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Abstract: Amyotrophic lateral sclerosis (ALS) is an idiopathic, fatal neurodegenerative disease
characterized by progressive loss of motor function with an average survival time of 2–5 years after
diagnosis. Due to the lack of signature biomarkers and heterogenous disease phenotypes, a definitive
diagnosis of ALS can be challenging. Comprehensive investigation of this disease is imperative to
discovering unique features to expedite the diagnostic process and improve diagnostic accuracy. Here,
we present untargeted metabolomics by mass spectrometry imaging (MSI) for comparing sporadic
ALS (sALS) and C9orf72 positive (C9Pos) post-mortem frontal cortex human brain tissues against
a control cohort. The spatial distribution and relative abundance of metabolites were measured by
infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) MSI for association
to biological pathways. Proteomic studies on the same patients were completed via LC-MS/MS in a
previous study, and results were integrated with imaging metabolomics results to enhance the breadth
of molecular coverage. Utilizing METASPACE annotation platform and MSiPeakfinder, nearly 300
metabolites were identified across the sixteen samples, where 25 were identified as dysregulated
between disease cohorts. The dysregulated metabolites were further examined for their relevance
to alanine, aspartate, and glutamate metabolism, glutathione metabolism, and arginine and proline
metabolism. The dysregulated pathways discussed are consistent with reports from other ALS
studies. To our knowledge, this work is the first of its kind, reporting on the investigation of ALS
post-mortem human brain tissue analyzed by multiomic MSI.

Keywords: IR-MALDESI MSI; mass spectrometry imaging; Amyotrophic lateral sclerosis (ALS);
neurodegenerative disease; multiomic

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease [1–4] charac-
terized by the degradation of upper and lower motoneurons and progressive loss of motor
function, where patients diagnosed with ALS often pass from respiratory failure within
2–5 years following diagnosis [5,6]. The incidence rate of ALS is about 2 per 100,000 individ-
uals and is primarily categorized based on familial inheritance or lack thereof [1,4]. In 10%
of cases, patients have more than one occurrence within a family line and are considered
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having familial ALS (fALS) [2,7]. Conversely, 90% of individuals develop ALS at seemingly
random incidence and are diagnosed with sporadic ALS (sALS) [8]. Mechanisms of sALS
are not well understood, but hypotheses span from glutamate toxicity, dysfunctional RNA
metabolism, mitochondrial dysfunction, oxidative stress, and beyond [2].

More than 20 genetic mutations have implications in both sALS and fALS, including
SOD1, TARDBP, FUS, and Chromosome 9 open reading frame 72 (C9orf72). C9orf72 is
the most prevalent of these mutations, contributing to approximately 34% of fALS and
5% of sALS cases diagnosed [7]. Distinguished by numerous hexanucleotide repeat ex-
pansions (i.e., GGGGCCn), the mechanism of C9orf72 pathogenesis is debated between
loss-of-function, gain-of-function, or a combination of both [9]. The loss-of-function muta-
tion is associated with haploinsufficiency of the C9orf72 protein, potentially resulting in
increased neuroinflammation [10]. RNA toxicity is the proposed gain-of-function mecha-
nism of pathogenesis where 1) the sense and antisense transcripts are produced from the
hexanucleotide repeat, promoting sequestration of essential RNA processing proteins [11],
and/or 2) toxic dipeptide repeats (DPRs) are produced from non-AUG initiated transla-
tion [12,13] and can interact with ribosomal subunits or induce oxidative stress [14–16].
While these mechanisms have been proposed in relation to C9orf72, they are still debated
and poorly understood [1].

Unlike other neurodegenerative diseases where clinical protocols are supplemented
with medical testing [17–19], ALS diagnosis relies heavily on clinical procedures based
on symptom presentation and progression [20–22]. Regardless of extensive testing and
specialist referral, ALS is notoriously misdiagnosed with a delayed diagnostic timeline,
commonly extending beyond twelve months [23,24]. Accurate diagnosis and monitor-
ing of ALS urgently requires robust biomarkers and an enhanced understanding of its
metabolic signature [1,25,26].

Considerable efforts to study ALS by mass spectrometry have been specific to pro-
teomics and have provided insights into emerging protein biomarkers that may be in-
dicative of disease progression [27,28]. While proteomics offers an important perspective
about biological changes, integrating other omics data can provide additional context for a
disease state. Metabolomics is another area of interest in biomarker discovery due to the
inherent sensitivity of metabolomic phenotypes responding to continuous changes in a
biological system [26,29,30]. Mass spectrometry imaging (MSI) is an attractive approach
for analyzing metabolites in a biological sample [31,32], as it measures the abundances and
spatial distributions of analytes across the sample without the necessity of labeling [33–36].

Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) MSI
is an ambient ionization source offering distinct advantages such as soft ionization and
high salt tolerance [36–38]. In IR-MALDESI analyses, an energy-absorbing ice layer is
deposited on top of the sample prior to analysis; the mid-IR laser (2.97 µm) resonantly
excites the O-H stretching bands of water to desorb neutral species from the sample, which
are subsequently post-ionized in an electrospray plume [38]. Ice matrix is advantageous as
it facilitates the desorption and ionization of analytes without introducing extra molecule
interference [39,40]. Ultimately, these intrinsic characteristics of IR-MALDESI demonstrate
its capacity for untargeted metabolomics and beyond [41–46].

Herein, we present untargeted metabolomic coverage via IR-MALDESI MSI of post-
mortem human frontal cortex tissue in various ALS cohorts: control, sALS, and sALS
C9orf72 positive (C9Pos) cases. Previous proteomics measurements were pursued in the
frontal cortex via LC-MS/MS in a previous proteomic study, and all MSI experiments
reported here were completed on complimentary tissues from the same patients for accu-
rate multiomic integration [47]. This investigation presents a multiomic perspective by
highlighting metabolomic, MSI-specific discoveries and integrating proteomic data. The
associated pathways discussed here may be potential avenues for biomarker discovery and
enhancing our understanding of ALS.
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2. Materials and Methods
2.1. Case Details and Sample Preparation

All post-mortem human brain tissues were provided by Emory Alzheimer’s Disease
Research Center (ADRC) (Atlanta, GA, USA) and were acquired under proper compliance
with Institutional Review Board (IRB) standards, as stated in a previous study. All patients
were diagnosed and cared for by JDG. Cases selected for this study were from the same
cohort previously published for proteomic analysis [47]. Subject cohorts included control
(ctrl) (n = 5), sporadic ALS (als) (n = 6), and sporadic ALS with C9orf72 mutations (c) (n = 5).
C9orf72 mutations were confirmed previously in blood samples by a primed polymerase
chain reaction (PCR) method PMID 27488601) [47]. All patient case information is available
in Table S1. Frontal cortex brain tissues were mounted to a specimen disc with optimal
cutting temperature (OCT) medium, sectioned at 10 µm, and thaw-mounted onto glass
slides. The glass slides were packed in a slide container and shipped on dry ice from Emory
University (Atlanta, GA, USA) to North Carolina State University (Raleigh, NC, USA)
overnight. All samples were stored at −80 ◦C until time of analysis.

2.2. IR-MALDESI MSI

The IR-MALDESI MSI experimental design is summarized in Figure 1. Samples
were placed on a Peltier-cooled translation stage cooled to −8 ◦C, enclosed in a humidity-
controlled chamber, and purged with nitrogen gas (Arc3 Gases, Raleigh, NC, USA) to form
a thin energy-absorbing ice layer. An electrospray ionization (ESI) plume comprised of 50%
acetonitrile in water (Fisher Scientific, Hampton, NH, USA) and 0.2% formic acid (Sigma
Aldrich, Carlsbad, CA, USA) was achieved by applying 3400V to the emitter tip and a
solvent flow rate of 1.2 µL/min. A 2970 nm laser (JGMA, Burlington, MA, USA) was used
to desorb the neutral species from the region of interest (ROI) across the sample. The laser
energy applied was of 1.1 mJ/burst (10 pulses-per-burst) at a pulse rate of 10 kHz [48].
Tissue sections (n = 16) were completely randomized prior to analysis and imaged at a
spatial resolution of 150 µm.

Metabolites 2022, 12, x FOR PEER REVIEW 3 of 15 
 

 

associated pathways discussed here may be potential avenues for biomarker discovery 
and enhancing our understanding of ALS. 

2. Materials and Methods 
2.1. Case Details and Sample Preparation 

All post-mortem human brain tissues were provided by Emory Alzheimer’s Disease 
Research Center (ADRC) (Atlanta, GA, USA) and were acquired under proper compliance 
with Institutional Review Board (IRB) standards, as stated in a previous study. All pa-
tients were diagnosed and cared for by JDG. Cases selected for this study were from the 
same cohort previously published for proteomic analysis [47]. Subject cohorts included 
control (ctrl) (n = 5), sporadic ALS (als) (n = 6), and sporadic ALS with C9orf72 mutations 
(c) (n = 5). C9orf72 mutations were confirmed previously in blood samples by a primed 
polymerase chain reaction (PCR) method PMID 27488601) [47]. All patient case infor-
mation is available in Table S1. Frontal cortex brain tissues were mounted to a specimen 
disc with optimal cutting temperature (OCT) medium, sectioned at 10 µm, and thaw-
mounted onto glass slides. The glass slides were packed in a slide container and shipped 
on dry ice from Emory University (Atlanta, GA, USA) to North Carolina State University 
(Raleigh, NC, USA) overnight. All samples were stored at −80 °C until time of analysis. 

2.2. IR-MALDESI MSI 
The IR-MALDESI MSI experimental design is summarized in Figure 1. Samples were 

placed on a Peltier-cooled translation stage cooled to −8 °C, enclosed in a humidity-con-
trolled chamber, and purged with nitrogen gas (Arc3 Gases, Raleigh, NC, USA) to form a 
thin energy-absorbing ice layer. An electrospray ionization (ESI) plume comprised of 50% 
acetonitrile in water (Fisher Scientific, Hampton, NH, USA) and 0.2% formic acid (Sigma 
Aldrich, Carlsbad, CA, USA) was achieved by applying 3400V to the emitter tip and a 
solvent flow rate of 1.2 µL/min. A 2970 nm laser (JGMA, Burlington, MA, USA) was used 
to desorb the neutral species from the region of interest (ROI) across the sample. The laser 
energy applied was of 1.1 mJ/burst (10 pulses-per-burst) at a pulse rate of 10 kHz [48]. 
Tissue sections (n = 16) were completely randomized prior to analysis and imaged at a 
spatial resolution of 150 µm. 

 
Figure 1. Summary of IR-MALDESI experimental workflow. Samples were sectioned and preserved 
at −80 °C prior to analysis without any other preparation. Using a randomized fashion, individual 
samples were run immediately after an energy-absorbing ice matrix was applied across the sample. 
Sample IDs were assigned after run-order was determined and replaced patient autopsy numbers. 

Figure 1. Summary of IR-MALDESI experimental workflow. Samples were sectioned and preserved
at −80 ◦C prior to analysis without any other preparation. Using a randomized fashion, individual
samples were run immediately after an energy-absorbing ice matrix was applied across the sample.
Sample IDs were assigned after run-order was determined and replaced patient autopsy numbers.

The IR-MALDESI source was coupled to an Exploris 240 (Thermo Fisher Scientific,
Bremen, Germany) set at a resolving power of 240,000FWHM at m/z 200. Metabolites were
analyzed in positive polarity between m/z 75–400. The Automatic Gain Control (AGC)
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was disabled and a fixed injection time of 15 ms was utilized to synchronize laser ablation
events and allow optimal ion accumulation within the ion routing multipole of the Exploris
240 [45]. The EASY-IC internal calibrant, fluoranthene (M•+ = m/z 202.0777), was enabled
and the multi-injection RF threshold was set to 6.

The MATLAB-based IR-MALDESI MSI control software, RastirX, allows the users
to define a ROI for MSI experiments. While rectangular ROIs are conventionally used,
arbitrary (polygonal) ROIs were used to reduce analysis time, preserve sample integrity,
and reduce downstream file size [49]. After analysis, the respective location file is produced
by RastirX and is used for downstream file conversion.

2.3. IR-MALDESI MSI Data Analysis

RAW files were converted to mzML files using MSConvert [50,51], then subsequently
converted to imzML files using the respective location file from arbitrary ROI sampling in
imzML Converter [49,51]. All imzML files were uploaded to METASPACE [52] for putative
identification based on spatial chaos, spectral isotope, and spatial isotope. Metabolite
identifications were reported at a 10% false discovery rate using the HMDB-v4 database.
MSiReader was used to generate ion images and MSI data analysis [53,54]. The MSiPeak-
finder tool was used to compare two ROIs and isolate peaks that were either (1) present
in at least 80% of the interrogated region and less than 20% of the reference region, or
(2) present in greater than 20% of the reference region but 2× more abundant in the in-
terrogated region; each cohort was treated as the interrogated and reference region to
fulfill all possible combinations (i.e., sALS vs. C9Pos, sALS vs. control, C9Pos vs. sALS,
C9Pos vs. control, control vs. sALS, control vs. C9Pos). Entire sample cohorts were used to
distinguish disease-specific ions as opposed to evaluating biological variability. The ions
reported by MSiPeakfinder were searched in the METLIN database with a 2.5 ppm mass
tolerance, and their spectral accuracy was evaluated for putative identification.

To account for variability in analysis conditions and artifacts relevant to changes in
background ions, all heat maps were normalized to the local TIC in MSiReader [55].

2.4. Metabolomic Pathway Analysis and Proteomic Integration

Variation in metabolite abundances was visualized in part by heat maps using Plotly [56].
To identify dysregulated pathways, pathway impact graphs for annotated metabolites were
produced in MetaboAnalyst 5.0 with the Pathway Analysis Module [57].

To integrate the proteomics data, unique protein IDs (accession IDs from Proteome
Discoverer) were extracted from the previous proteomic study [47] and were manually
converted to their respective protein names using Universal Protein Resource (Uniprot)
database [58]. Protein names were cross-searched in Kyoto Encyclopedia of Genes and
Genomes (KEGG) to find metabolomic conversions [59]. Significant pathways were visual-
ized in KEGG and ion images from MSI detection were incorporated to produce annotated
pathways and metabolomic conversion figures.

2.5. Statistical Testing and Analysis

Volcano plots were constructed using p-values from Student’s t-tests for initial compar-
ison of metabolite detection between cohorts, where a p-value (α) ≤ 0.05 was considered
statistically significant. Cohorts were compared in pairs to fulfill all possible combinations
(i.e., control vs. sALS, control vs. C9Pos, and sALS vs. C9Pos) to evaluate the groups’
metabolomic detection by both fold-change and statistical significance.

Metabolomic conversion figures show ion images with respective box plots of each
metabolite, where each data point corresponds to the average ion abundance detected for
each sample in the cohort. After using Shapiro-Wilk tests (p ≤ 0.05), each cohort for the
metabolites reported were assumed to be normally distributed. Once the data were tested
for Normality, one-way analysis of variance (ANOVA) tests were performed to compare the
effect of disease cohort (i.e., control, sALS, C9Pos) on metabolite detection (e.g., tryptamine).
If ANOVA testing yielded statistically significant results (m/z 130.0862 only), Tukey’s honest
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significant difference (HSD) post hoc testing was performed to evaluate statistical significance
between individual cohorts in the study (e.g., control vs. sALS, control vs. C9Pos).

3. Results and Discussion

Multiomic data integration was accomplished in this work by combining proteomic
coverage, completed via LC-MS/MS by the Seyfried group, and untargeted metabolomics
via IR-MALDESI MSI utilizing high-resolution accurate mass (HRAM) mass spectrometry.
By combining high-mass measurement accuracy (MMA) (±2.5 ppm), spectral accuracy
(SA), and biological context as evidence, we assigned confident putative identifications
based on MS1 data collected in imaging experiments, which are summarized in Table S2. A
total of 298 metabolites were identified and compared across the sample groups for analysis
to evaluate differences in detection between cohorts.

3.1. Comparing Metabolomic Detection between ALS Cohorts

Heatmaps in Figure 2 were compared to discriminate any differentially expressed
metabolites within an individual cohort in the study. Raw abundance values were z-
transformed to visualize data relative to the mean and standard deviation of individual
samples. Equation (1) shows the transformation of the ion abundances to the z-score (Z)
used in the heat maps:

Z =
x − µ

σ
(1)

where x is the average ion abundance of an individual ion across all scans, µ is the mean
abundance of all measured ions, and σ is the standard deviation of all measured ions, where
all variables are calculated with respect to one sample of interest (e.g., als1, ctl1, c1). This
visualization approach can be helpful in discerning consistent detection within a disease
classification, indicating metabolites that may be characteristic to that respective group.

To view abundance differences closely, the full m/z window (m/z 75–400) was split into
two smaller m/z windows, as displayed in Figure 2A,B. It was found that arachidonic acid
(m/z 305.2475) and oleic acid (m/z 283.2631) generally present higher z-scores in Figure 2B
but show some biological variation between samples, such as higher detection in patients
ctl2 and ctl3 in the control group. This trend is consistent in the lower m/z range as well
(Figure 2A), with piperidine (m/z 86.0964) and benzaldehyde (m/z 107.0491). Ion images of
these analytes show their respective spatial distributions across each sample (Figure 2C). It
was expected that the metabolite detection would differ from disease groups to the control
as a result of motor function loss in sALS and C9Pos cases. However, Figure 2 shows
consistent detection of analytes regardless of diagnosis. While this result doesn’t indicate
drastic metabolic changes between the cohorts, this implies consistency and repeatability
of IR-MALDESI, as analyses were conducted over several days [55].

Three volcano plots were created to highlight any potential metabolite dysregulation
by comparing all combinations of disease cohorts, where fold changes were calculated as the
ratio shown with each plot (e.g., Control:C9Pos) (Figure 3). Most metabolites in this study
did not exceed the threshold of significance (α = 0.05) between disease cohorts, presenting
only 25 metabolites either with a significant fold change or being statistically significant
with an absolute fold change of two or more (summarized in Table S3). Interestingly, most
metabolites were downregulated in control and C9Pos cohorts relative to sALS, as shown
in Figure 3B,C. Several metabolites indicated are amino acids, which is consistent with
other ALS studies highlighting the disruption of amino acid metabolism [25,60,61]. This
includes the neurotransmitter glutamate, which is continuously investigated for its role in
oxidative stress and neuron cell death related to ALS [62,63].
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3.2. Identification of Relevant Metabolic Pathways

To evaluate other potential mechanisms related to ALS, we next targeted relevant
metabolic pathways of interest. Significantly different metabolites, as indicated by the
volcano plots, were searched in MetaboAnalyst to visualize pathway dysregulation via
pathway impact graphs. The size and intensity of red of the data points match and display
the pathway influence and significance of the metabolites. Figure 4A highlights several
pathways of interest for all metabolites identified, which are likely a function of an operating
biological system. Alternatively, Figure 4B shows the pathways more prone to perturbation
due to ALS by confining our “species of interest” only to those with some significance
indicated by the volcano plots in Figure 3. These include the following annotated biological
pathways: alanine, aspartate, and glutamate metabolism, glutathione metabolism, and
arginine and proline metabolism (Figures 5–7). Additionally, arginine biosynthesis was
annotated but is not often discussed in literature, presenting a novel pathway that could be
investigated in future studies (Figure S1).
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3.3. Multiomic Integration

After identifying other metabolites involved in each pathway by utilizing the KEGG
pathway database, metabolite detection by IR-MALDESI was validated as previously
described and ion images were positioned accordingly with colored blocks separating the
cohorts (e.g., C9Pos samples in pink). Proteins responsible for metabolite conversions were
searched for in Umoh et al. data and are represented as circles along the pathway, where
purple- and white-filled circles indicate detection or lack thereof, respectively [47]. Given
glutamate’s prevalence in ALS literature, it was particularly interesting that we found this
metabolite to be dysregulated. However, despite its detection in a variety of biological
samples, glutamate has not been reported consistently as up- or down-regulated regarding
ALS [25]. Evidence supports that glutamate is responsible for excitotoxicity in neurons
and oxidative stress in mitochondria, ultimately promoting neuronal apoptosis that may
be affiliated with ALS [61,63,64]. This neurotransmitter was detected by IR-MALDESI
and is involved in crosstalk between several pathways. The pathway in Figure 5 shows
the ion images of glutamate and other detected metabolites in alanine, aspartate, and
glutamate metabolism, which was reported in other studies with potential implications for
ALS pathophysiology [25,60,61].

Differences in spatial distribution are most apparent between asparagine and GABA,
as an example (starred in Figure 5), where GABA is biased to certain regions of the tissue,



Metabolites 2022, 12, 1096 8 of 14

and asparagine is sparsely detected across all patient samples. No obvious trends in
metabolite up- or down-regulation are observed downstream between disease cohorts
in this data, despite detecting glutamate dysregulation between the control and C9Pos
classifications. However, this finding is consistent with proteomic results reported by the
Seyfried group and other metabolomic investigations of ALS [47].
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are shown in ion images grouped with respect to disease classification (top right). Purple circles
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in the post-mortem brain samples from previous proteomic studies.

Other dysregulated pathways include glutathione metabolism (Figure 6) and arginine
and proline metabolism (Figure 7). Similar to the glutamate pathway, both are frequently
reported for their relevance to ALS [25,64,65]. Studies have proposed that glutamate
excitotoxity may cause depletion of glutathione (GSH), rendering neurons vulnerable to
oxidative stress since GSH combats radical oxygen species. While evidence points to
oxidative stress as part of the mechanism of progression in ALS, this connection is not
well understood [62]. While less discussion in the field of ALS concentrates on arginine
and proline metabolism [54], creatine and creatinine metabolism are included within this
pathway, and the ratio of these analytes has been utilized to discriminate ALS patients from
healthy individuals [60,66].
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Figure 7. Arginine and proline metabolism pathway with associated metabolite ion mages by IR-
MALDESI. Metabolite conversions with detected proteins are shown with ion images and purple
or white circles along conversion arrows. The intensity of ion images indicates higher or lower
abundance of metabolite detection. Circles along the pathway highlight detection or absence of
proteins in the same patients. Disease cohorts for each ion are separated by color in each ion image
(orange, green, and pink for sALS, Control, and C9Pos, respectively).
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Consistent with the alanine, aspartate, and glutamate metabolism (Figure 5), no cohort
demonstrated significant dysregulation throughout either pathway in Figures 6 and 7.
Some metabolites clearly show higher relative abundance and more homogeneous spatial
distribution, such as proline (m/z 116.0706) and N4-Acetylaminobutanal (m/z 130.0863),
but this did not evidently propagate in downstream conversions along the pathway for
one group exclusively.

Deeper integration of proteomic findings is demonstrated in Figure 8, where tryptamine
was converted to indole-3-acetaldehyde in part by a redox reaction of the CH-NH2 group
by amine oxidase B (MOAB) enzyme [67]. Metabolite ion images from IR-MALDESI MSI
analyses are coupled with box plots, which are based on the average ion abundance across
each sample in each group.

Figure 8. Metabolomic conversion of tryptamine to indole-3-acetaldehyde by amine oxidase B,
highlighting multiomic integration with metabolomic and previously collected proteomic data. Ion
images represent metabolomic detection by IR-MALDESI from post-mortem brain samples separated
by disease classification, C9Pos, control, and sALS (blue, green, pink). Ion images are accompanied
with boxplots of average on-tissue ion abundance for each sample and were tested for significance
using a one-way ANOVA with p-values reported with their respective plots. The protein involved in
conversion, amine oxidase B (MOAB), is shown with its Uniprot accession ID and EC number. Other
examples of metabolomic conversion can be found in Figure S2, with confirmed spectral accuracy in
Figure S3.

Each group of boxplots is accompanied by a p-value from a one-way analysis of vari-
ance (ANOVA) to evaluate the effect of cohort identity on the detection of each metabolite.
For example, Figure 8 reports a p = 0.075 with regard to the detection of tryptamine be-
tween disease classifications. Results for neither metabolite in Figure 8 were statistically
significant by ANOVA tests. However, the average ion abundances of both tryptamine (xt)
and its converted metabolite, indole-3-acetaldehyde (xi), follow the same descending order
of sALS (xt = ~2.0 × 104 ions/s, xi = ~1.6 × 104 ions/s), C9Pos (xt = ~1.3 × 104 ions/s,
xi = ~1.1 × 104 ions/s), and control (xt = ~1.1 × 104 ions/s, xi = ~9.2 × 103 ions/s) cohorts.
Congruent with lack of differences between cohorts in MSI data, the concentration of
MOAB detected is similar between the groups (Eigenprotein Value = ~29.25) [47]. This
example demonstrates the capability of deep multiomic integration with specific metabo-
lite abundance and protein quantification for the purposes of studying ALS. Three other
examples of enzymatic conversions can be found in Figure S2. The spectral accuracy of the
converted metabolites is shown in Figure S3.
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Ultimately, the metabolomic and multiomic results presented here parallel other
reports on ALS. In combination with untargeted metabolite identification, IR-MALDESI
MSI provided pivotal insight to analyte spatial distribution and the ability to integrate
with protein detection. While providing this unique perspective, MSI experiments can
be time-consuming when imaging large tissues and a large pool of samples. This study
analyzed a small quantity of subjects of limited diversity (e.g., race, sex) at a single time
point in one location of the brain. Follow-up studies could be made to increase the sample
size and/or involve multiple brain locations while balancing the practical limitations,
sample access/availability, and time. Additionally, including adequate patient samples
from diverse racial backgrounds and both sexes would present more comprehensive
and accurate conclusions in future studies. Nevertheless, this study helps to establish a
foundation for future studies of ALS in MSI experiments, which can be further enhanced
by multiomic integration for a wider perspective and understanding of the disease.

4. Conclusions

Ultimately, complementary results indicate subtle differences between sALS and
C9orf72 positive cohorts against control patients, proteomic and metabolomic alike. By IR-
MALDESI MSI analyses, nearly 300 metabolites were putatively identified with HRAM-MS
and compared across disease cohorts to evaluate differential expression, if present. Several
metabolic pathways were identified with potential roles in the pathology of ALS based
on differences in detection between groups, including alanine, aspartate, and glutamate
metabolism, glutathione metabolism, and arginine and proline metabolism. However,
when comparing detection of metabolites downstream, no obvious trends of up- or down-
regulation were detected specific to one or more cohorts in the study indicative of a disease
state. Further, this investigation provides an approach for combining LC-MS/MS proteomic
data with MSI results for multiomic metabolic pathway enrichment with interpretation
specific to ALS. Future endeavors will explore further and validate targeted pathways with
more patients of diverse backgrounds, and potentially other sample types involving other
genetic mutations, to understand more about the metabolic signature of ALS.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12111096/s1, Figure S1: Arginine biosynthesis path-
way with multiomic integration; Figure S2: Other examples of metabolite conversions with multi-
omic integration; Figure S3: Experimental isotopic distributions of reported metabolite conversions;
Table S1: Patient case information from frontal cortex samples; Table S2: Metabolite putative identifi-
cations from MSI studies; Table S3: Annotated metabolites from volcano plots.
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