
Citation: Yoshikawa, S.; Taniguchi,

K.; Sawamura, H.; Ikeda, Y.; Tsuji, A.;

Matsuda, S. A New Concept of

Associations between Gut Microbiota,

Immunity and Central Nervous

System for the Innovative Treatment

of Neurodegenerative Disorders.

Metabolites 2022, 12, 1052. https://

doi.org/10.3390/metabo12111052

Academic Editors: Karolina
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Abstract: Nerve cell death accounts for various neurodegenerative disorders, in which altered
immunity to the integrated central nervous system (CNS) might have destructive consequences.
This undesirable immune response often affects the progressive neurodegenerative diseases such
as Alzheimer’s disease, Parkinson’s disease, schizophrenia and/or amyotrophic lateral sclerosis
(ALS). It has been shown that commensal gut microbiota could influence the brain and/or several
machineries of immune function. In other words, neurodegenerative disorders may be connected to
the gut–brain–immune correlational system. The engrams in the brain could retain the information of
a certain inflammation in the body which might be involved in the pathogenesis of neurodegenerative
disorders. Tactics involving the use of probiotics and/or fecal microbiota transplantation (FMT) are
now evolving as the most promising and/or valuable for the modification of the gut–brain–immune
axis. More deliberation of this concept and the roles of gut microbiota would lead to the development
of stupendous treatments for the prevention of, and/or therapeutics for, various intractable diseases
including several neurodegenerative disorders.

Keywords: gut microbiota; engram; neurodegenerative disorders; Alzheimer’s disease; Parkinson’s
disease; amyotrophic lateral sclerosis; schizophrenia; inflammation; reactive oxygen species

1. Introduction

Neurodegenerative disorders are the most common factors of disability, which refer
to the gradual decrease in function of the nerves of sensory, motor, and mental activity
subsequent to the death of several neurons [1]. The nerve cell death accounts for the various
neurological dysregulations of neurodegenerative disorders including Alzheimer’s disease,
Parkinson’s disease, schizophrenia and amyotrophic lateral sclerosis (ALS) [2–5]. Similarly,
some cases of autism and depression also result from nerve cell death [6–8]. Precise insight
into the pathology of these diseases still remains elusive. Oxidative stress is defined as a
condition of metabolic dysfunction facilitated by the discrepancy between the elevated pro-
duction of reactive oxygen species (ROS) and the antioxidant defense activity in a body [9].
In one sense, a conceivable pathophysiology of neurodegenerative disorders might be
recognized by the increased oxidative stress. For example, the elevated production of
ROS has been hypothesized to play a key role in the development and poor outcome of
schizophrenia patients [10]. Oxidative stress may also be increased in ALS patients, which
may affect the mitochondrial dysfunction eventually leading to nerve cell damage and/or
neuronal loss [11]. In particular, mitochondrial homeostasis is critical to maintain neuronal
function and mitochondrial dysfunction is connected to neurodegeneration [12]. Neurons
and glial cells are typically vulnerable to excess ROS because of comparatively insufficient
antioxidant capabilities, which may increase vulnerability to neuronal damage and func-
tional deficits [13]. It has been shown that these related mitochondrial disruptions of the
oxidative pathways, several inflammatory cytokines, excess amounts of ROS, and altered
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microglia activities may bring harmful results to the process of nerve cell degeneration that
eventually leads to nerve cell death [14] (Figure 1).
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ous system in the pathophysiology of neurodegenerative disorders, which could be mod-
ified by the alteration of gut microbiota as a hopeful treatment. This concept could also 
suggest supreme preventative and/or therapeutic strategies for the broader neurodegen-
erative disorders. 

Figure 1. Schematic illustration shows an introduction to the essential role of neuro-immune interac-
tion in the pathogenesis of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s
disease, amyotrophic lateral sclerosis (ALS) and schizophrenia. The immunity could generally
communicate with the brain or CNS. Illustration of the involvement for the pathogenic roles of
various stresses, inflammation, ROS, epigenetics, and engrams is shown. Note that several significant
items have been omitted for clarity. Abbreviation: CNS, central nervous system; ROS, reactive
oxygen species.

Increasing evidence indicates the complicated associations between gut microbiota,
immunity and the central nervous system (CNS) [15]. Additionally, a variety of studies
have shown the potential association between gut microbiota and neurodegenerative
disorders including depression, autism, schizophrenia and Parkinson’s disease [16]. While
regular gut microbiota could defend the CNS, the dysbiosis of microbiota might aggravate
neurodegenerative and/or mental health disorders [17]. Hence, a good alteration of
the microbiota could also support the inhibition and/or regulation of the development
of neurodegenerative disorders. Although gut microbiota may play a critical role in the
pathogenesis of ALS, for example, comprehensive studies implicating the intestinal changes
in the pathology of neurodegenerative disorders are limited [18]. Recent studies could
shed new light on the importance of disease-specific interactions between gut microbiota
and neurodegenerative disorders [19]. Recently, we have suggested that immunological
memory named “engrams” could restore the initial disease state in schizophrenia [20].
Based on this concept, innovative therapeutic strategies for several neurodegenerative
disorders could be applied to the modification of gut microbiota. This review would
emphasize the roles of the associations between gut microbiota, immunity and the central
nervous system in the pathophysiology of neurodegenerative disorders, which could
be modified by the alteration of gut microbiota as a hopeful treatment. This concept
could also suggest supreme preventative and/or therapeutic strategies for the broader
neurodegenerative disorders.
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2. Inflammatory Neuro-Immune Responses

Inflammatory progression has a key role in various cellular processes and is suggested
as the pathogenesis of neurodegenerative disorders [21]. Consistently, it has been revealed
that neuro-inflammation triggered by bacterial or viral infections could induce schizophre-
nia in animal models [22]. In addition, it has been described as a reciprocal functional
mechanism between the immune system and CNS [23]. For example, immune cells could
modulate behavior and cognition of the host by direct interactions with the CNS [24]. A
low-grade neuro-immune/inflammatory response is essential to keep the neurogenesis
and/or the homeostasis of brain [5,7,25], suggesting that mild transient immune response
might be employed as a restorative role in CNS. Consequently, an array of neuro-immune
aberrations related to the chronic activated inflammatory reaction have been identified
in patients with neurodegenerative disorders including schizophrenia [25]. Generally, an
elevated level of inflammation markers in the blood and/or in cerebrospinal fluid (CSF)
of the CNS has been detected in patients with neurodegenerative disorders [26]. There-
fore, prospective treatment with anti-inflammatory medication has been suggested as a
secondary treatment in patients with neurodegenerative disorders including schizophrenia
or ALS [27]. It has been shown that extra prolonged stresses may be a robust risk factor for
the development of some psychiatric diseases with a reduced number of mitochondria in
the cortex [28].

Inflammatory oxidative stress may produce an excess amount of ROS which could be
characterized as oxygen-comprising small molecules prone to react with several biological
materials such as DNA [29]. In addition, an excess amount of ROS production could initiate
an activation of autophagy in cells, suggesting an essential role for ROS in the activation of
autophagy [30]. Generally, autophagy would play a protective role in cells; however, au-
tophagy is also related to apoptotic cell death or necrosis in certain conditions. Additionally,
autophagy could regulate the levels of several inflammations [31]. Hence, autophagy might
be involved in the pathogenesis of neurodegenerative disorders. The significant effect of
autophagy may be determined by the type of stimulus, cell types, the microenvironment,
and/or other biological factors [32]. In intracellular signaling pathways, autophagy could
be stimulated by the activated AMP-activated protein kinase (AMPK) during the situation
of energy deficit in cells [33]. The activity of AMPK is also critical in the cells of the CNS for
preserving neuronal integrity and for neuron survival against an excess amount of oxidative
stresses [34]. Once activated, the consequently activated autophagy could overcome the
inflammation by blocking the excretion of pro-inflammatory cytokines such as IL-1β and
IL-18, which are an indispensable component of the autophagic mechanism responsible
for the control of inflammatory immune response [35]. It is remarkable that damage in
the neuro–immune interaction brings acute and/or chronic CNS pathologies, in which
autophagy might be involved in neurons and/or glial cells [36].

3. Engrams and Neuro-Immune Responses in the Pathogenesis of
Neurodegenerative Disorders

The CNS and the immune system might collaborate on various levels in a body; how-
ever, the mechanisms of holding the specific immune-challenge have remained vague.
Very lately, it has been clearly shown that the brain keeps the facts of certain inflammation
such as inflammatory bowel syndrome occurred in the body [37]. This specific memory
seems to be an immunological remembrance called “engrams” [38]. Here, we would like to
use this word “engrams” as the meaning of immunological remembrance matching to the
meaning of “memory-traces”. The concept of engrams has been fairly hypothetical for the
basic units of memory. Now, neuronal assemblies that hold the specific disease engrams
have been known in the amygdala, hippocampus, and/or cortex, which may suggest that
engrams are distributed among multiple brain regions functionally linking each other as an
integrated engrams organization [39]. Associations of these engrams are thought to deter-
mine the situation of the host, either of health or disease, by engram arrangements, which
may be frequently dependent on several environmental conditions [40]. Consequently,
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the immunological engrams could restore the initial inflammatory disease condition, if
rebooted [38]. Created by stressful and/or repetitive inflammatory occasions, the engrams
might commit to a slow progression of chronic diseases including neurodegenerative dis-
orders [41]. Epigenetic changes such as DNA methylation or acetylation within the cells
of the neuronal assemblies might be important mechanisms of the engram formation [42],
which is also a significant factor for the fine-tuning of the function in the healthy brain [43].
Epigenetics may also stabilize engrams for the effective recovery of fear memory [44]. There-
fore, engrams and/or epigenetic changes could be related to the immune consequences in
the pathogenesis of various neurodegenerative disorders [45] (Figure 1). The synergistic
arrangement of engrams might bring in the solid progression of several diseases, which
involves the concept that any complex neurological and/or immunological consequences
could result from the interaction of these engrams with immunity. Additionally, frequent
subtle immune challenges might result in the stable formation of multiple engrams po-
sitioning independent information [46]. Synaptic variations might validate the specific
development of engrams during memorizing for supporting memory. Maintenance of
the memory might be achieved by a meta-plasticity mechanism that raises the change in
neurons within an engram, which may be further encouraged by epigenetic regulators
such as histone deacetylases (HDACs) [47]. In fact, the HDACs-related signaling pathways
have been significantly associated with the alternative expression of several genes related
to neurodegenerative disorders [48]. Consistently, some kinds of epigenetic regulators
modified by environmental factors have been suggested as playing a crucial role in the
pathogenesis of various neurodegenerative disorders [49]. In short, the brain could hold
several specific inflammatory responses as information of pathological neuronal images
called “engrams”. This concept could correctly elucidate the pathogenesis of various
neurodegenerative disorders and the related CNS disorders, which might contribute to
establishing a new strategy for the therapeutic interventions.

4. How to Modulate the Engrams

Some engrams could potentially trigger and/or exacerbate the conditions of neurode-
generative disorders [50]. Therefore, clearing the bad memory of “engrams” might be
favorable for the prevention and/or treatment of neurodegenerative disorders. In the ex-
periment of dextran sulfate sodium-induced colitis, the authors applied the chemo-genetic
procedure of the designer receptor exclusively activated by designer drugs (DREADD)
system for the inhibition of engram activity [37]. However, it seems to be impossible to
currently use this system in the clinical treatment of humans. Now, is it possible to clear
the memory of engrams without neuronal cell death and/or any brain damage? This
is the point for therapeutic interventions. In one possible way, synaptic removal could
be achieved by microglia capable of initiating the oblivion of memories with engram
cells [51]. It is considered that microglia can make synapse elimination a mechanism for
forgetting memory retentions [51]. In addition, it has been reported that microglia are
related to synapse density, learning, and/or memory [52]. There are significant associations
between gut microbiota and demyelination by the microglia in the brain, suggesting that
the crosstalk of gut-microbiota and brain-microglia might play a key role for the clearance
of engrams [53]. It has been shown that regulation of the microbiota might be connected to
the possible therapies of neurodegenerative disorders [54]. A gut–brain axis indicates a
bidirectional connection between gut microbiota and brain, which is a vital assembly in the
pathophysiology of several neurodegenerative disorders [55]. This concept might include
the associations between gut microbiota and more broad CNS disorders. For example, it
has been shown that the composition of gut microbiota might be associated with narcolepsy
type 1 [56]. Changes in the conformation of gut microbiota may be accepted by the sym-
pathetic vagal afferent nerve transmitting to the CNS via the microglial action, which in
turn could produce and/or modulate the responses of engrams. Studies have proven that
some species of bacteria could produce catecholamines and/or acetylcholine, which might
contribute to the responses of the sympathetic nerve [57]. Some of vagal neurons in the
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sympathetic pathway usually have an afferent role for the microbiota-mediated adjustment
of brain [58]. Convincing evidence has demonstrated the roles of gut microbiota in the
pathogenesis of Alzheimer’s disease and/or Parkinson’s disease, which are partly medi-
ated by modified microglial activity in the brain [59]. In fact, microglial dysfunction has
been detected in a variety of neurodegenerative disorders including Alzheimer’s disease,
Parkinson’s disease and/or ALS [59]. Possibly, the gut-microbiota–glia-brain–immune axis
might be influenced by the production of inflammatory cytokines and/or by the reduction
of favorable substances such as short-chain fatty acids (SCFAs), modifying the regulation
of the sympathetic afferent nerve and glial cells [60]. For example, butyric acid, a key SCFA,
might be connected with a favorable response in the treatment of schizophrenia, suggesting
an important role in the gut microbiota–brain axis [61]. SCFAs can cross the blood–brain
barrier (BBB) and could interact with microglia to regulate their functions [62]. Gut micro-
biota could also communicate with the brain through intricate communication systems,
which incorporate the intestinal function with the cognitive and/or emotional brain via
the neuro-immuno-endocrine mediators [63]. At least, some of the potential effectors in
the gut could actually stimulate the sympathetic nerve pathway [58]. It has been demon-
strated by reproducible and translatable findings that the efficacy of intervention could be
achieved with microbial-derived metabolites for modulating the disease progression in
ALS [64]. In addition, the impact of gut microbiota on brain function might be also related
to brain cognition and/or perception. Therefore, several brain inflammations and/or
neurodegeneration in the brain might be related to the action of the gut–brain axis [65], in
which the immunity-linked processes might be associated with the neuronal responses to
memory engrams [66]. Furthermore, there might be wide-ranging reciprocal connections
between gut microbiota and immune-inflammatory responses with engrams, which have a
critical significance in the function of the healthy brain and in the pathogenesis of various
neurodegenerative disorders [67].

5. Utilization of Gut–Brain Axis for the Treatment of Neurodegenerative Disorders

The dynamic residency of microbes in the gut may play a fundamental role in manag-
ing host physiology. In addition, recent advances have emphasized the significance of gut
microbiota in neurodevelopment with considerable associations with the onset and/or the
progression of neurodegenerative disorders [68,69]. Furthermore, it has been shown that
the dysbiosis of gut microbiota might worsen the symptoms of various neurodegenerative
disorders [70]. Alterations in the composition of gut microbiota, termed gut dysbiosis,
with an increased number of potentially pathological organisms might play a prominent
role in the pathogenesis of CNS-related disorders. For example, ALS patients may often
demonstrate some changes in their gut microbial communities compared to the paired
healthy controls [71]. Furthermore, increasing gut dysbiosis has been shown to worsen
the symptoms with ALS [72]. Evolving evidence also connects the gut dysbiosis to the
exacerbation of impaired autophagy in the immune-mediated chronic neuroinflamma-
tion [73]. Interestingly, it has been reported that a pleiotropic drug modulating AMPK
and/or autophagy signaling, such as metformin, could alter the gut microbiota and its
metabolic processes [74]. Consequently, dietary approach to alter the gut microbiota could
be advantageous for the treatment of neurodegenerative disorders [75]. Gut microbiota
could regulate and/or inhibit the production of ROS to retain the host’s brain health [76].
It might be important to diminish the levels of ROS for neuroregeneration with neuronal
stem cells [77,78]. In addition to the unfavorable effects for the stem cells, ROS might
skew the function of microglia with the oxidized mitochondria in glial cells (Figure 1) [79].
Inflammatory factors, oxidative stress, and/or the alteration of microglia are known to
limit neuroplasticity in the CNS [80]. In these ways, certain gut microbiota with the inhi-
bition of ROS could probably prevent the incidence and/or attenuate the symptoms of
neurodegenerative disorders by regulating the production of ROS and by clearing engram
memory via the alteration of functional microglia in the brain (Figure 2).
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Figure 2. The gut microbiota could support favorable action against disease progression of neurode-
generative disorders by affecting the engrams and/or brain–immune axis, which may include the
inhibition or production of cytokines, ROS, SCFAs, certain D-amino acids, and catecholamines. Mild
physical exercise, probiotics, prebiotics, and fecal microbiota transplantation (FMT) might potentially
be more successful than conventional symptomatic therapy for the treatment of neurodegenerative
disorders. Arrowhead indicates stimulation whereas hammerhead shows inhibition. Note that
several important activities such as cytokine induction or anti-inflammatory reaction have been
omitted for clarity. Abbreviations: FMT, fecal microbiota transplantation; SCFAs, short-chain fatty
acids; ROS, reactive oxygen species.

Innovative treatments for the neurodegenerative disorders including schizophrenia
and/or Parkinson’s disease are progressing. Some methods for action that might efficiently
influence the composition of gut microbiota may include fecal-microbiota transplantation
(FMT) (Figure 2). By transferring the gut microbiota from a healthy donor, there have been
promising signs of improving the capability of the gut microbiota for the treatment of neu-
rodegenerative disorders [81]. In particular, the transplantation of microbiota containing
Faecalibacterium prausnitzii (F. prausnitzii) could repair the structure of gut microbiota. For
example, transplantation of F. prausnitzii has been utilized as an intervention method to
treat dysbiosis of the gut microbiota connected to the inflammation preceding autoimmune
diseases and/or diabetes [82]. In addition, it has been shown that patients with Parkinson’s
disease have a considerably decreased number of F. prausnitzii compared to the control
patients [83]. Moreover, the amount of F. prausnitzii may also work as a diagnostic and/or
analytic biomarker for the successful procedure of FMT [84]. Consistently, the transplanta-
tion of fecal microbiota from patients with schizophrenia has triggered behavior alterations
such as impaired learning and/or hyperactivity in the recipient animal [85]. Investigations
with animal models suggest that the FMT is also valuable for the treatment of Parkinson’s
disease [86]. Similarly, the administration of prebiotics and/or probiotics might be applica-
ble to prevent and/or restore neurodegenerative disorders. The prebiotics are particular
plant fibers which may stimulate the growth of healthy bacteria in the gut. The probiotics
usually contain specific live organisms, which directly increase the populations of healthy
microbes in the gut. Certain gut microbiota with prebiotics and/or probiotics have been
shown to contribute to the treatment of ALS, suggesting that gut microbiota might be a
new strategy for ALS treatment [87]. Furthermore, it has been shown that mild physical
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exercise has a cooperative effect on the gut microbiota with higher diversity [88], which
might also improve the symptoms in schizophrenia and/or in major depression [89,90]
(Figure 2).

6. Next Perspectives

With no current cure for the various neurodegenerative disorders, therapeutics seem
to have been concentrated on attempting to decelerate the progression of the disease and
provide symptomatic treatments to maintain patient quality of life (QOL). Therapeutic
exercise and/or rehabilitation are also recommended for patients to slow symptomatic
progression [91]. Furthermore, multidisciplinary teams for therapy are known to improve
patient QOL and prolong patient survival [92]. However, there is still no cure that could
reverse the progression of these disorders. For example, at present, riluzole and edaravone
may be two major disease-modifying drugs for the treatment of ALS [93,94]. The most
broadly used drug, showing little beneficial effect on patient survival [95], riluzole, might
have a complex mechanism of biochemical action [96]. Riluzole may prolong the survival
of ALS patients by up to 20 months [97]. In the experimental study, enhanced mTOR levels
and/or attenuated autophagic activity might have increased the survival of motor neurons,
suggesting that the downregulation of autophagy might proffer a therapeutic procedure
for the treatment of ALS [98]. Riluzole may show antioxidant capabilities against oxidative
stress [99]. Another drug, edaravone, is also an antioxidant compound anticipated to
reduce oxidative stress and remove lipid peroxidation [100]. Edaravone has been detected
to have a therapeutic effect in ALS patients, exhibiting a decreased functional loss of
several neurons [101]. Edaravone has been shown to remove hydroxyl radicals for the
protection of neurons in ALS [102]. In addition, edaravone could also reduce excessive
ROS, as a free radical scavenger, to prevent brain damage [103]. Interestingly, it has been
shown that edaravone could ameliorate chronic stress-induced depressive symptoms in
mice by regulating the gut microbiota [104]. The rather unsatisfactory efficacy of these
conventional drugs might imply that new strategies are immediately needed to articulate
therapeutic development for the treatment of ALS. The autophagic signaling pathway may
be a crucial therapeutic target [105]. New therapeutic strategies for the ALS community
are also mandatory in the struggle against an exponentially rising epidemiology of this
disease [106].

Microbial fermentation-derived metabolites could introduce their effects via immuno-
logical and neuroendocrine mechanisms [107]. In particular, microbial neurochemicals
such as amines, amino acids, and SCFAs, could contribute to the harmonious interactions
between the intestinal microbial consortium, systemic immune cells, and the CNS [108],
probably in part via the epigenetic mechanism. Notably, the gut microbiota–brain com-
munication is bidirectional. This conversation might stabilize the physical and/or mental
health condition, which could otherwise cause serious physical and/or mental health
problems [109]. These psychobiotic treatments have exhibited favorable effects on neurode-
generative disorders by altering gut microbiota [110]. In addition, a probiotic supplement
has been shown to amend the cognition of the recipients with Alzheimer’s disease [111]. It
has been revealed that probiotics including B. bifidum, and/or B. longum supplementation
in patients with Alzheimer’s disease could improve the cognitive function [112]. Therefore,
the modulation of gut microbiota may be an encouraging therapeutic option to prevent
Alzheimer’s disease [113]. Furthermore, such probiotics could inhibit many harmful effects
of aging that are the recognized aggravators of various neurodegenerative disorders [114].
Interestingly, SCFAs generated by gut microbiota may improve the synaptic plasticity by re-
ducing neuro-inflammation and epigenetically suppressing the accumulation of β-amyloid
via the inhibition of HDACs in the mouse model of Alzheimer’s disease [115], which may
be reminiscent of engram modulation via the interaction with microglia, as mentioned in
Section 4. Psychobiotic treatments could be an encouraging strategy to improve the QOL
for the patients who suffer from neurodegenerative disorders. With an intricate etiology
and no current cure for many neurodegenerative disorders, broadening the understanding
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of the disease pathology is required to progress with patient care [116]. Through the modu-
lation of functional pathways related to the brain–immune communication axis, the gut
microbiota could influence the pathophysiology of neurodegenerative disorders. However,
there is only sparse evidence on the precise role of the gut microbiota on the programming
of immune cells in the underlying neurobiological pathways of neurodegenerative disor-
ders. The microbiota metabolic pathways in the gut might be related to the secretion of
inflammatory cytokines [117]. It is uncertain whether gut microbiota could decrease the
risks of causing neurodegenerative disorders as a consequence of inhibiting the critical
pathological processes. Comprehension of the precise relationship between gut microbial
metabolic pathways and the clinical consequences would contribute a great deal to the
progression of treatment for valuable interventions in neurodegenerative disorders. These
tactics might be applicable for exploring the splendid function of gut microbiota. Therefore,
prospective exploration is mandatory to understand the intricate interactions between brain
engrams, certain immunity, and gut microbial communities. A systematized consideration
of the roles of specific gut microbiota towards the development of various neurodegener-
ative disorders could confidently provide novel insight into the procedure of probiotics
and/or FMT at least as a substitute approach for preventing and/or treating such diseases.
It has been suggested that several neurodegenerative disorders have similar aspects to
those of autoimmune diseases with the key pathogenic process mediating autoreactive T
cells [118]. Biomarkers and possible therapeutic targets in neurodegenerative disorders
may also overlap with those of several autoimmune diseases [119,120]. Hence, we here
and now believe that the application of the gut–brain axis could expand for the superior
treatment of autoimmune diseases and/or the related inflammatory diseases. Subsequently,
forthcoming research should focus on the identification of disease-specific engram retention
over time during the latent period of those diseases. The large number of researchers need
to be united to comprehend the molecular mechanisms with better clarity to obtain superior
therapeutic interventions for these intractable diseases.

7. Conclusions

The essential role of the gut-microbiota–neuron–immunity interaction in the pathogen-
esis of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, ALS,
and schizophrenia has been shown here. In particular, that immunity can generally com-
municate with the engrams in the brain. Therefore, gut microbiota could provide support
by taking favorable action via the modulation of engrams against the disease progression
of several neurodegenerative disorders as well as probably several autoimmune diseases.
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Abbreviations

ALS amyotrophic lateral sclerosis
AMP adenosine mono-phosphate
AMPK AMP-activated protein kinase
BBB blood–brain barrier
CNS central nervous system
CSF cerebrospinal fluid
DREADD designer receptor exclusively activated by designer drugs
FMT fecal microbiota transplantation
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GABA gamma amino butyric acid
HDACs histone deacetylases
IL interleukin
ROS reactive oxygen species
SCFAs short-chain fatty acids
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