USA 2017, 114, E8508–E8517. [CrossRef]

46. Tortorici, M.A.; Walls, A.C.; Lang, Y.; Wang, C.; Li, Z.; Koerhuis, D.; Boons, G.-J.; Bosch, B.-J.; Rey, F.A.; de Groot, R.J. Structural
basis for human coronavirus attachment to sialic acid receptors. Nat. Struct. Mol. Biol. 2019, 26, 481–489. [CrossRef]

47. Barberis, E.; Timo, S.; Amede, E.; Vanella, V.V.; Puricelli, C.; Cappellano, G.; Raineri, D.; Cittone, M.G.; Rizzi, E.; Pedrinelli, A.R.
Large-Scale Plasma Analysis Revealed New Mechanisms and Molecules Associated with the Host Response to SARS-CoV-2. Int.
J. Mol. Sci. 2020, 21, 8623. [CrossRef] [PubMed]

http://doi.org/10.5694/mja2.50569
http://doi.org/10.1093/nar/gkab382
http://doi.org/10.1093/femsle/fnv060
http://www.ncbi.nlm.nih.gov/pubmed/25868913
http://doi.org/10.1038/s41598-017-15231-w
http://doi.org/10.1136/bmj.m3862
http://www.ncbi.nlm.nih.gov/pubmed/33097561
http://doi.org/10.1016/j.scitotenv.2020.138812
http://www.ncbi.nlm.nih.gov/pubmed/32335406
http://doi.org/10.1016/j.diagmicrobio.2021.115347
http://doi.org/10.1016/S2666-5247(20)30172-5
http://doi.org/10.1101/2020.06.02.20120774
http://doi.org/10.1016/j.jcv.2020.104477
http://doi.org/10.3390/metabo11100699
http://www.ncbi.nlm.nih.gov/pubmed/34677415
http://doi.org/10.1002/iub.2546
http://doi.org/10.3390/biomedicines10050982
http://www.ncbi.nlm.nih.gov/pubmed/35625719
http://doi.org/10.1101/2021.07.13.452256
http://doi.org/10.3389/fcimb.2020.587269
http://www.ncbi.nlm.nih.gov/pubmed/33324574
http://doi.org/10.1183/13993003.02314-2017
http://www.ncbi.nlm.nih.gov/pubmed/30072508
http://doi.org/10.1016/j.cbi.2021.109583
http://doi.org/10.1021/acs.analchem.0c04952
http://doi.org/10.1016/j.mcpro.2021.100159
http://doi.org/10.1021/acs.jproteome.1c00052
http://doi.org/10.1073/pnas.1712592114
http://doi.org/10.1038/s41594-019-0233-y
http://doi.org/10.3390/ijms21228623
http://www.ncbi.nlm.nih.gov/pubmed/33207699


Metabolites 2022, 12, 1151 13 of 13

48. Bruzzone, C.; Bizkarguenaga, M.; Gil-Redondo, R.; Diercks, T.; Arana, E.; García de Vicuña, A.; Seco, M.; Bosch, A.; Palazón, A.;
San Juan, I.; et al. SARS-CoV-2 Infection Dysregulates the Metabolomic and Lipidomic Profiles of Serum. iScience 2020, 23, 101645.
[CrossRef] [PubMed]

49. Li, G.; Wu, X.; Zhou, C.-l.; Wang, Y.-m.; Song, B.; Cheng, X.-b.; Dong, Q.-f.; Wang, L.-l.; You, S.-s.; Ba, Y.-m. Uric acid as a
prognostic factor and critical marker of COVID-19. Sci. Rep. 2021, 11, 17791. [CrossRef] [PubMed]

http://doi.org/10.1016/j.isci.2020.101645
http://www.ncbi.nlm.nih.gov/pubmed/33043283
http://doi.org/10.1038/s41598-021-96983-4
http://www.ncbi.nlm.nih.gov/pubmed/34493750

	Introduction 
	Materials and Methods 
	Ferret Challenge and Sample Collection 
	Metabolomics Analysis 
	Statistical Analysis and Data Integration 

	Results and Discussions 
	Viral Shedding following Challenge 
	Central Carbon Metabolism Variance in the Nasal Wash Samples 
	Chemical and Pathway Analysis of the Central Carbon Metabolism 
	Multivariate Analysis of the Central Carbon Metabolism and Discovery Metabolites 
	Time-Series Metabolomics Analysis of the Progression of SARS-CoV-2 Infection 

	Conclusions 
	References

