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Abstract: Cyclophosphamide (CP) has been proven to be an embryo-fetal toxic. However, the
mechanism responsible for the toxicity of the teratogenic agent has not been fully explored. This
study aimed to examine the teratogenicity of CP when administered in the sensitive period of
pregnant rats. The effect of CP on the lipid and metabolic profiles of amniotic fluid was evaluated
using a UHPLC-Q-Exactive Orbitrap MS-based method. Metabolome analysis was performed using
the MS-DIAL software with LipidBlast and NIST. Initially, we identified 636 and 154 lipid com-
pounds in the positive and negative ion modes and 118 metabolites for differential analysis. Mainly
4 types of oxidized lipids in the amniotic fluid were found to accumulate most significantly after
CP treatment, including very-long-chain unsaturated fatty acids (VLCUFAs), polyunsaturated fatty
acid (PUFA)-containing triglycerides (TGs), oxidized phosphatidylcholine (PC), and sphingomyelin
(SM). Tryptophan and some long-chain saturated fatty acids were lowered pronouncedly after CP
treatment. These findings suggest that CP may exert teratogenic toxicity on pregnant rats through
maternal and fetal oxidative stress. The UHPLC-Q-Exactive Orbitrap MS-based lipidomics approach
is worthy of wider application for evaluating the potential toxicity of other agents (toxicants) during
embryonic development.
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1. Introduction

Cyclophosphamide (CP) is a common chemotherapy agent and immunosuppressive
agent activated in the liver. However, it is of concern for several reasons, including the
strong mutagenesis and teratogenesis of its metabolites [1]. CP has been shown to cause
embryo or fetal resorption, fetal growth restriction in body weight and length, and fetal
malformations, particularly organ and skeletal malformations [2–5]. CP-induced oxidative
stress has been considered a primary mechanism responsible for teratogenesis [6]. However,
the effect of CP-induced developmental toxicity has not been precisely interpreted.

Metabonomics (or metabolomics) measures the metabolic profiles of a wide variety
of biological samples and enables complicated qualitative and quantitative analysis of
endogenous small molecule metabolites [7]. It has been widely used to elucidate detailed
mechanisms in toxicology research [8], such as identification of toxic biomarkers by screen-
ing metabolites with altered concentrations after treatment and metabolic pathways related
to injury and poisoning. Metabonomics cannot be confined to the blood and urine analysis
but is more advisable for amniotic fluid analysis to track embryo development within the
amniotic sac due to the non-invasive sampling [9].

Amniotic fluid comprises fetal urine and the mother’s oral, nasopharyngeal, tracheal
secretions, and pulmonary fluids transferred into the amniotic sac across the amniotic
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membrane [10]. It serves as a reservoir critical for embryo development and fetal sur-
vival and growth during pregnancy, when the composition of amniotic fluid constantly
changes [11,12], which can be directly influenced by the fetus, particularly metabolites from
the placenta, fetal skin, lungs, and gastric juice over time [13]. Amniotic fluid is rich in
lipids, which are predominant in pulmonary surfactants. Lipids can be exchanged between
the fetal lung and amniotic fluid through swallowing and alveolar lavage physiologically.
Therefore, some metabolites of the complex, dynamically changing body fluid can serve as
biomarkers to reflect the physiological or pathological state of the developing fetus when
exposed to exogenous factors such as drugs. Amniotic fluid metabonomics can accurately
examine the effects of drugs and toxicants on the fetus and identify biomarkers closely
associated with the metabolic profile of amniotic fluid in the pathological state [14].

Studies on amniotic fluid metabonomics, particularly metabonomics of amniotic
fluid lipids, after CP treatment have not been reported so far. In this study, we exam-
ined metabonome and lipidome changes in the amniotic fluid after CP administration
using gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass
spectrometry (LC-MS). This study aimed to investigate the mechanism for CP-induced
developmental toxicity in rat embryos. Our study is worth referencing for identifying other
drugs (toxicants) with potential developmental toxicity.

2. Materials and Methods
2.1. Chemicals and Reagents

Cyclophosphamide for injection (batch number 9B285A) from Baxter Oncology GmbH,
Halle, Germany; internal standard, lyso PE (17:1) (batch number: LM171LPE-11), SM (17:0)
(batch number: 170SM-13), PE (17:0/17:0) (batch number: LM170PE-19) from Avanti Po-
lar Lipids, Alabaster, AL, USA; methyl tert-butyl ether (MTBE), N-hexane, isopropanol,
ammonium acetate and ammonium formate (99.8% mass spectrometry pure) from ROE
Scientific, Newark, NJ, USA; glacial acetic acid (batch number 15080553613, purity: 99.5%)
from Nanjing Chemical Reagent Co., Ltd., Nanjing, China; acetonitrile and methanol (99.8%
mass spectrometry pure) from Merck, Darmstadt, Germany; methoxyamine hydrochlo-
ride, pyridine, N, O-Bis (trimethylsilyl) triflfluoroacetamide (BSTFA, batch number 15238)
with 1% trimethylchlorosilane (TMCS), formic acid and 1,2-13C-myristic acid from Sigma
Aldrich, St. Louis, MO, USA; methanol from Supelco, Bellefonte, PA, USA; and malonalde-
hyde (MDA) and superoxide dismutase (SOD) activity detection kit from Wuhan Abbkine
Company, Wuhan, China.

2.2. Embryo-Fetal Toxicity
2.2.1. Animals

Healthy 11-week Sprague–Dawley (SD) rats were obtained from Vital River Labo-
ratory Animal Technology Co., Ltd. (Beijing, China; 1100111911042043). All experimen-
tal procedures were approved by the Institutional Animal Care and Use Committee of
Nanjing University of Chinese Medicine (201906A037) and conducted according to the
committee guidelines.

All animals were housed at a constant temperature of 23–25 ◦C, relative humidity of
55%, and 12 h light/12 h dark cycle (08:00–20:00). They were given free access to water
and common foodstuffs to acclimatize before experiments. Mating was carried out at
4 p.m. by putting two females and one male together. The males were removed at 8 a.m.
the next morning. The vaginal smears of female rats were collected and observed under
a microscope. The day we initially observed sperms in the samples was designated as
gestation day 0 (GD0). We repeated the mating process until enough mated female rats
were obtained.

2.2.2. Treatment and Sample Collection

Pregnant females were randomly divided into the CP (9B285A, Anderson & Baxter,
Plymouth, MN, USA; subcutaneous injection of 15 mg·kg−1 cyclophosphamide) and CK
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(isovolumetric normal saline) groups on GD12, with ten in each group. Animals were
anesthetized and sacrificed on GD17 after being fasted for 10 h to collect organ samples.
The heart, liver, kidney, and part of the placentas were fixed with 4% paraformaldehyde for
histopathologic evaluation.

Uteri with contents were removed and weighted. Amniotic fluid samples were drawn
from each amniotic cavity with a syringe needle, and all the samples of one pregnant rat
were mixed together and immediately stored at −80 ◦C. Some placentas were also isolated
and stored at −80 ◦C. The resorbed, viable, and dead fetuses were counted, and the weights
and tail lengths of the fetuses were recorded.

2.2.3. Oxidative Stress Assessment

The fixed placenta and other tissue samples were embedded and sliced. The sec-
tions were stained with hematoxylin and eosin and observed under a light microscope
for histopathological scoring [15]. A colorimetric method was utilized to determine the
oxidative stress indices MDA and SOD in the placenta. In brief, 1 g of placental tissue
was weighed and homogenized in ice-cooled lysis buffer. The mixture was centrifuged at
13,000× g for 10 min, and the supernatant was collected for analysis. The samples were
mixed with working reagents using MDA concentration and SOD activity detection kits
(Wuhan Abbkine, Wuhan, China) and incubated according to the manufacturer’s instruc-
tions. The absorbance of SOD was measured at 450 and that of MDA at 532 and 600 nm in a
microplate reader. The results expressed as MDA content and SOD activity were calculated
according to the manufacturer’s specifications.

2.2.4. Statistical Analysis

GraphPad Prism 9.1.0 (GraphPad Software, San Diego, CA, USA) was used for data
analysis. Differences between the two groups were compared using the Mann–Whitney non-
parametric test. Data are expressed as mean ± standard deviation (SD). A p-value of <0.05
was considered statistically significant.

2.3. Untargeted Lipidomics and Metabolomic Analysis
2.3.1. Sample Preparation

Lipid and metabolite extraction from amniotic fluid samples was performed using
liquid–liquid extraction with methyl tert-butyl ether (MTBE; ROE, Newark, NJ, USA)
before analysis [15–18]. In brief, 500 µL of amniotic fluid was lyophilized and redissolved
in 200 µL of deionized water. Then, 80 µL of redissolved amniotic fluid was pipetted off
into a 1.5 mL centrifuge tube containing 225 µL of ice-cooled methanol (Merck, Darmstadt,
Germany) pre-mixed with lyso PE (17:1; LM171LPE-11), SM (17:0; 170SM-13), and PE
(17:0/17:0; LM170PE-19) internal standards (5 µg·mL−1; Avanti Polar Lipids, Alabaster, AL,
USA). The solution was vortexed for 10 s, and 750 µL of ice-cooled MTBE was. The mixture
was shaken for 10 min at 4 ◦C, supplemented with 188 µL of deionized water, vortexed
for 20 s, and centrifuged at 14,000 rpm for 2 min at 4 ◦C. In all, 350 µL of the upper layer
(the organic phase, mainly including lipids) and 110 µL of the bottom layer (the aqueous
phase, mainly including polar substances) were separately transferred to a new centrifuge
tube (1.5 mL). The samples were dried using the Savant SPD1010 vacuum centrifugal
concentrator (Thermo Fisher Scientific, Waltham, MA, USA) and stored at −20 ◦C before
testing. Lipids in the upper layers were lysed with 110 µL of methanol–toluene (9:1) solution.
Liquid chromatography–mass spectrometry (LC-MS) analysis was performed using the
Q-Exactive Quadrupole-Electrostatic Field Orbitrap High-Resolution Mass Spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA). The dried substances (the polar fraction)
from the bottom layer were supplemented with 2.5 µg of 1,2-C13 myristic acid (diluted
with pyridine; Sigma Aldrich, St. Louis, MO, USA) and 30 µL of pyridine solution with
10 mg·mL−1 methoxyamine hydrochloride (Sigma Aldrich, St. Louis, MO, USA). They
were mixed for 5 min and shaken at 300 r·min−1 for 1.5 h at 30 ◦C. Then, 30 µL of N, O-Bis
(trimethylsilyl) triflfluoroacetamide (BSTFA; 15238, Sigma Aldrich, USA) was added to
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them in a laboratory fume hood, and they were mixed for 1 min and shaken at 300 r·min−1

for 0.5 h at 37 ◦C. Finally, the samples were centrifuged at 18,000 r·min−1 for 10 min, and
50 µL of the supernatant was used for gas chromatograms and mass spectrometry (GC-MS)
analysis. A total of 20 µL of amniotic fluid was taken from each sample to prepare the
quality control (QC) sample using the procedures described above. QC samples were
injected every 10 samples to assess the reliability and stability of the system.

2.3.2. Chromatographic Separation and Mass Spectrometer Settings

In LC-MS lipidomics, 2 µL aliquots of the amniotic fluid samples were injected on
a Waters Acquity UPLC CSH C18 column (100 mm × 2.1 mm, 1.7 m), employing water
and acetonitrile (6:4; Merck, Germany) as the gradient mobile phase A and isopropanol
(ROE, USA) and acetonitrile (9:1, both containing 10 mM ammonium formate and 0.1%
formic acid) as the gradient mobile phase B, at a flow rate of 0.3 mL·min−1 and a constant
temperature of 60 ◦C [15]. The elution procedure was as follows: 0–4.0 min, 15% B; 4.0–5.0
min, 15–48% B; 5.0–22.0 min, 48–82% B; 22.0–23.0 min, 82–99% B; 23.0–24.0 min, 99% B;
24.0–24.2 min, 99–15% B; 24.2–30.0 min, 15% B. The spray voltages were 3.5 kV and 3.0 kV
for operation in the positive and negative ion modes. Other settings for operation in both
ion modes include sheath gas pressure 35 arbitrary unit (Arb), aux gas pressure 15 Arb,
capillary temperature 325 ◦C, and heater temperature 300 ◦C.

Temperature-programmed GC-MS analysis was performed for the polar fraction of
the amniotic fluid samples (described in 2.3.1) using the method described elsewhere [15].
Briefly, 1 µL aliquots of derived amniotic fluid samples were injected on a TG-5MS capillary
column (30 m × 0.25 mm, 0.25 µm) with helium as a carrier gas (flow rate 1.2 mL·min−1,
split ratio 20:1, and injector temperature 250 ◦C). GC oven temperature was programmed
as follows: 60 ◦C for 1 min, 20 ◦C/min to 320 ◦C, and 320 ◦C for 5 min. The system
was equipped with an electron ionization (EI) ion source and was operated according to
the following settings: ion source temperature 280 ◦C, transfer line temperature 250 ◦C,
ionization energy 70 eV, acquisition time 3.5–19.0 min, and MS scanning range m/z 50–500.

2.3.3. Data Processing and Statistical Analysis

LC-MS and GC-MS metabolomics data were processed and analyzed using MS-DIAL
(MS-DIAL software, version: 3.0.0.0, Japan). Peaks and components were identified ac-
cording to the NIST database mass spectra for lipids and related metabolites. Their data
matrices, including name, peak height, and classification, were subjected to MetaboAnalyst
5.0 (metaboanalyst.ca/faces/ModuleView.xhtml, accessed on 21 June 2022) for multivariate
analyses, heatmap analysis, clustering, and visualization to identify principal components.
We utilized the U test and FDR calibration to obtain differential metabolites between preg-
nant rats receiving CP and normal saline (p < 0.05, FDR < 0.2, and FC > 1.5). Further,
we performed ChemRICH enrichment analysis (http://chemrich.fifiehnlab.ucdavis.edu/,
accessed on 28 July 2022) of differential lipids to characterize their expressions after CP
treatment [19].

3. Results
3.1. CP disturbs Embryonic Development

Pregnant rats treated with CP were markedly emaciated and lost weight (Table 1)
versus those treated with normal saline (the CK group, or CK). Three rats had miscarriages
after CP treatment versus one in CK. Anatomical and histopathological observations
showed no obvious pathological injury in the heart, liver, and kidney in pregnant rats in CP
versus CK. Blood clots were found in the placental vessels of two rats whose fetuses either
were resorbed or died during late gestation after CP treatment (Figure 1). Rats treated with
CP showed a reduced volume of amniotic fluid, which was dark brown, compared to those
treated with normal saline.

metaboanalyst.ca/faces/ModuleView.xhtml
http://chemrich.fifiehnlab.ucdavis.edu/
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Table 1. Effects of CP on fetuses on GD17.

Items CK CP
15 mg·kg−1

Pregnant rats (N) a 7 9
Maternal weight on GD17 (g; x ± s) 350.9 ± 25.4 319.3 ± 24.9 *
Fetal and placental weights (g; x ± s) 27.1 ± 11.3 20.1 ± 13.1 *
Implanted embryos (N) a 87 77
Viable embryos (N) a 80 59
Fetuses resorbed (N [%]) b 6(6.9) 7(9.1)
Late fetal death (N [%]) b 1(1.1) 11(14.3) *
Fetal weight (g; x ± s) 0.84 ± 0.04 0.55 ± 0.08 **
Body length of fetuses (mm; x ± s) 20.33 ± 0.46 18.27 ± 1.06 **
Tail length of fetuses (mm; x ± s) 6.68 ± 0.70 6.56 ± 0.56

a Values are presented as total number; b values are presented as percent of all implanted embryos. * p < 0.05 and
** p < 0.01 versus CK.
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As shown in Table 1 and Figure 2, rats treated with CP showed markedly lower fetal
and placental weights (p < 0.05), a higher percentage of late fetal death (p < 0.05), and
significant reductions in fetal weight and length (p < 0.01) on gestation day (GD) 17.
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3.2. Lipidomic Profiling of Amniotic Fluid after CP Treatment
3.2.1. Lipid Components in the Amniotic Fluid

Lipid components in CK and CP were identified using UHPLC-Q-Exactive Orbitrap
MS and analyzed using MS-DIAL with the LipidBlast library that stores MS/MS spectra



Metabolites 2022, 12, 1105 6 of 18

of over 200,000 lipids. Amniotic fluid samples were randomly detected in positive and
negative ion modes. The total ion current (TIC) showed lipid distribution in positive and
negative ion modes (Figure S1A,B) during the retention time in MS spectrometry. Mass
accuracy and MS/MS matching were performed with LipidBlast to annotate fragment
ions. The primary and secondary fragment ions (Supplementary Materials Figure S2) were
matched to LipidBlast to identify lipid compounds and the corresponding strains.

Finally, 636 lipid compounds were identified in the positive ion mode, primarily in-
cluding cardiolipin (CAR), cholesteryl ester (CE), ceramides (CER), diacylglycerol (DG);
lysophosphatidylcholine (lysoPC), lysophosphatidylethanolamine (lysoPE), phosphatidyl-
choline (PC) phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine
(PS), sphingomyelin (SM), and triglycerides such as triglyceride (TG). In addition, 154 lipid
compounds in the negative ion mode were confirmed. The top eight lipid strains were as
follows: fatty acid (FA), lysophosphatidylcholine (lysoPC), lysophosphatidylethanolamine
(lysoPE), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol
(PI), phosphatidylserine (PS), and sphingomyelin (SM).

3.2.2. UHPLC-Q-Exactive Orbitrap MS Method Validation

For improved UHPLC-Q-Exactive Orbitrap MS resolution, three methods were em-
ployed to calculate the experimental error as described elsewhere [20]. Sample normalization
methods were utilized to calculate the relative standard deviations (RSD) values of QC
samples to assess the stability and reproducibility of the LC-MS system. The smallest RSD
(10.04%) in the positive ion mode was obtained after PQN normalization (Figure S3A). The
smallest RSD (7.011%) in the negative ion mode was observed after linear normalization
(Figure S3B). The results indicate that the LC-MS system was stable throughout the analysis.

3.2.3. Non-Targeted Lipidomics Analysis

Differences in amniotic fluid lipid metabolites between CP and CK were compared
in the positive and negative ion modes, and data sets were analyzed using unbiased PCA
(Figure 3) and OPLS-DA (Figure 4). Permutation tests of OPLS-DA models showed that
each model had a low risk of overfitting in the positive and negative ion modes (p < 0.01).
OPLS-DA analysis revealed satisfactory accuracy (R2Y = 0.998 in the positive ion mode
and R2Y = 0.998 in the negative ion mode) and predictive ability of models (Q2 = 0.709 in
the positive ion mode and Q2 = 0.785 in the negative ion mode) (Figure 4A–D). The results
showed a significant difference in lipid component alterations between CP and CK in the
positive and negative ion modes. This indicates that CP can result in metabolic alterations
in the amniotic fluid in pregnant rats.
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Amniotic fluid lipid metabolites differentially expressed between CP and CK were
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According to concentrations determined by fragment ion peaks in MS2, the top
25 differential lipids were summarized in the heatmaps (Figure 6A,B). Lipid distribution
was obviously different in CP versus CK. To clarify the differences, differential lipids in
the positive and negative ion modes were subjected to ChemRICH enrichment analysis for
clustering and the Kolmogorov–Smirnov test to determine the significance of the cluster.
The lipid cluster with a p < 0.05 was considered significantly affected by CP treatment.
We found that the majority of affected lipids were TGs and FAs, with their concentrations
changed most after CP treatment (Figure 6C). Specifically, concentrations of most unsat-
urated TGs and all unsaturated Fas were upregulated after CP treatment, and those of
all saturated TGs were downregulated. This opposite expression trend was also found in
unsaturated and saturated lysoPCs. Parts of PIs, oxidative PCs, and oxidative SMs were
elevated after CP administration (Figure 6D).
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3.3. Metabolic Profiling of Amniotic Fluid 

Amniotic fluid metabonomics was performed with the GC-MS system, as described 
in Section 2.3.2. GC-MS TIC of QC samples showed clear peaks, indicating that the system 
was able to quantify metabolites (Figure S4). QC samples were clustered after PQN nor-
malization (Figure S5), suggesting that the system was stable throughout the analysis.  

Ultimately, 118 metabolites were identified. These data were input into Metaboana-
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Figure 6. Differentially expressed lipids between the CP and CK groups. Heatmaps of the top
25 differential amniotic fluid lipids in the (A) positive and (B) negative ion modes (n = 6). Each square
corresponds to the peak intensity of lipids. Red or blue squares represent increases or decreases in
concentration. Dark red or blue squares stand for higher increase or decrease degrees of concentration.
(C) ChemRICH enrichment analysis of differential lipids (n = 6). Each node represents a cluster of
differential lipids. Node sizes represent the total number of lipids in each cluster. Red or blue nodes
stand for the clusters with most lipids upregulated or downregulated. Deep pink nodes include
both upregulated and downregulated lipids. (D) Metabolic pathway network of differential lipids.
The rectangle represents saturated lipids, the circle represents unsaturated lipids, the thick black
border represents oxidized lipids, the blue color represents downregulation, the red color represents
upregulation, and the gray triangle represents undetected or not significant lipids.

As for differential lipid metabolites, CP stimulated FAs, SMs, PCs, PIs, and some TGs
and lowered the levels of some TGs, LPC, and Cer in the amniotic fluid compared to normal
saline treatment (Figures 5 and 6). These changes in the amniotic fluid lipid landscape
indicate lipid perturbation in pregnant rats after CP intervention.

3.3. Metabolic Profiling of Amniotic Fluid

Amniotic fluid metabonomics was performed with the GC-MS system, as described
in Section 2.3.2. GC-MS TIC of QC samples showed clear peaks, indicating that the
system was able to quantify metabolites (Figure S4). QC samples were clustered after PQN
normalization (Figure S5), suggesting that the system was stable throughout the analysis.
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Ultimately, 118 metabolites were identified. These data were input into Metaboanalyst
4.0 for unbiased PCA and OPLS-DA analysis to identify differential metabolites in CP
versus CK. OPLS-DA score plots implied changes in the metabolite landscape or altered
concentrations of some metabolites after CP treatment (Figure 7A). A total of 1000 permuta-
tion tests showed that OPLS-DA models were reliable (R2Y = 0.98 and Q2 = 0.63; Figure 7B)
for predicting variables responsible for clustering, with a certain risk of overfitting. Then,
data were log-transformed and subjected to one-way ANOVA for the screening of differen-
tial metabolites (p < 0.05, FDR < 0.2, and FC > 1.5). Four amniotic fluid metabolites were
identified. CP significantly suppressed stearic acid (SA), palmitic acid (PA), and tryptophan
levels and elevated the glycerol-1-phosphate level (Figure 7D, Table S3).
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3.4. CP Triggers Placental Oxidative Stress

As shown in Figure 8, CP pronouncedly stimulated the malonaldehyde (MDA) concen-
tration in the placenta of pregnant rats compared to those receiving normal saline (p < 0.05).
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However, superoxide dismutase (SOD) activity was markedly inhibited after CP treatment
(p < 0.01).
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4. Discussion

CP is an effective antitumor agent with multiorgan toxicity, particularly pulmonary
toxicity, in addition to the known hepatorenal toxicity [21,22]. For pregnant women,
CP may induce severe developmental toxicity (e.g., embryo malformations, embryo re-
sorption, stillbirth, and growth retardation) by passing through the placental barrier
directly or permeating into the microenvironments within and outside the uterus indi-
rectly. Kim, S.H. et al. [3,6] reported emaciated appearance and weight loss caused by
intra-pregnancy CP administration, consistent with our findings (Table 1).

As amniotic fluid is the fluid that surrounds the embryo during gestation, several
components have been identified as indicators for monitoring fetal and maternal health.
Lipids are among the most important components of the amniotic fluid, primarily de-
rived from fetal alveolar fluid and skin exudate. Better knowledge of the amniotic fluid
lipid composition can help to explore the mechanism of how toxic agents disturb em-
bryonic development. Lipidomics is a sophisticated tool for identifying potential lipid
biomarkers in diseases and their roles in bioactivities (such as development) by comparing
physiological and pathological lipid landscapes [23,24]. In this study, we employed a
UHPLC-Q-Exactive Orbitrap MS-based lipidomics approach to explore lipid metabolism
in the amniotic fluid after CP treatment. Initially, 890 lipid compounds were identified (e.g.,
FA, lysoPC, lysoPE, PC, PE, PI, PS, TG, and SM), including 636 in the positive ion mode
and 154 in the negative ion mode. Among them, we screened differential lipids closely
associated with CP, including FAs (mostly unsaturated FA), SMs, PCs, PIs, and the majority
of TG (mostly unsaturated TG) which were significantly upregulated and a small number
of TGs (particularly saturated TG), LPC, and Cer, which were significantly downregulated
(Figure 5).

4.1. FAs

In this study, CP was found to markedly increase the levels of amniotic fluid fatty
acids (FAs), particularly very-long-chain fatty acids (VLCFAs) with carbon chain length
over 20 (e.g., FA 22:4, FA 24:4, and FA 26:5; Figure 5). VLCFAs are critical for the formation
of the skin barrier and the phospholipid molecular layer of cells and responsible for several
biofunctions, such as nutrient storage, cell-to-cell communication, and cellular biochemical
reactions [25,26]. However, the hydrophobic properties of FAs determine that excessive
VLCFAs may exert cytotoxic effects to induce cell damage, such as oxidative stress and
inflammation [27,28]. Laura R. Parisi, L.R. et al. reported that excessive ultra-long-chain
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fatty acids are essential in triggering multiple mechanisms of membrane destruction, thus
facilitating cell death during necrotizing apoptosis [29,30]. VLCFA accumulation in the
plasma and skin-derived fibroblasts of X-linked adrenoleukodystrophy patients has been
shown to have significant associations with fatal neurodegenerative phenotypes, including
adrenal medulla neuropathy (AMN) and childhood-onset cerebral adrenoleukodystrophy
(CCALD) [31]. Therefore, our finding of elevated amniotic fluid VLCFAs after CP treat-
ment indicates that CP may exert toxic effects on embryonic development by disturbing
VLCFA metabolism.

4.2. SMs

SMs are the most important sphingolipids that constitute the cell membrane and
can be categorized into long (C14–C18), medium-long (C18–C20), very-long (C18–C24),
and ultra-long (>C24) SMs based on the carbon number in the fatty acyl chain [32]. SM
metabolites such as ceramide (Cer), sphingosine (Sph), and sphingosine-1-phosphate (S1P)
are involved in multiple bioactive signalings associated with cellular functions, such as cell
cycle, cell death, cell growth, cell senescence, autophagy, metabolism, inflammation, stress
response, and immune response [33]. Cytotoxic DNA-damaging CP, among others, has
been reported to significantly alter sphingomyelin (SM) levels [34]. Consistently, our results
showed that several amniotic fluid SMs, particularly oxidized ones such as SM 40:3;2O,
were markedly elevated after CP treatment (Figures 5 and 6D and Table S2).

Intracellular SM hydrolysis is catalyzed by sphingomyelinases (SMases) in lysosomes
and generates ceramide and phosphocholine. Congenital defects in phospholipase—often
leading to Niemann–Pick disease—result in SM accumulation in tissues, leading to enlarged
liver and spleen or severely impairing the central nervous system, which can be life-
threatening [35]. Thus, SMs may serve as a driving force of neural development and
neurodegeneration [36,37]. SMs are critical for supporting skin barrier functions [38]. The
loss of functions of several enzymes involved in SM metabolism will lead to the deficit of
specialized long-chain ceramides in the skin, thus being unable to form an impermeable
barrier [39]. In this study, a lower level of long-chain ceramide was detected in the amniotic
fluid in pregnant rats receiving CP versus normal saline (Table S1). This indicates that CP
may impair the development of the skin barrier function and embryonic nervous system
by disrupting SM metabolism.

4.3. PIs

Inositols are involved in lipid synthesis, cell membrane formation, cell growth and dif-
ferentiation, and the maintenance of cell morphology [40]. Intracellular inositol derivatives
can be roughly classified into phosphatidylinositol (PI), phosphatidylinositol 4-phosphate
(PIP), and 4,5-diphosphate (PIP2) [41], with each responsible for various functions by acti-
vating corresponding metabolic pathways. High inositol concentrations detectable in the
myocardium, skeletal muscle, and central nervous system in embryos indicate an increased
demand for this nutrient during embryonic development [42]. During embryogenesis,
inositols serve as an osmolyte to enlarge amniotic and coelomic cavities, precursors for
cell membrane formation, and substrates of the pentose phosphate pathway essential for
nucleic acid synthesis [43]. Inositol supplementation in perinatal women has been shown to
reduce the risk of recurrent neural tube defects (NTD) in fetuses [44]. Overall, fetal uptake
of inositol is essential for embryonic development.

Higher inositol concentrations in the embryonic compartment than in the maternal
serum are detectable in the early weeks of human gestation (5–12 weeks) [43]. This indicates
that active, carrier-mediated inositol transport is present during early gestation. Osmotic
inositols can be absorbed in embryos through the sodium–myo-inositol transporter (SMIT)
1/2 and H+-myo-inositol transporter (HMIT) on the cell membrane—both are extensively
expressed in the brain and neurons [44]. Berry, G.T. et al. found that SMIT1 is largely
responsible for inositol transport during embryonic development [45]. In the present study,
several amniotic fluid PIs, particularly PI 35:2, PI 37:4, and PI 40:4, were pronouncedly
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upregulated after CP versus normal saline treatment (Figures 5 and 6D and Table S2). This
indicates the possibility of impaired embryonic uptake of inositols. However, it needs
further validations before a definite conclusion, such as changes in inositol levels in the
embryo and evidence for SMIT1 deficit.

4.4. TGs

Triglycerides (TGs) are the most abundant lipids and the main energy depot in the
body. They are critical for fetal growth during pregnancy. Fetal adipogenesis requires
fatty acids synthesized in the liver and those transported from maternal adipose tissue at
full term [46]. In early pregnancy, when the fetus is unable to synthesize lipids, essential
fatty acids (EFAs), long-chain polyunsaturated fatty acids (LCPUFAs), and other FAs in
the maternal circulation are transferred to the fetus across the placenta [47]. Women with
elevated TGs during gestation are at higher risk of developing pregnancy complications
and adverse perinatal outcomes [48,49]. Increased TG levels are also detectable in small-for-
gestational-age (SGA) newborns [50], which can be associated with impaired lipoprotein
lipase (LPL) activity and the subsequent development of fetal cellulite. Currently, limited
studies have explored amniotic fluid TGs during gestation. Chen, X. et al. [51] analyzed
the amniotic fluid lipidomics in pregnant women with hemoglobin Bart’s hydrops fetalis
versus pregnant women carrying healthy fetuses. They found that highly unsaturated
TGs were significantly lowered, and highly saturated TGs were pronouncedly elevated
in those with Hb Bart’s versus healthy controls. In the present study, the metabolism of
most amniotic fluid TGs was disturbed after CP treatment versus normal saline, featuring
the upregulation of unsaturated TGs, particularly polyunsaturated fatty acids (PUFAs)
(three or more double bonds), and the downregulation of saturated TGs (Table S1 and
Figure 6C,D).

PUFAs such as FA 22:4 mentioned above are easily oxidized [52]. This oxidized
lipid category, for example, PUFA-containing TGs, can be accumulated, thereby eliciting
oxidative stress responses [53]. MDA and SOD are the most frequently used indicators of
oxidative stress. MDA is a lipid peroxide resulting from oxygen-free radicals’ attack against
lipids. Its content reflects the degree of lipid peroxidation. SOD is a critical antioxidant
enzyme that scavenges superoxide anion radicals in the body in order to protect cells from
oxygen-free radical damage. In this study, amniotic fluid MDA and SOD levels should
have been examined to verify whether CP could trigger maternal–fetal oxidative stress
responses. Unfortunately, the volume of available amniotic fluid was too limited to meet
the need for the detection system due to high rates of aborted fetuses and stillbirths and
low amniotic fluid volume in viable fetuses in the CP group. The placenta is essential
for studying the maternal–fetal interface [54]. Therefore, we determined MDA and SOD
contents in the placenta to validate CP’s role in maternal–fetal oxidative stress responses.
The results showed that MDA content increased and SOD activity decreased significantly
after CP treatment. Lipidomics showed that oxidized lipids such as FA 22:4, PC O-38:4, and
SM 40:3; 2O were elevated after CP treatment (Table S2). These results are consistent with
the findings of the study conducted by Kim, S.H. et al. [6] that CP induces oxidative stress
responses. Oxidative stress has been proven to cause placental dysfunction, resulting in
abnormal fetal development [55]. Overall, CP-induced oxidative stress can be a potential
mechanism responsible for teratogenic toxicity.

4.5. SAs, PAs, and Tryptophan

In GC-MS analysis, we found significantly decreased SA, PA, and tryptophan levels
in the amniotic fluid after CP treatment (Figure 7D and Table S3). SAs are 18-carbon
octadecanoic acids, and PAs are 16-carbon hexadecanoic acids. Both of them serve as
energy sources that can be rapidly absorbed for embryonic development [56,57]. Keeping
the proportion of fatty acids in an appropriate range is vital for embryonic development [58].
It was reported that the exposure of early embryos to high levels of SAs or PAs resulted in
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metabolic abnormalities [59]. Very low SFA levels are associated with insufficient energy
supply and often indicate problems in the development of embryos.

Tryptophan is a neutral amino acid and is one of the essential amino acids [60] for
controlling growth, behavior, immune and anti-stress responses, tissue growth, and organ
development in men and animals [61–63]. Tryptophan and its metabolites have been proven
to effectively scavenge free radicals and act as effective antioxidants in the placenta [55]. In
this study, amniotic fluid tryptophan was remarkably lowered in pregnant rats receiving
CP. This is mainly due to aggravated maternal and fetal oxidative stress by CP, which
further disturbs fetal growth and development, as evidenced by lower fetal weight, shorter
body length, and a higher stillbirth rate in the CP group.

However, there are also some limitations. Restricted by the nature of nontarget
analyses, we utilized relative rather than absolute quantification of omics data. In addition,
the representativeness of CP or whether CP’s toxicity can more accurately reflect the actual
effects of maternal exposure to other toxicants on the amniotic fluid lipid metabolism
during gestation needs to be validated. So do the detailed mechanisms for CP’s toxicity. In
our future study, we plan to identify lipids associated with embryotoxicity and oxidative
stress-related signalings to explore their roles in cell function and embryonic development.

5. Conclusions

Overall, CP exerts teratogenic toxicity on pregnant rats through maternal and fetal
oxidative stress. Differentially expressed lipids and metabolites closely associated with
CP-induced oxidative stress can be characterized as follows: the accumulation of oxidized
lipids in the amniotic fluid, such as VLCUFAs, PUFA-containing TGs, oxidized PCs, and
SMs; a lower level of tryptophan, which reduces the efficacy of free radical clearance.
CP’s developmental toxicity can be associated with maternal and fetal oxidative stress, as
evidenced by an increased MDA concentration and suppressed SOD activity in the placenta.
Further, CP-induced lipid imbalance in the amniotic fluid, such as lowered long-chain
saturated fatty acids (including stearic acid and palmitic acid) or fewer energy sources,
explains the low fetal weight, short body length, and other toxic manifestations. In this
study, we utilized a UHPLC-Q-Exactive Orbitrap MS-based approach for lipidomics and
metabolomics analysis. This method is worthy of wider application for evaluating the
potential toxicity of other agents (toxicants) during embryonic development.
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Abbreviations

Acyl-CoA acyl coenzyme A
AMN adrenal medulla neuropathy
Arb arbitrary unit
BSTFA O-Bistrimethylsilyl) triflfluoroacetamide
CAR cardiolipin
CCALD childhood-onset cerebral adrenoleukodystrophy
CDP-DAG cytidine diphosphate diacylglycerol
CE cholesteryl ester
Cer ceramide
CP cyclophosphamide
DG diacylglycerol
EFAs essential fatty acids
EI electron ionization
FA fatty acid
GC-MS gas chromatography–mass spectrometry
GD gestation day
HMIT H+-myo-inositol transporter
LC-MS liquid chromatography–mass spectrometry
LCPUFAs long-chain polyunsaturated fatty acids
LPL lipoprotein lipase
lysoPC, LPC lysophosphatidylcholine
lysoPE, LPE lysophosphatidylethanolamine
MDA malonaldehyde
MTBE methyl tert-butyl ether
NTD neural tube defects
PA phosphatidic acid
PC phosphatidylcholine
PE phosphatidylethanolamine
PI phosphatidylinositol
PIP phosphatidylinositol 4-phosphate
PIP2 4,5-diphosphate
PS phosphatidylserine
PUFA polyunsaturated fatty acid
QC quality control
RSD relative standard deviations
S1P sphingosine-1-phosphate
SD Sprague–Dawley
SD standard deviation
SGA small-for-gestational-age
SM sphingomyelin
SMases sphingomyelinases
SMIT sodium–myo-inositol transporter
SOD superoxide dismutase
Sph sphingosine
TG triglyceride
TIC total ion current
VLCFAs very-long-chain fatty acids
VLCUFAs very-long-chain unsaturated fatty acids
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