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Abstract: Our knowledge of animal and behavior in the natural ecology is based on over a century’s
worth of valuable field studies. In this post-genome era, however, we recognize that genes are
the underpinning of ecological interactions between two organisms. Understanding how genes
contribute to animal ecology, which is essentially the intersection of two genomes, is a tremendous
challenge. The bacterivorous nematode Caenorhabditis elegans, one of the most well-known genetic
animal model experimental systems, experiences a complex microbial world in its natural habitat,
providing us with a window into the interplay of genes and molecules that result in an animal–
microbial ecology. In this review, we will discuss C. elegans natural ecology, how the worm uses its
sensory system to detect the microbes and metabolites that it encounters, and then discuss some of
the fascinating ecological dances, including behaviors, that have evolved between the nematode and
the microbes in its environment.
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1. Introduction

Twenty years ago, the sequencing of the human genome was completed, ushering in
a new genomic era that opened our understanding of how genes control the biology of
an organism, from the most basic cellular functions to the physiology and behavior of an
animal [1]. Molecular and genetic tools developed over the last few decades have revealed
to us the contribution that a single gene can have on the development and life traits of an
individual plant or animal. Today, with this plethora of genetic information, we can expand
past single individual organisms and begin to ask even more challenging questions.

In particular, we can ask how organisms interact in nature at the genetic level and
begin to answer more complex questions of animal ecology. For instance, animals can
sense and interact with other organisms in their natural environments. These initial interac-
tions within an animal’s community can lead to more complex competitive, predatory, or
symbiotic behavioral relationships. Most of the known ecological relationships between
organisms have been observed and studied in the field. However, with the onset of the
genome era and new tools to study cells and animals molecularly and genetically, we can
now study these ecological relationships at a finer resolution than ever before and begin to
define how genomes interact at the ecological level. In particular, we want to know how
animals can detect other organisms in their communities, how organisms communicate
with one another, and how genes play a role in establishing ecological relationships between
organisms. Such comprehensive analyses of animal ecology will paint a clearer picture of
how ecological relationships may have evolved.
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2. C. elegans: A Model for Genetic Studies and Ecological Studies in the Laboratory

Still, the ability to ask these deeper questions of ecology using molecular and genetic
techniques is hindered by an inability to observe the ecology of animals in the laboratory.
Although some laboratory studies have elucidated genes that may be involved in animal
ecology, such as predator–prey relationships [2,3], the true ecology of most animal genetic
models, including the fruit fly and the mouse, are too difficult to replicate within the
laboratory environment. On the other hand, the free-living nematode C. elegans has been
used as a genetic model animal for over 50 years in the laboratory. First identified in the 19th
century [4] and studied in the laboratory in the 1950s [5], C. elegans has life trait qualities
that make it amenable for laboratory genetic studies. The worm, as it is often called, can be
cultivated on an agar plate seeded with bacteria, usually the common bacteria Escherichia
coli. The hermaphrodite nematodes have a short three-day life cycle from hatching to sexual
maturity, and lay 200–300 eggs over their lifetimes, with most of those eggs laid within
the first few days of adulthood [6]. Since the hermaphrodites produce both sperm and
eggs, their main mode of reproduction is by self-fertilization. However, males occasionally
appear, allowing for cross-fertilizing sexual reproduction. Finally, C. elegans displays
multiple visible phenotypes and behaviors that can be easily tracked. These characteristics
of C. elegans led Sydney Brenner, in the 1960s, to choose the nematode as a genetic model to
identify genes important for development and behavior [7,8]. Since then, the worm has
been one of the most studied genetic model animals, resulting in seminal research that has
led to multiple Nobel prizes.

C. elegans is one of the most studied animals in history; a search of the literature will
reveal hundreds of thousands of published scientific papers. However, little is known about
the natural ecology of C. elegans. Clues about how C. elegans may live and thrive in nature
were inferred during laboratory culture. When cultivated on agar plates, the bacterivorous
nematode quickly consumes all the bacterial food; if only a few adult hermaphrodites are
placed on a seeded agar plate, all of the bacteria will be consumed within a few days, even
before the 3rd generation reaches sexual maturity. However, when juvenile C. elegans larvae
encounter stressful conditions, such as starvation, crowding or high temperature, they can
enter an alternative developmental stage called dauer that will allow them to withstand
harsh environments for longer periods of time [9].

These characteristics of C. elegans and other Rhabditidae nematodes are typical of
colonizer or enrichment-type nematodes [10]. Unlike other types of nematodes that tend
to persist in soil environments for long periods, colonizer nematodes take advantage of
environments in which organism mortality or turnover has recently occurred, resulting
in a sudden flush of microbial activity [11,12]. They will quickly grow, populating the
environment in just days until the bacterial food is drained or crowded conditions move
the larvae into the dauer stage [9,13].

Consistent with this, C. elegans can be found in nature seasonally in various soil
environments with decaying fruits and vegetation, including apple orchards, vegetative
composts, and forests [13–16], but almost never found in rotting leaves, grass or wood,
nor plain soil [15,17]. In addition, C. elegans can be found in the gut of living slugs [18].
Each one of these microbe-rich environments provides the bacterivorous predator with
essential prey that will allow development and rapid population growth. However, such
abundant diversity of microorganisms in these environments can also expose C. elegans to
microbial predators that look to prey on nematodes. Here, we look to review the literature
and identify microorganisms that C. elegans may encounter and the molecules produced by
these microbes that worms are exposed to. We will then discuss how C. elegans is able to
detect or avoid these microorganisms, as well as how microbes can detect nematodes in
their environments. Finally, we will describe the ecological relationships between C. elegans
and microbes in their environment, as well as the behaviors that the worm performs in
response to these microbes.
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3. C. elegans Natural Interaction with Microbes

Microorganisms are essential for C. elegans biology, since the free-living hermaphroditic
nematode thrives on substrates consisting of microbe-rich decomposing plant material.
However, throughout much of the time of C. elegans research in the laboratory, microbial
interaction was mostly limited to the OP50 E. coli strain, the standard laboratory diet for
C. elegans. Only in the last decade or so, as thriving populations of C. elegans have been
found in rotting fruits and plants, the ecological relationship with microbes began to be
explored. C. elegans’ association with bacteria can be roughly divided into three categories:
food, gut microbe or pathogen. On the other hand, fungi mostly play the role of either
pathogen or predator [17,19,20]. C. elegans is also found in nature infected with Microsporidia
and viruses [21,22], but in this review, we will focus on bacteria and fungal species.

3.1. Bacteria

Several studies have investigated the bacterial communities in the natural habitat
of C. elegans. Samuel et al. sequenced the microbes inside rotting apples and found a
community of Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria. Interestingly,
differences in bacterial composition and relative abundance could be observed in apples
where C. elegans was found versus those where none were found. In apples where a prolifer-
ating population of C. elegans was found, an enrichment for Acetobacteriaceae was observed,
and less of Chryseobacterium, Flavobacterium, Pseudomonas, Sphingomonas, Stenotrophomonas
and Xanthomonas were found. Overall, C. elegans tended to be found in apples with a
simpler microbial composition [13].

Worms in the wild were often found with bacteria in the gut. Sequencing these mi-
crobes revealed that Proteobacteria, especially Enterobacteriaceae, and the genera Pseudomonas,
Stenotrophomonas, Ochrobactrum (which persisted in the gut even after switching to OP50)
and Sphingomonas were the dominant taxonomic groups [21,23]. Of note is that the bacteria
in the gut was found to be distinct from the microbial composition of the surrounding
environment, and different even from a closely-related species isolated from the same place,
indicating that there is a selective process that determines which ones stay in the gut [23–25].
Many of the bacteria that made up the gut microbes was shown to have a positive effect on
the worm, such as improved growth and fecundity, or increased immunity and resistance
to pathogens [13,23,26,27].

While most bacteria support worm growth, plenty are pathogenic. C. elegans are
susceptible to a wide range of pathogenic bacteria [28]. Pathogen infection and immunity in
C. elegans has been extensively studied, and it was found that the worms mount an immune
response that is both general and specific for the pathogen and site of infection [29,30].

In the natural setting of rotting apples, Samuel et al. found that ~20% of the bacteria
isolated in the rotting fruit environment was detrimental or pathogenic [13]. For some, the
detrimental effect could be mitigated by mixing with beneficial bacteria, suggesting that
some beneficial bacteria can actively provide antivirulence effects. This is an example of the
multi-genome interaction which is likely common in nature. Studies using combinations
of mutant bacteria and mutant C. elegans will further reveal the intricacies of the genomic
interaction between bacteria and nematodes [31,32].

3.2. Fungi

Studies on fungal infection in C. elegans have yielded insights into the detailed mech-
anism of fungal pathogenesis and antifungal immunity in the nematode. The nematode-
specific fungus Drechmeria coniospora has long been used to study anti-fungal immunity in
C. elegans, which revealed a set of innate immune responses distinct from those of bacterial
infection [29]. D. coniospora attaches to the cuticle at the mouth or vulva and invades the
nematode by the hyphae, colonizing the worm [33]. Other fungal species that more actively
“hunt” for nematodes include the nematode-trapping fungi (NTF), such as Arthrobotrys
oligospora and Duddingtonia flagrans, which develop specialized trap structures to capture
worms [19,34,35]. In addition, there are also fungi that use toxins to quickly immobilize and
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kill the nematodes, such as Pleurotus ostreatus [20]. The various highly specialized strategies
for targeting nematodes evolved independently across many fungal lineages, providing
fascinating examples of interspecies interaction and the evolutionary arms race [36,37].

4. Microbial Metabolites and Their Effect on C. elegans

Bacteria produce and secrete abundant proteins, chemicals and gases into the sur-
rounding environment. Most of these secondary metabolites, metabolites that are produced
and secreted during the stationary phase of growth, function to benefit the growth of
bacteria and bacterial communities [38]. Autoinducers, such as homoserine lactones, are
involved in quorum sensing to allow crosstalk between bacterial communities [39]. Other
secondary metabolites can be used as weapons against bacterial competitors, such as
antibiotics, or predators, such as bacterivorous nematodes [40].

Many of the secreted secondary metabolites have biological effects on C. elegans. For
instance, many of the metabolites are toxic to C. elegans [41–44]. Violacein, a bis-indole
secondary metabolite produced in a diverse array of bacteria [45], was found to be toxic
to C. elegans adults, and to arrest C. elegans larvae growth and development [41,46]. A
number of metabolites have been reported to improve nematode health and increase
lifespan [44,47–50] and even prevent neurodegeneration [51]. For instance, nitric oxide
gas produced by bacteria can increase C. elegans lifespan [50], and the E. coli metabolites
GABA and lactate can have neuroprotective effects against progressive touch sensory
neuron degeneration in worms [51]. Metabolites can also elicit C. elegans attraction and
repulsion behavior [34,52–56]. Two secondary metabolites, produced by Pseudomonas
aeruginosa, phenazine-1-carboxamide (PCN) and pyochelin, were reported to promote
avoidance behavior in C. elegans. These metabolites were observed to activate a G protein-
signaling pathway in the ASJ chemosensory neuron pair, which induces expression of the
neuromodulator DAF-7/TGF-ß in C. elegans. DAF-7 activates a TGF-ß signaling pathway
in adjacent interneurons to modulate aerotaxis behavior and promote avoidance [52].

5. Detection of Metabolites by C. elegans Sensory System

Sensory detection of most microbial metabolites occurs largely through chemosensory
G protein-coupled receptors (GPCRs) expressed in the sensory neurons. Most animals
devote a large portion of their genome to a diverse repertoire of chemosensory receptors
in order to ensure the detection of varied cues they come across in nature, and this is
no exception for C. elegans. C. elegans is estimated to have ~1300 chemosensory GPCRs,
which represents approximately ~5% of the genome [57]. This is quite a large number,
especially considering its simple nervous system and limited number of sensory neurons.
Each sensory neuron expresses multiple chemosensory receptors, which is different from
how most animals regulate chemosensory receptor in the nose, where only one receptor is
expressed in each neuron to ensure discrimination of chemical cues [58]. This presents an
outstanding question in the field, of how discrimination is achieved in such an arrangement,
or whether there is discrimination at all between chemicals detected by the same set of
neurons. One method for discrimination between chemicals is through beta-arrestin-
mediated desensitization of previously activated receptors, so that neurons can respond to
new chemical cues [59].

Genomic analysis has revealed that, even within nematodes, there is much variability
in the numbers of chemosensory receptors. C. briggsae is reported to have 452 [60], although
this seems to be an undercount due to unannotated GPCR genes in the C. briggsae genome
(PFAM ver35). The closest cousin to C. elegans, C. inopinata, has less than 400. The much
smaller number is thought to reflect the type of ecological niche of the nematode: whereas
C. elegans need to detect a wider variety of chemical cues living in decaying vegetation
whose condition constantly fluctuates, C. inopinata mainly reside in figs. This very specific
and, thus, consistent environment precludes the need for diverse receptors. Such is the
case in the parasitic nematodes as well, which stay in a consistent environment inside the
host [61]. This also reflects the fast-evolving nature of the chemosensory receptor gene



Metabolites 2022, 12, 1084 5 of 13

family, contracting and expanding through pseudogenization and gene duplication, to fit
the needs of the organism.

To date, only a few receptor–ligands pairs have been identified among C. elegans
chemosensory receptors. Contrary to neuropeptide GPCRs [62], successful chemosensory
GPCRs expression in mammalian cell lines have been rare, although a few have been suc-
cessfully expressed and deorphanized [63,64]. Some were identified by testing mutants of
chemosensory GPCRs that do not respond to the chemical cue [65–70]. However, due to
publicly available single-cell RNAseq data, such as CeNGEN [71], and highly optimized
protocols for the CRISPR-Cas9 genome editing technique, we may see more deorphanization
in the near future. Important to note is that each chemical cue is likely detected through
several receptors activating at once, each with varying affinity, much like the combinatorial
coding of odor receptors in mammals [72]. This redundant detection could present another
challenge to identifying ligand–receptor pairs, as in some cases, deleting one receptor may
produce only a subtle change in behavior or neuron activation.

6. Microbial Metabolites Elicit Innate but Plastic Behaviors

C. elegans respond to many metabolites by either attraction or aversion. These re-
sponses are hardwired by neurons that respond to the cues, which suggests there is an
ecological significance to these metabolites. Odors that have been traditionally used to
study C. elegans olfaction are volatile metabolites produced by various microorganisms.
One such odor, diacetyl, is attractive to C. elegans and is produced in yeast or lactic acid
bacteria, whose biosynthesis process has been well-studied for industrial purposes [73].
Interestingly, diacetyl is produced by Lactobacillus only when citrate is available. Therefore,
diacetyl may not only signal the presence of lactic acid bacteria, but it may also serve
as a signal to the presence of a microbial community that is supported by a citrate-rich
environment, like rotting citrus fruit. Consistent with this, a strain of Lactobacillus paracasei
and Caenorhabditis remanei has been isolated in rotten yuzu, a citrus fruit native to East Asia,
demonstrating that the two can be found cohabiting the same environment [73].

The innate preference for many volatile metabolites can change depending on the
context. The main receptor that detects diacetyl is ODR-10, which is one of the few deor-
phanized receptors in C. elegans [65]. Interestingly, expression of ODR-10 is modulated
in a sex-, developmental stage- and life history-dependent manner [74,75]. For example,
compared to hermaphrodites, adult male C. elegans are much less attracted to food odors
such as diacetyl, to prioritize mating. However, if the male worms are starved, they in-
crease ODR-10 expression, resulting in increased attraction to diacetyl and, thus, food.
Similarly, post-dauer worms, having experienced starvation, showed increased expression
of ODR-10 and attraction to diacetyl. In this case, attraction was not limited to diacetyl,
but to a wide range of food-related odors, consistent with the increased chemosensory
receptor expression observed in post-dauer worms [75]. Such context-dependent regula-
tion of receptor expression allows the worms to appropriately respond to the microbial
environment, resulting in increased fitness. The attraction of C. elegans to diacetyl was also
shown to diminish in the absence of the germline, specifically in hermaphrodite adults,
demonstrating that odor behavior is also modulated by reproductive status [76]. However,
decreased ODR-10 levels were not observed, suggesting the diminished response occurs
through a different mechanism.

Another context to consider is the concentration of the particular cue. It is well
established that many attractive odors are repulsive at high concentrations [77]. In the
case of the bacterial metabolite dimethyl trisulfide (DMTS), attraction and repulsion are
mediated by the same receptor expressed in different neurons. Low concentration of DMTS
activates SRI-14 in the attraction-mediating AWC sensory neuron, and high concentration
activates SRI-14 in the repulsion-mediating ASH sensory neuron in order to generate the
appropriate response [64].

Volatile chemical cues are also used for C. elegans to avoid pathogenic bacteria. Some
pathogenic bacteria, such as Serratia marcescens, emit odors that initially make it more
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attractive to C. elegans than nutritive bacteria [54,78]. However, once they graze on the
bacteria, they learn to avoid them in the future [79]. This is accomplished by associating
the bacteria with its various metabolites: in the case of P. aeruginosa (PA14), the non-volatile
pyochelin and phenazine-1-carboxamide, as well as volatile odorants, mediate the learned
avoidance [52,79]. Interestingly, pathogen odor not only elicits innate or learned behavior,
but can also act as a signal to prepare for the imminent infection. A study by Ooi and
Prahlad reported that just being exposed to the PA14 odor primes a naive worm to mount a
faster stress response and avoidance behavior once they encounter the pathogen [80]. They
showed that pre-exposure to PA14 odors such as 2-aminoacetophenone caused the heat
shock transcription factor HSF-1 to form punctae in the nucleus, presumably binding to
the regulatory element of downstream target genes. This allows for quicker transcription
upon exposure to the pathogen. In addition, PA14-derived odor 1-undecene can activate
immunity [81]. These studies show that volatile metabolites are ecologically relevant
cues, whose sensation through the sensory neurons elicit not only behavior, but relevant
physiological response in other parts of the body.

7. Interspecies Interaction through Gas Sensing

Aside from volatile chemical cues, bacteria also emit gas, namely carbon dioxide
(CO2) and nitric oxide (NO), as byproducts of cellular respiration, and consume oxygen
(O2), whose ambient concentration can all be detected by C. elegans. Presence of these
gases in different concentrations can signal the presence of food, potential predators, or
in the case of dauers, phoretic opportunities. Correspondingly, as is the case for volatile
metabolites, worms show attraction or repulsion towards different concentrations of gases,
but the response is highly context-specific and varies depending on the developmental
stage, past experience, and nutritional status. For example, N2 adults strongly avoid
CO2, whereas dauers are strongly attracted to it [82]. This negative valence to CO2 in
adults can be switched in a matter of a few hours when either starved or cultivated in
high-CO2 environments, becoming neutral or even attractive [83–85]. In addition, aerotaxis
experiments show that concurrent stimuli, such as presence of food, shifts the preferred O2
concentration range of C. elegans [86].

Gases are sensed by atypical soluble guanylyl cyclases. Increasing concentration of
O2 is sensed by GCY-35 and GCY-36 expressed in the AQR, PQR and URX neurons, and
decreasing concentration is detected by GCY-31 and GCY-33 in BAG. CO2 is sensed by
GCY-9 expressed in the BAG sensory neurons [82,87]. ASE and AFD, usually associated
with salt and heat sensation, respectively, can also respond to CO2 [84]. NO is sensed by
guanylyl cyclase DAF-11 in the ASJ neuron [88]. The oxygen sensing GCY-35 has been also
shown to bind to NO, at least in vitro [89].

Most wild strains of C. elegans prefer O2 concentration between 5–12%, with the highest
preference at 10% [86]. This corresponds to their natural habitat of decaying vegetation.
However, N2, having long been cultured in laboratory conditions of bacterial lawn grown
on top of agar media, has accumulated mutations that cause it to prefer or tolerate higher O2
concentrations. The most prominent is the gain-of-function mutation in the neuropeptide
Y receptor homolog npr-1 allele in the N2 strain, that results in lower neuronal activity
in the AQR, PQR and URX O2-sensing neurons [90–92]. N2 strains also have a loss of
function mutation in the neuroglobin gene glb-5, a heme-binding protein that modulates
the sensitivity of the URX neuron to small changes in O2 [93,94].

NPR-1 activity also affects the behavioral response to CO2. While N2 is repelled
by CO2, the wild Hawaiian strain shows a neutral response, despite the same levels of
BAG neuron activity [95]. This is due to the low activity of NPR-1 in the Hawaiian strain,
resulting in higher activity in the URX neurons, which in turn inhibits the avoidance
behavior, likely through the release of FLP-8 and FLP-19 neuropeptides [95].

Aside from attraction and avoidance, O2 and CO2 sensation are also inextricably
linked to foraging behavior, such as aggregation and bordering on bacterial lawns, on-food
speed and food leaving. Using the same neurons, the animal integrates the surrounding gas
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concentrations with internal state or concurrent cues, such as temperature or pheromones,
to modulate these behaviors [89,90,96–101].

C. elegans lacks nitrogen oxide synthase (NOS) to synthesize NO, but can detect NO
in the environment. NO exposure produces physiological responses in the worm, such as
stress response induction and increased lifespan [50], but it can also be detected through
the ASJ sensory neurons, eliciting an avoidance response [88].

8. Ecological Relationships: C. elegans and Bacteria

Bacteria are vulnerable to predators such as bacterivorous nematodes, which are abun-
dant in all types of natural ecosystems where microbes are present. In order to defend
themselves, bacteria use strategies such as the formation of biofilm communities. Biofilms
are multicellular communities of bacteria surrounded by an expolymer matrix [102]. How-
ever, mechanisms of how biofilms may protect bacteria from C. elegans predation has only
recently been revealed.

Formation of a biofilm requires crosstalk between individual cells. During biofilm
formation, bacterial cells secrete quorum-sensing (QS) autoinducing compounds, such as
homoserine lactones, which induce other cells to form a biofilm [39]. However, other bac-
terivorous organisms can become illegitimate receivers of those signals and also detect these
autoinducers. C. elegans can detect N-butanolyl homoserine lactones (BHLs) produced by
P. aeruginosa during biofilm formation using the diacetyl receptor ODR-10, and are attracted
to BHLs that can allow the worms to find the bacteria. Mutants of odr-10 cannot detect
BHLs [103]. One strategy to prevent C. elegans from easily finding P. aeruginosa by olfaction
is to “cloak” the QS autoinducing chemicals with the biofilm matrix itself. The biofilm ma-
trix is composed of an expolysaccharide released by the bacteria, and the expolysaccharides
themselves prevent QS autoinducers from leaking out into the surrounding environment.
Mutant P. aeruginosa that lack components of the expolysaccaharide matrix are unable to
keep the QS autoinducers within the biofilm, and the leaked BHLs can then be sensed by
C. elegans, which find and consume the bacteria [103].

Masking odors is not the only way biofilms can prevent C. elegans predation of Pseu-
domonas bacteria. Even if worms reach the biofilm matrix, the matrix itself impedes C. elegans
motility. Bacterivorous nematodes like C. elegans use their movement to effectively graze
on bacteria in their environments. However, worms significantly slow their movement on
the normal biofilm matrix, whereas on the biofilms of mutant P. aeruginosa strains that lack
certain expolysaccharides, C. elegans movement is restored [104]. It is thought that the rigid
polymer may hinder normal movement of C. elegans, restricting its ability to graze on the
bacteria, allowing more bacteria to survive predation.

Of the many secondary metabolites produced by bacteria during quorum sensing, the
purple pigmented compound violacein is produced by diverse types of bacteria, including
Janthinobacterium, Duganella and Chromobacterium [45]. Violacein is toxic to C. elegans,
resulting in intestinal distension and eventual shortened lifespan of adult worms [41,46].
Moreover, violacein is particularly toxic to the young larvae, arresting development at the
1st larval stage and eventually killing all of the larvae [46]. C. elegans mothers, however,
have evolved a fascinating way to allow some of their young to survive the toxicity of the
bacterial metabolite. Upon exposure to violacein, a C. elegans hermaphrodite will cease
laying eggs and allow the eggs inside her body to hatch within her [46]. This behavior,
called matriphagy, allows the young to consume the mother from the inside out, eventually
eating their way out of their mother’s carcass. Although the young larvae will then be
exposed to violacein, some will now be able to escape the toxicity and developmental arrest
and proceed to adulthood. The researchers found that consuming their mother’s body
provides the young with a nutrient, oleic acid, that allows the young to survive the toxicity
of the secondary metabolite.
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9. Ecological Relationships: C. elegans and Fungi

In enriched soil and rotting fruit environments, C. elegans commonly encounter diverse
types of fungi. However, some species of fungi, aptly termed nematode-trapping fungi
(NTF), have turned the tables on the bacterivorous predator. These filamentous fungi,
which include over 700 different species [105], live in soils as saprotrophs, but in low
nutrition conditions and in the presence of nematodes, they will switch to a predatory
feeding mode [105,106]. NTFs use adhesive networks and other various structures to trap
nematodes, immobilizing them and finally penetrating and digesting the nematodes with
various enzymes [105–107]. NTFs are so effective at killing nematodes that they are used in
agricultural applications as a remedy for parasitic nematodes [108,109].

Although NTFs are common and diverse, the mechanism of nematode trapping is
often species-specific, involving a rather complex interplay between secreted compounds
from both fungi and nematodes. For instance, the fungus Duddingtonia flagrans produces
three-dimensional adhesive trap networks that can trap and immobilize nematodes [106].
However, these traps are formed only in the presence of nematodes. Trap formation is
controlled and inhibited by the compound 6-MSA and its derivative, arthrosporols, that
are synthesized in the fungal hyphal tips [34]. Interestingly, C. elegans can sense and is
attracted to 6-MSA, allowing the nematodes to approach the nematode-trapping fungi.
However, C. elegans also produces ascarosides, chemical pheromones that allow the worms
to communicate to each other. D. flagrans, as an illegitimate receiver of the pheromones, also
receives the ascaroside signals [34]. The nematode ascarosides represses the biosynthesis of
6-MSA and arthrosporols, allowing the formation of the trap network. After nematodes
are trapped, hyphae can penetrate the worm, exposing the worms to fungal secretions
which, in D. flagrans, consist of more than 200 specific small-secreted proteins (SSP) that
have no similarity to any known proteins or enzymes [110]. Among these, CyrA is an SSP
that is secreted from bulbous structures formed after the hyphae have entered the C. elegans
body [111]. CyrA increases the toxicity of D. flagrans, as the CyrA mutant fungus was less
virulent than the normal strain. Although its mechanism of toxicity is unknown, CyrA can
be found in the worm coelomocyte cells, which are scavenger cells thought to inactivate
the small protein [111].

Microbes that feed on C. elegans use volatile cues to their advantage and emit odors
(volatile metabolites) to lure their prey. Arthrobotrys oligospora, a fungi that feeds on nema-
todes to supplement their nitrogen intake, shows full utilization of nematodal chemical cues
to their advantage: in addition to emitting an odor that mimics a nematode pheromone to
attract and trap them, A. oligosopora is an illegitimate receiver, eavesdropping on nematode
pheromones to detect their presence. This allows them to conserve energy, forming traps
only when potential prey is around [35,112].

Another predatory fungi that has been studied in detail is the oyster mushroom
Pleurotus ostreatus. Instead of trapping the nematodes, P. ostreatus paralyzes and kills its
prey. Whereas NTFs penetrate the cuticle with their hyphae, the P. ostreatus toxin enters
the worms through the sensory neuron cilia in the amphid pore, located in the head of the
worm. Mutant worms with defects in cilia formation are resistant to toxin entry. The toxin
is effective for diverse nematode species, exposing a vulnerability in most nematodes that
may be exploited to develop novel anthelmintics [20].

10. Conclusions and Future Perspectives

Genetic experiments over the last few decades have revealed the functions of spe-
cific genes in many organisms, including C. elegans and many types of microbes. These
experiments, as we have discussed, have elucidated how C. elegans senses its environment
and how bacteria communicate with one another and begin to form biofilms. However,
how these genes, structures and even communities interact with one another—forming
ecological relationships in nature—has been more difficult to ascertain. The rather simple
ecosystem in which C. elegans and microbes inhabit provides us a window to understand
such complex ecology. Moreover, simulating the C. elegans habitat in the laboratory in the
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future would allow us to better understand ecological relationships, but also help us to
better understand the functions of genes themselves. By challenging worms in their natural
environments, we may be able to identify new functions or hidden functions of genes, and
give further clues to how genomes may have evolved.
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