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Abstract: A high-fat diet plays an important role in aggravating cancers. Palmitic acid (PA) is one of the
components of saturated fatty acids; it has been reported to promote tumor proliferation in melanomas,
but the signal transduction pathway mediated by palmitic acid remains unclear. This study showed
that palmitic acid can promote the lung metastasis of melanomas. Moreover, the interaction between
palmitic acid and toll-like receptor 4 (TLR4) was predicted by molecular docking. The experimental
results proved that palmitic acid could promote the TLR4 and Toll/IL-1 receptor domain-containing
adaptor-inducing IFN-β (TRIF) expression. The expression of Pellino1 (Peli1) and the phosphorylation
of NF-kappa B (pNF-κB) were downregulated after the suppression of TLR4 and the silencing of Peli1
also inhibited the phosphorylation of NF-κB. Therefore, we concluded that palmitic acid promoted the
lung metastasis of melanomas through the TLR4/TRIF-Peli1-pNF-κB pathway.

Keywords: melanoma; palmitic acid; TLR4/TRIF-Peli1-pNF-κB axis

1. Introduction

Melanomas originate from melanocytes in the skin and other organs, and are char-
acterized by a high malignancy, a rapid progression, an early metastasis, insensitivity to
radiotherapy and chemotherapy, and a high mortality [1]. There is increasing evidence that
a high-fat diet can promote the occurrence and development of tumors [2,3]. However, the
specific component of a high-fat diet that is responsible for oncogenesis remains unknown.
Palmitic acid (PA) is a 16 carbon long-chain saturated fatty acid; it is a common saturated
fatty acid in many common dietary fats, accounting for about 13% of the total fatty acid
content of peanut oil, about 65% of butter, about 42% of lard, and about 53% of tallow.
Studies have shown that PA can promote the occurrence and development of many diseases
such as tumors, cardiovascular disease, and inflammation [4]. However, the effect of PA on
melanomas remains unclear.

Toll-like receptor 4 (TLR4), a member of the TLR-like families, can activate TRIF
pathways [5]. The toll/IL-1 receptor domain-containing adaptor-inducing IFN-β (TRIF)
is a unique adapter of the TLR3 and TLR4-mediated signaling pathways. It can activate
TLR4-mediated signal transduction, thus regulating interferon regulatory factor 3 (IRF3)
and activating the phosphorylation of NF-kappa B (pNF-κB) expression, thereby promoting
the expression of inflammatory factors [6]. TLR4/NF-κB can promote the proliferation
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and invasion of melanomas [7]. In addition, PA can promote the proliferation of colorectal
cancer by promoting the expression of TLR4 [8]. However, there is no relevant report on
melanomas. Pellino1 (Peli1) is an E3 ubiquitin ligase, which is essential for regulating TLR
signals [9]. Peli1 knockout significantly inhibits NF-κB activation and pro-inflammatory
gene expression [10]. It has been reported that the accumulation of Peli1 can promote the
proliferation and migration of thyroid papillary carcinomas [11]. In esophageal squamous
cell carcinomas, Peli1 improved the radiotherapy sensitivity and promoted tumor cell
apoptosis [12]. However, the function and related signal transduction of Peli1 in melanomas
are not clear. Given the role of Peli1 in other tumors and that of TLR4/NF-κB in melanomas,
this study examined the effect of Peli1 and the related signaling pathways that influence
the occurrence and development of melanomas.

2. Materials and Methods
2.1. Drugs

For the in vitro experiments, PA (P9767, Sigma-Aldrich, St. Louis, MO, USA) was dissolved
in 10% BSA (A8850, Solarbio Life Sciences, Beijing, China) with gentle warming, as previously
described [13]; the concentration of the stock solution was 2 mM. TAK-242 (HY-11100, Medchem-
express, Princeton, NJ, USA) was dissolved in dimethyl sulfoxide (DMSO) (D8371, Solarbio Life
Sciences, Beijing, China); the concentration of the stock solution was 10 mM.

2.2. Animals and Treatment

A total of 20 C57BL/6J mice (6 weeks old, male) were purchased from the Experimental
Animal Center of Kunming Medical University (License number: K2020-0006). The mice
were housed in a room at 22 ± 2 ◦C with a 12 h of light /12 h of dark cycle and allowed free
access to food and water. All animal procedures were conducted according to the National
Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals. After 1 week
of acclimation, the mice were randomly divided into two groups (n = 10). The mice of the
PA group were fed with a high-PA diet (10% PA) for two months whereas the mice of the
control group were fed with a normal diet for two months. The serum cholesterol of the
mice was used as the marker of hyperlipidemia. The mice were then intravenously injected
with B16 cells (1 × 106/mL) in a volume of 100 µL, as in a previous study [14]. After tumor
growth for 15 days, the mice were anesthetized and dissected. The lungs of the mice were
extracted. The lungs were preserved in 4% paraformaldehyde at 4 ◦C. After two weeks of
fixation, the lungs were immersed in increasing concentrations of sucrose (10%, 20%, and
30%) and sectioned (5 µm) on a freezing microtome (CM 1860, Leica Biosystems, Germany,
Weztlar) at −20 ◦C. For the detection of proteins, the tumor in the lung was extracted on
ice and stored at −80 ◦C.

2.3. Cell Culture and Treatment

A375 cells and B16 cells (Cell Bank of the Chinese Academy of Science, Shanghai,
China) were cultured in a high-glucose medium (06-105-57-1ACS, Biological Industries,
Israel) containing 10% fetal bovine serum (04-001-1ACS, Biological Industries, kibbutz beit-
haemek, Israel) at 37 ◦C, 90% humidity, and 5% CO2. For the cell proliferation detection,
the cells were treated with 12.5, 25, or 50 µM PA for 24 h or treated with 0.1, 1, 10, or 50 µM
TAK-242 (a TLR4 antagonist). In addition, 50 µM TAK-242 was used as a pretreatment for
1 h before the addition of PA. The concentrations were based on previous studies with
slight modifications [15,16].

2.4. Cell Proliferation Detection

The cells were seeded at a density of 5 × 103 cells/well in a 96-well plate. After the
cells were incubated with drugs following the above procedures, the cell proliferation was
detected using an MTS kit (CTB169, Promega, WI, USA). The absorbance at 490 nm was
read on a microplate reader (51119200, Thermo Fisher Scientific, Waltham, MA, USA) and
the relative cell proliferation was calculated according to the formula provided in the kit.
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2.5. siRNA Transfection

The transient transfection of siRNA (12792, GenePharma, Shanghai, China) was per-
formed using a Lipofectamine 2000 transfection reagent (11668500, Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s instructions. Briefly, the melanoma
cells were seeded in 6-well plates and transfected with 100 pmol/well siRNA for 24 h
using 5 µL Lipofectamine 2000. The siRNA targeting sequences of Peli1 were as follows.
Set 1: 5′-GGUGGUUGAAUAAUACUCAUTT-3′, 5′-AUGAGUAUAUUCAACCACCTT-3′;
Set 2: 5′-GUCAGUACAAAGCACUAUATT-3′, 5′-UAUAGUGCUUUGUACUGACTT-3′;
and Set 3: 5′-CAGCAUAGCAUAUCAUAUATT-3′, UAUAUGAUAUGCUAUGCUGTT-3′.
The sequence of the negative control siRNA was 5′-UUCUUCGAACGUGUCACGUTT-3′,
5′-ACGUGACACGUUCGGAGAATT-3′.

2.6. Hematoxylin–Eosin (HE) Staining

The lung sections were stained using an HE staining kit (C0105S, Beyotime, Shanghai,
China). The lung sections were stained with the hematoxylin solution for 8 min, followed
by rinsing with distilled water. The lung sections were then stained with the eosin solution
for 1 min, followed by immersing in increasing concentrations of ethanol (70%, 80%, 90%,
and 100%). Finally, the lung sections were cleared with xylene for 5 min. The images of the
HE staining were obtained using a slice scanner (KF-Pro-005, KFBio, Shanghai, China).

2.7. Immunofluorescence

The cells and tissue sections were fixed with 4% paraformaldehyde for 30 min, washed
with 0.1% sodium citrate (C-1032, Solarbio Life Sciences, Beijing, China) three times, perforated
with 0.1%Triton X-100 (T-8200, Solarbio Life Sciences, Beijing, China) for 30 min, sealed with
5% goat serum at room temperature for 2 h, and incubated with the primary antibody
overnight. The primary antibody was washed off with 0.1% PBST three times and the section
was incubated with the secondary antibody at 37 ◦C for 2 h and then finally stained with DAPI.
The main antibodies were as follows: anti-TLR4 (66350-1-Ig, Proteintech, Chicago, IL, USA);
anti-TRIF (23288-1-AP, Proteintech, Chicago, IL, USA); Peli1 (199336, Abcam, Cambridge, UK);
pNF-κBp65 (3036, Cell Signaling Technology, MA, USA); CoraLite488-conjugated Affinipure
goat anti-mouse IgG (H+L) (SA00013-1, Proteintech, Chicago, IL, USA); and Cy3-conjugated
Affinipure goat anti-rabbit IgG (H+L) (SA00009-2, Proteintech, Chicago, IL, USA).

2.8. Western Blot Analysis

After the treatment, the cells were washed with pre-cooled PBS and then lysed with
a RIPA lysis buffer (R0020, Solarbio Life Sciences, Beijing, China) containing protease and
phosphatase (1:100) inhibitors (P0100, Solarbio Life Sciences, Beijing, China) on ice for 30 min.
The lysate was centrifuged at 12,000 rpm for 10 min at 4 ◦C. The protein concentration was
detected using a BCATM protein assay kit (P1511, Applygen, Beijing, China). The protein in the
lysate was analyzed by 8–15% SDS-PAGE and transferred to a PVDF (IPVH00010, Millipore,
Phillipsburg, NJ, USA) membrane. The membrane was blocked with 5% skimmed milk at
37 ◦C for 1 h. The membrane was then incubated with the primary antibody overnight at
4 ◦C. The next day, the membrane was washed and incubated with the HRP-bound secondary
antibody for 1 h at room temperature. Finally, the chemiluminescent signals were amplified
using a chemiluminescence reagent ECL kit (K-12045-D50, Bioship, Shanghai, Beijing) and a
high-quality image was acquired using a Bio-Rad ChemiDoc XRS system (Bio-Rad, Hercules,
CA, USA). β-actin was used as the reference control. All experiments were repeated at
least three times. The main antibodies were as follows: anti-TLR4 (66350-1-Ig, Proteintech,
Chicago, IL, USA); anti-TRIF (23288-1-AP, Proteintech, Chicago, IL, USA); Peli1 (199336, Abcam,
Cambridge, UK); pNF-κBp65 (3036, Cell Signaling Technology, Danvers, MA, USA); MMP2
(10373-2-AP, Proteintech, Chicago, IL, USA); E-cadherin (20874-1-AP, Proteintech, Chicago,
IL, USA); Vimentin (10366-1-AP, Proteintech, Chicago, IL, USA); and anti-β-actin (66009-1-Ig,
Proteintech, Chicago, IL, USA).
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2.9. Molecular Docking

Molecular docking was performed by autodock v4.2.6 and autodocktools v1.5.6, based
on previous studies [17]. Human TLR4 structure and ligand information were obtained from
RCSB PDB “https://pubchem.ncbi.nlm.nih.gov/ (accessed on 15 April 2022)”. First, the
acceptor and ligand were prepared using autodocktools v1.5.6, including removing the water
molecules, adding hydrogen, and calculating the number of atoms. The docking pocket of
PA and TLR4 referred to the binding ligand position in the TLR4 crystal structure. PA and
TLR4 were then docked using autodock v4.2.6. In addition, the ligand bound in the TLR4
crystal structure was removed and then spliced back to the original position, which generated
a docking score as a criterion for evaluating good docking. Finally, the binding sites and
interactions between PA and TLR4 were calculated using a protein–ligand interaction profiler
“https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index (accessed on 15 April 2022)”.
The visualization and analysis were performed by PyMOL v2.5.2.

2.10. Statistical Analysis

All data were analyzed by SPSS v26.0 software and presented as the mean ± standard
deviation (SD). An independent samples t-test was used to analyze the data from Figure 1
(except Figure 1C), 3 and Supplementary Figure S1. A one-way analysis of variance (ANOVA)
was used to analyze the data from Figures 1C and 4A, and Supplementary Figure S2. An
independent samples t-test was used to analyze the data from Figure 6A. two-way ANOVA
(no repeated measures) was used to analyze the data from the other experiments. The factors
were defined as PA and TAK-242 treatments, and PA and si-Peli1 treatments, respectively.
Before the ANOVA, the normality and homogeneity of equal variance were confirmed. The
level of significance was set at 0.05.

Figure 1. Palmitic acid promotes lung metastasis of melanomas. (A) Overall lung changes and HE
staining after animal modeling (representative images). (B) The protein blots of E-cadherin, MMP2,
Vimentin, and quantitative analysis from a mouse model. (C) The level of cell proliferation after B16
and A375 cells were incubated with PA for 24 h at different concentrations (12.5, 25, and 50 µM).
(D) The invasiveness of B16 and A375 cells. (E) The protein blots of E-cadherin, MMP2, Vimentin,
and quantitative analysis from B16 cells. (F) The protein blots of E-cadherin, MMP2, Vimentin, and
quantitative analysis from A375 cells. * p < 0.05, ** p < 0.01 or *** p < 0.001 compared with the control
group; the significance of the t-test.

https://pubchem.ncbi.nlm.nih.gov/
https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
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3. Results
3.1. PA Promotes Melanoma Cell Proliferation, Invasion, and Lung Metastasis

First, we investigated the cholesterol level in the serum of mice after a high-PA diet
for two months. The high-PA diet group had higher cholesterol levels compared with
the normal diet group (Supplementary Figure S1). The mice then received a tail-vein
injection of melanoma cells (B16 cells), followed by a tumor growth period for 15 days.
There were more metastases in the lungs of the mice in the high-PA diet group (Figure 1A).
The epithelial–mesenchymal transition (EMT) plays an important role in tumor invasion
and metastasis [18]. The EMT is characterized by changes in the morphology and molec-
ular markers. Cells acquire the mesenchymal phenotype from a loss of epithelial-related
markers and mesenchymal-related markers (including N-cadherin and Vimentin) and
matrix metalloproteinases (MMPs) are upregulated [19]. Therefore, we detected E-cadherin,
MMP2, and Vimentin expressions. The results showed a lower E-cadherin expression
and higher MMP2 and Vimentin expressions in the tumors of the high-PA diet group
(Figure 1B). These results indicated that PA promoted the lung metastasis of the melanomas.
In addition, PA (25 µM) significantly promoted cell proliferation and invasion in B16
and A375 cells (Figure 1C,D), with a lower E-cadherin expression and higher MMP2 and
Vimentin expressions compared with the control group (Figure 1E,F).

3.2. Analysis of Protein-Binding Model of PA and TLR4

To predict the potential molecules that interacted with PA, the molecular docking
results showed that there were two binding pockets between the original ligand and TLR4,
which were located on the C-chain and D-chain of TLR4 (Figure 2). Among them, the
docking score of the proto-ligand and TLR4 was −5.5 kcal/mol on the C-chain and the
docking score of the proto-ligand and TLR4 was −5.6 kcal/mol on the D-chain. Interest-
ingly, the docking score of PA and TLR4 was −6.0 kcal/mol on the C-chain docking pocket
and the docking score of PA and TLR4 was −6.4 kcal/mol on the D-chain docking pocket.
Irrespective of the C-chain or D-chain, the docking reliability of PA and TLR4 was higher
than the verification standard, which suggested that the docking result was reliable. These
results indicated that there was a good binding site between PA and TLR4.

3.3. PA Can Activate the TLR4/TRIF-Peli1-pNF-κB Pathway

PA significantly activated the TLR4/TRIF-Peli1-pNF-κB pathway (Figure 3). In the metasta-
sis sites, the high-PA diet group fluorescence intensity was stronger and the protein expression
level was higher (Figure 3A,B). PA (25 µM) also activated the TLR4/TRIF-Peli1-pNF-κB pathway
in the A375 cells (Figure 3C) and B16 cells (Figure 3D). These results suggested that PA promoted
the metastasis of melanomas via the TLR4/TRIF-Peli1-pNF-κB pathway.
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Figure 2. Molecular docking between PA and TLR4 Four chains of TLR4 are shown as multicolor
bands. PA is shown as cyan sticks and TLR4 residues are marked with yellow sticks. (A) The
image shows the docking pose, binding sites, and interactions between PA and the C-chain of TLR4.
There were three hydrogen bonds between PA and the TLR4 protein residues, which were Ser-127 at
3.3 Å, Asn-417 at 3.6 Å, and Ser-441 at 3.6 Å. In addition, PA and TLR4 also formed 12 hydrophobic
interactions in the C-chain, which were Ile-32 at 3.75 Å, Ile-52 at 3.93 Å, Leu-54 at 3.72 Å, Ile-80 at
3.60 Å, Val-82 at 3.73 Å, Leu-87 at 3.77 Å, Tyr-131 at 3.81 Å, Tyr-131 at 3.73 Å, Phe-151 at 3.66 Å, Ile-153
at 3.36 Å, Ile-153 at 3.54 Å, and Phe-440 at 3.88 Å. (B) Docking pose, binding sites, and interactions
between PA and D-chain of TLR4. PA formed four hydrogen bonds with the TLR4 protein residues in
the binding pocket of the D-chain, which were Ser-127 at 2.33 Å, Tyr-131 at 3.97 Å, Asn-417 at 3.00 Å,
and Ser-441 at 2.25 Å. PA and the TLR4 protein residues formed 12 hydrophobic interactions in the
binding pocket of the D-chain, which were Ile-32 at 3.57 Å, Ile-52 at 3.87 Å, Ile-52 at 3.94 Å, Ieu-54 at
3.57 Å, Ile-80 at 3.58 Å, Val-82 at 3.53 Å, Phe-126 at 3.5 Å, Tyr-131 at 3.4 Å, Tyr-131 at 3.95 Å, Phe-151
at 3.7 Å, Ile-153 at 3.8 Å, and Phe-440 at 3.73 Å.
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Figure 3. PA activated the TLR4/TRIF-Peli1-pNF-κB pathway in melanomas. (A) The fluorescence
intensity and quantitative analysis of TLR4, TRIF, Peli1, and pNF-κB in mice lung tissues. (B) The
blots of protein and quantitative analysis of mice lung tissues. (C) The fluorescence intensity and
quantitative analysis of TLR4, TRIF, Peli1, and pNF-κB in A375 cells. (D) The blots of protein and
quantitative analysis of B16 after PA treatment for 24 h. * p < 0.05, ** p < 0.01, or *** p < 0.001 compared
with the control group.

3.4. Inhibition of TLR4 Blocks PA-Induced Proliferation and Invasion in Melanoma Cells

To examine the role of TLR4 in PA-induced proliferation and invasion in melanoma
cells, we inhibited the functional activity of TLR4 using a TLR4 selective antagonist
(TAK-242). The results showed that TAK-242 inhibited the proliferation of B16 cells
and A375 cells in a dose-dependent manner (Figure 4A). We selected TAK-242 (50 µM) for
the subsequent experiments. Interestingly, there was a higher E-cadherin expression and
lower MMP2 and Vimentin expressions compared with the control group when TAK-242
(50 µM) was administered alone in the B16 cells (Figure 4C) and A375 cells (Figure 4D).
TLR4 seemed to play an important role in the proliferation and invasion of the melanoma
cells. Furthermore, a TAK-242 (50 µM) pretreatment strongly blocked the promoting ef-
fect of PA on the proliferation of the B16 cells and A375 cells (Figure 4B). The TAK-242
(50 µM) pretreatment also attenuated a PA-induced low expression of E-cadherin and high
expressions of MMP2 and Vimentin in B16 cells (Figure 4C) and A375 cells (Figure 4D).
These results suggested that the cell proliferation and invasion induced by PA were medi-
ated by TLR4. Moreover, the TAK-242 (50 µM) pretreatment also blocked the activation
of the TLR4/TRIF-Peli1-pNF-κB pathway induced by PA in the A375 cells (Figure 5A,B)
and B16 cells (Figure 5C,D). Compared with the PA group, the protein expression level
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of TAK-242 with the PA administration was significantly reduced whereas the activation
level of this pathway was lower compared with the control group when TAK-242 (50 µM)
was administered alone. These results indicated that PA promoted the proliferation and
invasion of melanoma cells through TLR4 signaling.

Figure 4. TAK-242 treatment inhibited the proliferation, and changed the expression, of EMT re-
lated proteins induced by PA in the B16 and A375 cells. (A) The level of cell proliferation after
B16 and A375 cells were incubated with TAK-242. (B) The level of cell proliferation after B16 and
A375 cells were incubated with TAK-242 and/or PA for 24 h. (C) Protein levels and quantitative anal-
ysis of E-cadherin, MMP2, and Vimentin in B16 cells incubated with TAK-242 and/or PA for 24 h.
(D) Protein levels and quantitative analysis of E-cadherin, MMP2, and Vimentin in A375 cells incubated
with TAK-242 and/or PA for 24h. In A375 and B16 cells, treatment with PA or TAK-242 (+) and no
treatment with PA or TAK-242 (-). * p < 0.05, ** p < 0.01, or *** p < 0.001 compared with the control group.
## p < 0.01, or ### p < 0.001 compared with the PA group; the significance of the ANOVA.

3.5. Inhibition of Peli1 Expression Alleviates the Impact of PA on the Proliferation and Invasion of
Melanoma Cells and Peli1-PNF-κB Signaling

The expression of Peli1 in the B16 cells and A375 cells was inhibited using an siRNA-
targeting Peli1 pretreatment (Supplementary Figure S2). The results showed that the si-Peli1
pretreatment for 24 h, 48 h, or 72 h significantly restrained the proliferation of the B16 cells and
A375 cells (Figure 6A). In addition, there was a higher E-cadherin expression and lower MMP2
and Vimentin expressions compared with the control group when si-Peli1 was administered
alone in the B16 cells (Figure 6C) and A375 cells (Figure 6D). Furthermore, the inhibition of
the Peli1 expression blocked PA-induced cell proliferation and changes in the E-cadherin,
MMP2, and Vimentin expressions in the B16 cells and A375 cells (Figure 6B–D). The inhibition
of the Peli1 expression also blocked the activation of Peli1-pNF-κB signaling induced by PA
in the A375 cells (Figure 7A–D) and B16 cells (Figure 7E), but had no effect on TLR4/TRIF
signaling (Figure 7). In addition, the activation level of Peli1-pNF-κB signaling was lower
compared with the control group when si-Peli1 was administered alone (Figure 7). These
results suggested that Peli1, as a downstream signal of TLR4, played an important role in
PA-induced melanoma cell proliferation and invasion.
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Figure 5. The fluorescence intensity and protein expression of TLR4/TRIF-Peli1-pNF-κB pathway af-
ter TAK-242 treatment. (A) The fluorescence intensity of TRIF, Peli1, and pNF-κB in A375 cells.
(B) Quantitative analysis of fluorescence intensity. (C) The blots of TRIF, Peli1, and pNF-κB
in B16 cells. (D) Quantitative analysis of TRIF, Peli1, and pNF-κB expression in B16 cells. In A375
and B16 cells, treatment with PA or TAK-242 (+) and no treatment with PA or TAK-242 (-). * p < 0.05,
** p < 0.01, or *** p < 0.001 compared with the control group. ## p < 0.01 or ### p < 0.001 compared
with the PA group; the significance of the ANOVA.

Figure 6. Inhibition of Peli1 expression blocked PA-induced cell proliferation and changed the
expression of EMT-related proteins in the B16 and A375 cells. (A) The level of cell proliferation
after si-Peli1 in B16 and A375 cells. (B) The level of cell proliferation after B16 and A375 cells were
incubated with si-Peli1 and/or PA for 24 h. (C) Protein levels and quantitative analysis of Peli1,
E-cadherin, MMP2, and Vimentin in B16 cells incubated with si-Peli1 and/or PA for 24 h. (D) Protein
levels and quantitative analysis of Peli1, E-cadherin, MMP2, and Vimentin in A375 cells incubated
with si-Peli1 and/or PA for 24 h. In A375 and B16 cells, treatment with PA or si-Peli1 (+) and no
treatment with PA or si-Peli1 (-). * p < 0.05, ** p < 0.01, or ***p < 0.001 compared with the control
group. ## p < 0.01, or ### p < 0.001 compared with the PA group; the significance of the ANOVA.
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Figure 7. The fluorescence intensity and protein expression of TLR4/TRIF-Peli1-NF-κB pathway
after si-Peli1. (A) The fluorescence intensity of TLR4 in A375 cells. (B) The fluorescence intensity of
TRIF in A375 cells. (C) The fluorescence intensity of Peli1 and pNF-κB in A375 cells. (D) Quantitative
analysis of fluorescence intensity. (E) The protein blots and quantitative analysis of TLR4, TRIF, and
pNF-κB in B16 cells. In A375 and B16 cells, treatment with PA or si-Peli1 (+) and no treatment with
PA or si-Peli1 (-). * p < 0.05, ** p < 0.01, or *** p < 0.001 compared with the control group. ## p < 0.01
or ### p < 0.001 compared with the PA group; the significance of the ANOVA.

4. Discussion

The results of this study suggested that PA plays an important role in melanoma devel-
opment. At the same time, based on molecular docking and subsequent animal experiments,
we hypothesized that PA may be a ligand of TLR4. Its role in mediating the TLR4/TRIF-Peli1-
pNF-κB axis pathway may provide a new idea for the treatment of melanomas.

Two of the characteristics of aggressive tumor cells are their ability to migrate and invade.
The phenotype of these cells undergoes a transformation from epithelial cells to mesenchymal
cells. This process is called EMT [20]. The downregulation of E-cadherin is the basis of
EMT [21]. MMPs are important in regulating cell migration and invasion by digesting the
extracellular matrix (ECM) [22]. More importantly, the expression of Vimentin is upregulated
and the cell motility is enhanced [23]. EMT is the basis of metastasis [24]. After the PA
treatment, the lung metastasis of the mice was significantly increased and the corresponding
expression of MMP2 and Vimentin was upregulated whereas the expression of E-cadherin
was downregulated. These results indicate the importance of PA in melanoma metastasis.

TLR4 plays an important role in melanoma development. Previous studies have
shown that TLR4 can protect cells from TNFα-induced apoptotic damage. In addition,
knocking out TLR4 can significantly reduce melanoma metastasis [7]. After silencing
TLR4, the cell migration ability of melanomas was decreased [25]. TLR4 increases STAT3
activation and promotes angiogenesis and EMT [26]. TLR4 activates NF-κB to promote the
occurrence and development of melanomas [27]. In addition, the UV-induced activation of
TLR4 promotes the inflammatory production of neutrophils as well as the angiogenesis
and metastasis of melanomas [28]. In this study, we found that TLR4 could promote cell
proliferation and invasion by activating TRIF-Peli1-pNF-κB. The activation of pNF-κB can
promote EMT [29,30], but the specific mechanism remains unclear. Based on our results,
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we plan to study whether NF-κB can target the promoter region of EMT-related factors and
regulate their transcription to promote melanoma metastasis.

Increasing evidence suggests that a high-fat diet is strongly linked to cancer. In
a few cancers, obesity and a high fat intake increase the risk of cancer occurrence and
progression [31,32]. PA is a saturated fatty acid, which has adverse effects on many
chronic diseases [4,33] and promotes tumor proliferation [2,16]. We speculated that PA
may promote tumor proliferation as a molecular signal of tumor cells. In melanomas,
PA can activate the Akt (also known as protein kinase B, or PKB) pathway to promote
melanoma proliferation [16]. In pancreatic cancers, PA activates the TLR4/ROS/NF-
κB/MMP9 signaling pathway, increasing cancer aggressiveness [34]. In rectal cancer, PA
promotes TLR4 expression and tumor proliferation by promoting the expression of the
transcription factor PU.1 upstream of TLR4 [8]. However, in the present study, we indicated
that TLR4 was a ligand of PA, which promoted the lung metastasis of melanomas by
activating TLR4 as well as the nuclear translocation of pNF-κB, influencing the translation
of E-cadherin, MMP2, and Vimentin. However, the relationship between pNF-κB and
E-cadherin, MMP2, and Vimentin needs further study.

5. Conclusions

In summary, the results of this study suggested that TLR4 may be a ligand of PA,
promoting the lung metastasis of melanomas by triggering downstream TRIF-Peli1-pNF-κB
to induce cell migration and invasion (Figure 8).

Figure 8. Mechanism simulation diagram of melanoma lung metastasis.
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