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Emersion and Relative Humidity Modulate Stress Response
and Recovery Dynamics in Juvenile Mussels (Perna canaliculus)
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Abstract: The early stages of intertidal mussels, including the green-lipped mussel, Perna canaliculus,
face both direct and indirect environmental threats. Stressors may influence physiological status
and, ultimately, survival. An understanding of the nature of stress experienced is critical to inform
conservation and aquaculture efforts. Here, we investigated oxidative stress dynamics in juvenile
P. canaliculus in relation to emersion duration (1–20 h) and relative humidity (RH, 29–98%) by
quantifying oxidative damage (protein carbonyls, lipid hydroperoxides, 8-hydroxydeoxyguanosine)
and enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase and reductase).
Mussels held in low RH during emersion experienced severe water loss (>70%), high mortality
(>80%) and increased oxidative damage (35–45% increase compared to control conditions), while
mussels held at high RH were not impacted, even after 20 h of air exposure. Following re-immersion,
reoxygenation stress resulted in further increases in damage markers in mussels that had experienced
dryer emersion conditions; protective action of antioxidants increased steadily during the 10 h
re-immersion period, apparently supporting a reduction in damage markers after 1–5 h of immersion.
Clearly, conditions during emersion, as well as duration, substantially influence physiological
performance and recovery of juvenile mussels. Successful recruitment to intertidal beds or survival
in commercial aquaculture operations may be mediated by the nature of emersion stress experienced
by these vulnerable juveniles.

Keywords: green-lipped mussel; Greenshell™ mussel; Perna canaliculus; spat; emersion; oxidative
stress; reoxygenation stress; recovery; survival

1. Introduction

Emersion is a significant source of stress for marine organisms. During emersion,
organisms can be exposed to fluctuations in temperature, irradiance, and relative humidity
(RH), with many intertidal organisms having physiological and behavioural adaptions
that allow them to cope with such stressors [1,2]. For example, mussels can tolerate heat
exposure and prevent desiccation by modifying their gaping behaviour, metabolism, and
respiration [3–7]. The capacity to tolerate emersion in marine invertebrates closely relates to
their bathymetric distribution [8,9]. Some bivalve molluscs depress their metabolism during
emersion [10] or rely on anaerobic pathways to maintain ATP production for short emersion
periods [11,12]; air-gaping during long-term emersion exposure may subsequently assist in
acid-base regulation [13]. These different strategies to deal with emersion-related hypoxia
are then likely to affect the organism’s responses following re-immersion in seawater.

Immersion in seawater after an emersion period is critical for the recovery and sur-
vival of the organism but is itself a stressor due to the oxidative damage caused to macro-
molecules (lipids, proteins and DNA) by rapid reoxygenation of the cells and the accu-
mulation of free radicals and reactive oxygen species (ROS) in the cells [14,15]. ROS are
produced in the cell through normal metabolism, and in molluscs they represent around
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1–3% of the consumed oxygen [16]. ROS are neutralised by enzymatic and non-enzymatic
antioxidants [17]; however, under stressful conditions, levels/activities of cellular antioxi-
dants can be too low to cope with the production of ROS, resulting in oxidative damage
and, ultimately, cell death [14,15,17]. Due to physical limitations to oxygen uptake dur-
ing periods of air exposure, emersion often does not result in an immediate increased in
oxidative damage [18]. However, the oxygenation of haemolymph in bivalves that had
previously experienced emersion increased rapidly within the first hour of re-immersion
in seawater [19]. This reoxygenation can result in a significant increase in ROS forma-
tion in bivalves, together with significant changes in oxidative damage and antioxidant
levels/activities [20–23]. To date, most studies of the effects of emersion and recovery in
marine bivalves have focused on adults [18–23]. Such effects possibly vary among life
stages due to ontogenetic differences in metabolism, respiration, and behaviour, although
few studies have reported emersion- and recovery-induced stress responses in juvenile
marine invertebrates, e.g., [24,25].

Juvenile mytilid mussels (‘spat’) may be particularly vulnerable to the repercussions
of emersion and reoxygenation stress. Settling juveniles typically colonise substrates free
of adult mussels [26], which may reflect an area that is particularly affected by the stressors
associated with emersion. Mussel spat also retain the capacity to resume pelagic drifting
by the production of a mucus ‘parachute’, facilitating relocation but elevating the risk
of predation [27]. It has been suggested that environmental stress may influence the
resumption of pelagic drifting [28], and hence indirectly affect subsequent survival. The
present study evaluated the stress response and recovery dynamics of juvenile, green-
lipped mussels, Perna canaliculus, which is also an important aquaculture species in New
Zealand [29,30]. The mussel industry routinely transfers juvenile mussels from their
capture sites or from its single hatchery to marine farms around the country, a process
that can involve emersion of up to 72 h [29,31]. Previous studies have described the stress
response of P. canaliculus juveniles and adults to fasting, heat and simulated transport,
showing that fasted juveniles are less able to tolerate subsequent stress, and that transport
results in oxidative damage [32–34]. Additionally, variations in RH during emersion can
affect the resettlement behaviour of juvenile P. canaliculus during recovery in seawater,
although the underlying dynamic of physiological responses of these stressed juveniles
remains unknown [28]. Therefore, the aim of this study was to assess the interactive
effects of variations in emersion duration and RH on the stress responses and recovery
dynamics of juvenile P. canaliculus during immersion in seawater. Stress responses were
measured by quantifying oxidative damage (protein carbonyls, lipid hydroperoxides,
8-hydroxydeoxyguanosine) and enzymatic antioxidants (superoxide dismutase, catalase,
glutathione peroxidase and reductase), as well as the water content and survival of the
juvenile mussels. These parameters were evaluated experimentally in the laboratory to test
the hypothesis that longer emersion times in a dryer environment would affect metabolism,
stress levels, condition and recovery dynamics of juvenile P. canaliculus.

2. Results
2.1. Emersion Conditions

During emersion, relative humidity (RH) was consistently above 90% for the high RH
treatment, with an average RH of 98 ± 2% (SD, n = 242; Figure 1A). In contrast, RH for
low and mid RH treatments was more variable. Low and mid RH treatments started at
approximately 15 and 60%, respectively, but average values over 20 h were, respectively,
29 ± 5% and 82 ± 11% (SD, n = 242 for each mean; Figure 1A). RH in the low RH treatment
was 16 ± 2% during the first hour of emersion, increasing to 22 ± 4% after 5 h of emersion
and then to a maximum value of around 32% by the end of the 20 h of emersion (Figure 1B).
RH in the mid RH treatment was 61 ± 1% during the first hour of emersion and increased
to 67 ± 4% after 5 h of emersion, before reaching a maximum value of around 94% by the
end of the 20 h emersion period (Figure 1B).
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Figure 1. Relative humidity (RH, %; 18 ◦C) during emersion in treatments. (A): Plot showing data for
each RH treatment (low, mid and high) and their respective means± standard deviation (SD, n = 242).
(B): Time series for each of RH treatment during 20 h of emersion (average of two loggers per
treatment, 10 min sample interval). Short and long dashed lines show the end points of the 1 h and
5 h emersion treatments, respectively.

2.2. Water Content

The water content of the juvenile mussels was reduced by increasing emersion time
and decreasing RH (Figure 2, Table 1). In the high RH treatment, water content was
consistently high at around 68–75% across emersion treatments (Figure 2). The water
content of mussels maintained at mid RH was high (~70%) and showed no change during
the first 5 h of emersion, but then decreased to around 12% after 20 h of emersion (Figure 2).
The water content of the juveniles in the low RH treatment decreased over time and was
lower than the mid and high RH treatments after 1 and 5 h emersions (Figure 2). After 20 h
of emersion, the water content of juveniles in the low and mid RH treatments was similar,
with water content being between 8–12% (Figure 2).
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Figure 2. Water content (% live mass ± SE, n = 3) in juvenile Perna canaliculus exposed to different
relative humidity (RH; low, mid, high) and emersion (1, 5, 20 h) treatments. Control bar indicates
water content in juveniles that were not emersed (excluded from statistical analysis). Tukey pair-wise
comparisons show significant differences (p < 0.05) for the interaction between emersion time and
relative humidity treatments, which are denoted by different lower-case letters above bars.

Table 1. ANOVA results of water content, mortality and staining percentage data for Perna canaliculus
juveniles in different relative humidity (RH) treatments during emersion (E: 1, 5 and 20 h), followed
by recovery in seawater (R: 1, 5 and 10 h). Degrees of freedom (df), mean square (MS), F-ratio and
p-values are shown for each variable. Significant results (p < 0.05) are shown in bold.

Water Content df MS F p

Relative Humidity (RH) 2 0.565 32.785 <0.001
Emersion time (E) 2 0.276 16.023 <0.001

RH × E 4 0.077 4.515 0.011
Residual 18 0.017

Estimated Mortality df MS F p

Relative Humidity (RH) 2 4.436 422.941 <0.001
Emersion time (E) 2 7.987 761.58 <0.001

RH × E 6 1.663 158.529 <0.001
Residual (between-effects) 36 0.01

Recovery time (R) 2 0.776 159.186 <0.001
RH × R 4 1.662 30.832 <0.001
R × E 4 0.15 35.811 <0.001

RH × R × E 8 0.061 12.422 <0.001
Residual (within-effects) 72 0.005

Staining df MS F p

Relative Humidity (RH) 2 2.142 246.423 <0.001
Emersion time (E) 2 1.454 167.251 <0.001

RH × E 4 0.209 24.026 <0.001
Residual 36 0.009

2.3. Mortality Estimates: Observations and Staining

Observational live/dead assessments indicated interactive effects of emersion time,
RH and recovery time on estimates of mortality that increased with time of emersion,
especially in the low and mid RH treatments (Figure 3, Table 1). The effect of recovery time
varied among emersion and RH treatments with the percentage of estimated dead mussels
increasing over time in the low and mid RH treatments (Figure 3). Few juveniles that were
emersed for 1 h or held at high RH appeared to die during this experiment (Figure 3). At
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the end of the experiment, 0.5 ± 0.32% (SE, n = 5) of juvenile mussels were estimated to be
dead in control samples.

Figure 3. Estimates of mortality in juvenile Perna canaliculus exposed to different relative humidity
(RH; low, mid, high) and emersion (1, 5, 20 h) treatments, followed by recovery in seawater (1, 5, 10 h).
Data represent mean percent of dead juveniles ± standard error (SE, n = 5).

Fast Green staining in control mussels was apparent in 11 ± 1.6% (SE, n = 5) of
individuals. The percentage of stained mussels increased with emersion time, with the
greatest percentage occurring in mussels exposed to 20 h of emersion (Figure 4). A smaller
percentage of juveniles stained in high RH treatments at all emersion durations relative to
the mid and low RH treatments (Figure 4). Low and mid RH treatments had similar effects
on the percentage of stained juveniles within each of the 1 and 5 h emersion treatments
(Figure 4). After 20 h of emersion, there were fewer mussels stained in the mid RH treatment
compared to the low RH treatment, but the percentage stained in these treatments was 84%
greater than in the high RH treatment (Figure 4).

Figure 4. Fast Green staining of juvenile Perna canaliculus exposed to different relative humidity (RH;
low, mid, high) and emersion (1, 5, 20 h) treatments, followed by 10 h recovery in seawater. Control
bar shows percentage of stained mussels that were continuously immersed in flowing seawater
(excluded from statistical analysis). Data represent the mean percent of stained mussels ± standard
error (SE, n = 5). Tukey pair-wise comparisons show significant differences (p < 0.05) for the interaction
between emersion time and relative humidity treatments, which are denoted by different lower-case
letters above bars.
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2.4. Oxidative Damage

There were interactive effects of emersion time, RH treatment and recovery time on
levels of protein carbonyls (PCs), lipid hydroperoxides (LPs) and DNA damage, measured
as 8-OHdG, in juvenile mussels (Table 2).

Table 2. ANOVA results of oxidative damage biomarkers data for Perna canaliculus juveniles exposed
to different relative humidity (RH) treatments during emersion (E: 1, 5 and 20 h), followed by recovery
in seawater (R: 0, 1, 5 and 10 h). Significant results (p < 0.05) are shown in bold.

Protein Carbonyls (PCs) df MS F p

Relative Humidity (RH) 2 1.8−2 86.5 <0.001
Emersion time (E) 2 1.4−2 68.2 <0.001
Recovery time (R) 3 3.4−3 16.6 <0.001

RH × E 4 1.9−3 9.2 <0.001
RH × R 6 1.8−4 0.8 0.541
E × R 6 3.5−4 1.7 0.137

RH × E × R 12 7.3−4 3.5 <0.001
Residual 72 2.1−4

Lipid Hydroperoxides (LPs) df MS F p

Relative Humidity (RH) 2 2026.9 87.2 <0.001
Emersion time (E) 2 2281 98.1 <0.001
Recovery time (R) 3 1371.2 59 <0.001

RH × E 4 521.8 22.4 <0.001
RH × R 6 151.4 6.5 <0.001
E × R 6 175 7.5 <0.001

RH × E × R 12 62.4 2.7 0.005
Residual 72 23.3

DNA Damage (8-OHdG) df MS F p

Relative Humidity (RH) 2 4206.1 125.8 <0.001
Emersion time (E) 2 6239.2 186.6 <0.001
Recovery time (R) 3 1055.1 31.6 <0.001

RH × E 4 2001.9 59.9 <0.001
RH × R 6 277.5 8.3 <0.001
E × R 6 80.1 2.4 0.036

RH × E × R 12 198.6 5.9 <0.001
Residual 72 33.5

There were strong effects of emersion and recovery duration on PCs levels in all but the
high RH treatment (Figure 5A, Table 2). After 1 h of emersion, levels of PCs were higher for
the low and mid RH treatments (relative to high RH) after 1 h of recovery, which declined
to similar levels to those observed in high RH after 5 and 10 h of recovery (Figure 5A).
After 5 h of emersion, levels of PCs in the low and mid RH treatments were significantly
elevated after 0, 1 and 5 h of recovery, but then declined in the mid RH treatment to levels
approaching baseline after 10 h of recovery (Figure 5A). An emersion time of 20 h caused
a more substantial increase in PCs levels in the low and mid RH treatments; these were
sustained over 10 h of recovery, while PCs levels in the high RH treatment remained at
basal levels (Figure 5A). The low RH treatment generally induced greater and more variable
PCs levels compared to mid and high RH (Figure 5A).

Levels of lipid hydroperoxides (LPs) were generally greater in mussels in the low and
mid RH treatments, rapidly rising during the first hour of re-immersion to maximum levels
that increased in correlation with emersion time (Figure 5B, Table 2). LP levels subsequently
decreased with increasing time of recovery, approaching baseline after 10 h, except for
mussels exposed to 20 h of emersion at low RH, where LP levels remained significantly
elevated (Figure 5B).
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Figure 5. Oxidative damage biomarkers in juvenile Perna canaliculus exposed to different relative
humidity (RH; low, mid, high) and emersion (1, 5, 20 h) treatments, followed by recovery in seawater
(0, 1, 5, 10 h). Control bar (c) shows biomarker concentration in mussels that were continuously
immersed in flowing seawater (excluded from statistical analysis). (A): Protein carbonyls (PCs);
(B): Lipid hydroperoxides (LPs); (C): 8-hydroxydeoxyguanosine (8-OHdG). Data are mean concentra-
tion ± standard error (SE, n = 3).

There were similar patterns for 8-OHdG levels with a general trend of increased
8-OHdG levels in mussels after 1 h of recovery in seawater (Figure 5C, Table 2). An
exception for this measure of DNA damage was that 8-OHdG continued to increase in
the low RH/20-h emersion treatment during recovery, in part driving a strong interaction
among the experimental factors (Figure 5C, Table 2).

2.5. Enzymatic Antioxidants

Enzymatic antioxidant activity was similar in all mussels sampled at the end of
emersion, regardless of duration and RH treatment, resembling levels in control animals
(Figure 6 A–D, Table 3). Activity consistently increased with recovery in seawater in low
and mid RH treatments after 1 and 5 h of emersion, and in mid RH treatment after 20 h
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of emersion, driving RH × recovery interactions for all analyses (Figure 6 A–D, Table 3).
Activity of enzymatic antioxidants for mussels from the high RH treatment remained at
baseline levels during recovery, regardless of emersion duration (Figure 6 A–D).

Figure 6. Antioxidant biomarker activity in juvenile Perna canaliculus exposed to different relative humidity (RH; low,
mid, high) and emersion (1, 5, 20 h) treatments, followed by recovery in seawater (0, 1, 5, 10 h). Control bar (c) shows
biomarker activity in mussels that were continuously immersed in flowing seawater (excluded from statistical analysis).
(A): Superoxide Dismutase (SOD); (B): Catalase (CAT); (C): Glutathione Peroxidase (GPx); (D): Glutathione Reductase (GR).
Data are mean concentrations ± standard error (SE, n = 3).

Table 3. ANOVA results of enzymatic antioxidant biomarkers data for Perna canaliculus juveniles
exposed to different relative humidity (RH) treatments during emersion (E: 1, 5 and 20 h), followed
by recovery in seawater (R: 0, 1, 5 and 10 h). Significant results (p < 0.05) are shown in bold.

Superoxide Dismutase (SOD) df MS F p

Relative Humidity (RH) 2 1260.5 62.2 <0.001
Emersion time (E) 2 262.4 12.9 <0.001
Recovery time (R) 3 873.7 43.1 <0.001

RH × E 4 161.5 8 <0.001
RH × R 6 232.8 11.5 <0.001
E × R 6 36.2 1.8 0.115

RH × E × R 12 31.7 1.6 0.123
Residual 72 20.3

Catalase (CAT) df MS F p

Relative Humidity (RH) 2 243.5 72.7 <0.001
Emersion time (E) 2 41 12.2 <0.001
Recovery time (R) 3 223.8 66.8 <0.001

RH × E 4 21.6 6.4 <0.001
RH × R 6 49.6 14.8 <0.001
E × R 6 4.5 1.4 0.248

RH × E × R 12 3.2 1 0.487
Residual 72 3.4
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Table 3. Cont.

Glutathione Peroxidase (GPx) df MS F p

Relative Humidity (RH) 2 521 66.4 <0.001
Emersion time (E) 2 61.6 7.9 <0.001
Recovery time (R) 3 308.2 39.3 <0.001

RH × E 4 21.9 2.8 0.033
RH × R 6 62.2 8 <0.001
E × R 6 10.7 1.4 0.239

RH F E × R 12 13.1 1.7 0.092
Residual 72 7.8

Glutathione Reductase (GR) df MS F p

Relative Humidity (RH) 2 18.9 42.5 <0.001
Emersion time (E) 2 2 4.5 0.015
Recovery time (R) 3 13.2 29.8 <0.001

RH × E 4 1 2.3 0.067
RH × R 6 4.4 9.8 <0.001
E × R 6 0.2 0.5 0.811

RH × E × R 12 0.1 0.1 1
Residual 72 0.5

3. Discussion

This study showed that the effects of emersion and the re-immersion dynamics of
juvenile Perna canaliculus are complex and mainly depend on the conditions that the
mussels experience during emersion. Juvenile mussels that experienced longer emersion at
low and mid relative humidity (~15–60% RH) had increased water loss, increased oxidative
damage and antioxidant enzymatic activity. These elevated levels, however, only tended
to become apparent following re-immersion. The accumulation of oxidative damage
in juvenile P. canaliculus, despite a corresponding increase in antioxidant activity, was
correlated to increasing mortality rates during the 10 h re-immersion monitoring period
(up to ~95% following 20 h emersion at low-mid RH). This correlation between emersion
time, oxidative damage, and mortality was tested for all oxidative stress markers at the
different RH levels at the end of the recovery time (see Supplementary Materials). The
strongest correlation was observed for oxidative damage in the form of PCs at low and
mid RH, where mortality increased steadily with PC levels, as time of emersion increased
(r2 = 0.9991 at low RH and r2 = 0.7273 at mid RH). LPs and DNA damage also correlated
to mortality observations only at low RH, but these correlations were weaker (r2 = 0.8630
and r2 = 0.7844 for LPs and DNA damage, respectively). This suggests that mussels that
experience emersion at low RH are most likely to die due to oxidative stress, whereas
oxidative damage is reduced at mid RH probably due to the specific action of antioxidants.
At mid RH, it is likely that mussels were not dead but compromised, widely gaping and
unable to close their valves after emersion and RH stress and are therefore classified as
“dead”. Surviving mussels could also be physiologically impaired due to the high oxidative
damage, potentially resulting in altered biological functions or even further mortality with
increasing immersion time.

Green-lipped mussels naturally colonise rocks of the lower littoral and sub-tidal zones
of New Zealand [35]. The emersion times used in this study are representative of a typical
exposure period for an intertidal P. canaliculus (1 h), an exceptional low tide event (5 h), and
an artificial emersion time which would represent a common transport time for mussel spat
from hatchery to the grow-out farms (20 h). It should be noted that the juvenile mussels
used in this study are hatchery produced from subtidal mussel populations (farmed); the
results shown here might vary from the potential stress response of wild spat which may
have previously experienced emersion [36] and associated stressors, with the potential to
either increase [37] or reduce [32] subsequent stress tolerance.

Emersion of juvenile P. canaliculus caused severe water loss when RH was lower
during emersion, and with increasing exposure times. Mussels isolate their soft tissues
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from the external environment by closing their valves during emersion, using periodic
gaping behaviour to decrease their body temperature and facilitate gas exchange, allowing
adult mussels to withstand long periods of emersion [4,6,38]. However, few studies have
assessed the role of gaping in juvenile mussels. In the present study, there were two lines
of evidence to suggest that juvenile P. canaliculus used gaping behaviour as a mechanism to
reduce stress during emersion. First, there was a significant decrease in the water content
of emersed juveniles that was exacerbated as emersion duration increased. Second, the
mid humidity treatment showed increasing RH with the time of emersion, indicating that
moisture from the mussels was released into the container during incubation. Even though
RH increased in the mid RH treatment to levels ca. 80%, mussels experienced increased
oxidative damage and antioxidant activity during the subsequent re-immersion period,
compared to mussels held in high RH during emersion. This suggests that desiccation
stress could also play a crucial role in the recovery dynamics of P. canaliculus.

It can be challenging to determine whether juvenile mussels are dead, moribund
or alive using visual observations [28,39]. Here, our estimates suggested that mortal-
ity increased with recovery time, especially in the more severe RH treatments, with no
differences between mid and low RH treatments at the end of the 10 h recovery period. Fol-
lowing 20 h emersion and low or mid RH, for example, >90% of individuals subsequently
appeared unresponsive in water and took up Fast Green stain. However, measures of
antioxidant enzyme activities suggest that these mussels were still metabolically active in
the mid treatment. Indeed, given the substantial increases in antioxidant enzyme activities
over the 10 h immersion period, it seems likely that many of these mussels were alive, but
moribund and unable to respond to tactile stimulus or an osmotic shock (i.e., valve closure
when immersed in freshwater and stain). This hypothesis could be tested with extended
immersion periods to determine whether these mussels completely recover. By contrast,
the high RH appears relatively benign, even when spat are emersed for 20 h, with most
mussels showing signs of life or the ability to respond to tactile or osmotic stimulus and
are therefore more likely to remain viable [39].

Marine littoral organisms experiencing natural emersion due to tidal cycles can accumu-
late modest levels of ROS during air exposure as they shift to anaerobic metabolism [17,40].
Despite demonstrating net metabolic depression [41], many enzymatic antioxidants are
activated during the emersion period as a preparation for the reoxygenation stress (“prepa-
ration for oxidative stress”, POS) [42–44]. When organisms are immersed in the water for
recovery, reoxygenation of haemolymph occurs rapidly (within one hour) [19], causing
an oxidative burst, and the generation of large amounts of ROS [43]. In invertebrates, the
oxidative burst is less intense and happens more slowly than in vertebrates; nonetheless, the
excessive production of ROS can still result in oxidative damage [45]. In this study, juvenile
P. canaliculus exposed to low and mid humidity air showed increased oxidative damage after
20 h of emersion compared to control mussels that remained submersed in seawater. Here,
P. canaliculus experienced a more extreme emersion stress than most intertidal species as
they moved from a completely subtidal environment to an extreme emersion period (20 h).
However, oxidative stress was minimised if mussels were maintained in high humidity
during emersion, where damage levels were similar to non-emersed control mussels. Re-
oxygenation has been shown to increase oxidative damage in the mussel Mytilus edulis [20],
the gastropod Crepipatella dilatata [46], and the oyster Crassostrea virginica [47]. In the present
study, reoxygenation stress resulted in a rapid increase in oxidative damage markers in
all the humidity treatments, but levels were significantly higher following low and mid
humidity exposure during emersion. Oxidative damage in the mussels that were exposed
to high humidity during a 20 h emersion showed a decrease in damage to baseline levels
after the mussels had been in seawater for 10 h.

Antioxidant enzyme activity in juvenile P. canaliculus did not increase during the
emersion period at any humidity level. This suggests that juvenile P. canaliculus may have
a reduced POS (i.e., preparation for oxidative stress) capacity to cope with reoxygenation
stress during recovery, as seen in other invertebrate species [43]. In adults of the brown
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mussel, Perna perna, emersion stress for 48 h lowered the activity of enzymatic antioxidants;
however, the levels of the non-enzymatic antioxidant glutathione (GSH) showed a rapid
and persistent increase during emersion [48]. In the mussel Mytilus edulis, 48 and 72 h
anoxia in seawater had little effect on the activity of antioxidants; however, antioxidant
activity was suppressed after 72 h anoxia followed by 24 h of reoxygenation [20]. In
the present study, there was an increase in enzymatic antioxidant activity of juvenile
P. canaliculus in all treatments following re-immersion, which agrees with similar findings
in other invertebrate species [46,49–51]. Levels of antioxidant activity in mussels held
in high humidity conditions during emersion returned to baseline levels after 10 h of
recovery. In contrast, mussels held at mid humidity during emersion showed no indication
of declining after 10 h in seawater. It should be noted that mussels held at low humidity
during emersion typically displayed low levels of antioxidant activity, similar to mussels
that were held at high humidity. However, this result is likely to be an artifact of the high
mortality of the mussels in the low humidity treatment, associated with high oxidative
damage in the mussels sampled, but low antioxidant activity which is likely to have come
from the small proportion of live mussels.

In this study, the increased action of antioxidants observed after short emersion periods
(1 and 5 h) helped maintain relatively low levels of oxidative damage at all RH levels after
re-immersion. However, at longer emersion (20 h), the activity of some antioxidants
becomes compromised, resulting in an accumulation of oxidative damage in the tissues.

Emersion can be an occasional or regular event for juvenile P. canaliculus. For example,
P. canaliculus can be an intertidal organism that experiences semidiurnal low tides, or they
can be occasionally cast ashore while attached to drift algae. Juvenile P. canaliculus are
also routinely emersed to transfer them to sea-based nursery farms for aquaculture, a
process that can take as long as 3 days and be highly variable in terms of environmental
conditions [52]. Losses of juvenile P. canaliculus after they are seeded onto a marine farm are
a common problem for the mussel industry in New Zealand, where most of the juveniles
are lost during the first few months of aquaculture [53–56]. Based on the results of the
present study, it is possible that conditions in which the juvenile mussels are transported
trigger a series of molecular, biochemical and physiological responses in the mussels that
could have carry-over effects for the mussels after seeding, potentially affecting retention
and survival of the juveniles. For example, juvenile resettlement behaviour was slowed and
reduced by lower RH conditions during emersion [28]. The data presented here suggest
that such impacts on behaviour could correspond to the physiological condition of the
juveniles which, in the case of juveniles emersed in drier conditions, reflect increased ROS
damage and antioxidant activity.

Complex, multi-species mussel guilds occupy the New Zealand rocky shore, with
lower-littoral Perna canaliculus giving way to Mytilus, Aulacomya and Xenostrobus species on
the higher shore [35,57]. Thermotolerance has been demonstrated to be a key determinant
of this vertical zonation [57], which is turn likely to be influenced by region, latitude
and genetic structure [58]. Based on the findings presented here, it would be valuable to
consider the role of juvenile emersion and, in particular, reoxygenation stress as factors
influencing natural distribution in an increasingly marine heatwave-prone region [59].

Overall, the present study showed that juvenile P. canaliculus are extremely sensitive
to low humidity and prolonged emersion times, with mussels held in low RH during
emersion experiencing severe water loss, high oxidative damage and high mortality, while
mussels held at high RH were not impacted, even after 20 h of air exposure. These find-
ings have significant implications for natural shoreline distribution and the aquaculture
industry where juvenile mussels are routinely emersed during the production cycle. For
aquaculturists, transportation methods should aim to maintain mussels in a high humid-
ity environment at a constant temperature for the shortest possible time to mitigate the
deleterious effects described in this study. When the time of emersion cannot be short-
ened, mussels should be held in a high relative humidity environment to minimise the
stress responses elicited in the juvenile mussels, including increased oxidative damage
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and subsequent mortality. Further research is required to unravel the complex factors
influencing resilience and environmental stress in the juveniles that appear to represent a
major life-stage bottleneck for both cultured and wild P. canaliculus populations.

4. Materials and Methods
4.1. Experimental Design

Green-lipped mussel juveniles (~1 mm) were collected from a commercial hatchery
(SPATnz) and transported to the laboratory of the adjacent Cawthron Aquaculture Park
(Nelson, New Zealand). Mussels were weighed and separated into 178 circular sieves (8 cm
diameter, 200 µm mesh size). Separate sets of experimental sieves were allocated for the
determination of water content (27 sieves; ~120 mg of mussels in each sieve), assessments
of survival (50 sieves; ~10 mg of mussels in each sieve) and oxidative biomarker analysis
(111 sieves; ~1 g of mussels in each sieve). The sieves were then placed in a shallow
acclimation tank with flowing seawater at 18 ◦C containing a mixture of axenically cultured
microalgae (Chaetoceros calcitrans, C. muelleri and Pavlova lutheri). All sieves were supplied
with food ad libitum during the first 24 h after collection before experimentation.

Experimental treatments consisted of three relative humidity (RH) treatments (low = ~15%,
mid = ~60%, and high = ~90%), four emersion times (0, 1, 5 and 20 h) and three recovery times
(1, 5 and 10 h) following re-immersion in seawater. Control mussels were not emersed during
the experiment. Replication consisted of three replicated sieves per treatment for oxidative
damage and antioxidant biomarker analyses, three replicated sieves for water content analysis,
and five replicated sieves for survival. Lowered RH levels were achieved by adding different
amounts of desiccant (silica gel) to a circular, 750 mL air-tight plastic container; for the high
RH treatment, a seawater-saturated cotton cloth was added to the containers. Following
acclimation, the experimental sieves with mussels were blot-dried and randomly allocated
to the different RH treatments. All containers were tightly closed immediately after addition
of the experimental sieves and placed in an incubator at 18 ◦C. RH loggers (Hygrochrons,
iButtonLink Technology, Whitewater, WI, USA) sampling at 10 min intervals were added to
6 of the containers allocated to 20 h of emersion (two per RH treatment). After each of the
emersion treatments, the mussels in the sieves were either sampled, assessed as described
below, or randomly assigned to re-immersion treatments.

4.2. Water Content and Mortality Estimates

Water content in juvenile mussels was determined as percent mass loss by weighing
(wet), drying (at 100 ◦C for 24 h), and re-weighing.

Sieves allocated to survival monitoring were surveyed repeatedly throughout the
re-immersion recovery period. A stereomicroscope was used to observe the immersed
mussels; wide-open individuals that did not respond to a tactile stimulus (prodding with
forceps) were considered to be dead [25].

After the last recovery time point (10 h), mussels were stained using the Fast Green
method [39], with minor modifications, to provide an indication of viability. In brief,
mussels were transferred from the experimental sieves into freshwater (~20 mL) in 35 mL
plastic containers to induce valve closure. One drop of concentrated Fast Green dye was
added to each container, and the mussels were left in the stain for 1 h. Individuals that were
incapable of sustained valve closure throughout this period were considered inviable (dead
or moribund) and took up dye; the green-stained tissues of these spat could subsequently be
discerned through the translucent valves. The mussels were subsequently rinsed and frozen
at −20 ◦C. Samples were thawed and mussels were counted; the percentage of stained
individuals per sample was calculated and used as the response variable in analyses.

4.3. Oxidative Damage

Juvenile mussels were sampled for oxidative biomarker analyses before emersion
(control), directly after the completion of the emersion periods (0 h recovery) or after 1, 5
or 10 h of recovery in seawater. Three sub-samples of ~130–140 mg of juvenile mussels
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(fresh weight) were taken from each of the replicate sieves for each assay. Each sub-
sample was placed into 2 mL cryo-vials, flash frozen in liquid nitrogen and stored at
−80 ◦C until analyses. The sub-samples were used to determine oxidative damage (protein
carbonyls (PCs), lipid hydroperoxides (LPs) and 8-hydroxydeoxyguanosine (8-OHdG))
and antioxidant enzyme activity (superoxide dismutase (SOD), catalase (CAT), glutathione
peroxidase (GPx) and glutathione reductase (GR)).

4.3.1. Macromolecule Extraction

Macromolecule extractions (protein, lipid and DNA) for determination of oxidative
damage in juvenile P. canaliculus were performed according to Delorme et al. [32] In brief,
total protein was extracted on ice by adding 900 µL of ice-cold enzyme extraction buffer
(100 mM potassium phosphate [pH 7.5] containing 50 mM NaCl, 0.1 mM Na2EDTA, 1%
polyvinylpyrrolidone−40, 2 mM phenylmethylsulfonyl fluoride and 0.1% TritonX−100)
and homogenising for 30 s at 1500 rpm (1600 MiniG®, SPEX®) using zirconia/silica beads
and a pre-chilled cryo-block (SPEX®). The samples were then centrifuged for 15 min at
17,000× g at 4 ◦C and the supernatant (i.e., protein extract) purified using ultrafiltration
and purification columns (AMICON). The purified protein extract was then washed and
reconstituted with 250 µL of 50 mM potassium phosphate buffer (pH 7.2), placed in a
1.5 mL microcentrifuge tube, blown with oxygen-free nitrogen and stored at −80 ◦C.
Protein content was determined by the Lowry protein assay [60]. Samples were diluted
with potassium phosphate as required before analysis. The levels of protein carbonyls
(PCs) were determined via reaction with 2.4-dinitrophenylhydrazine (DNPH) as described
by Reznick and Packer [61] and expressed as nmols of carbonyls mg of protein−1.

Total lipids were extracted by adding 600 µL of methanol:chloroform (2:1 v/v) and
homogenised as described above. The homogenised sample was left to stand for 5 min and
an extra 400 µL of chloroform were added and vortexed vigorously for 30 s. Then, 400 µL
of MilliQ water were added and the sample vortexed again for 30 s. The samples were
then centrifuged at an ambient temperature for 30 s at 17,000× g. Finally, the chloroform
phase (bottom layer) was removed and transferred to a clean 1.5 mL microcentrifuge tube,
blown with oxygen-free nitrogen and stored at −80 ◦C until analysis. The level of lipid
hydroperoxides (LPs) in the samples was determined by absorbance at 500 nm using the
ferric thiocyanate method described by Mihaljevic et al. [62], adapted for measurement in
a microtitre plate reader. A calibration curve with t-butyl hydroperoxide was used and the
LP content calculated as nmol of lipid hydroperoxide per mg of fresh (wet) mussel weight.

PC and LP assays were carried out using a Victor 1420 Multilabel plate reader (Perkin
Elmer Wallac, Waltham, MA, USA) fitted with a temperature control cell (set to 25 ◦C) and
an auto-dispenser. Data were acquired and processed using the WorkOut 2.0 software
package (Perkin Elmer, Waltham, MA, USA).

DNA extraction was performed using an ISOLATE II Genomic DNA Kit (Bioline,
Memphis, TN, USA), with one minor modification—the samples were crushed and ho-
mogenised using a tube pestle after the addition of the pre-lysis buffer. The final DNA
extracts were placed in a 1.5 mL microcentrifuge tube, blown with oxygen-free nitrogen
and stored at −80 ◦C until analyses. The level of oxidised DNA was calculated by quanti-
fying the amount of 8-hydroxydeoxyguanosine (8-OHdG) present using high-performance
liquid chromatography (HPLC) followed by UV detection of guanine and electrochemical
detection (coulometric) of 8-OHdG as described previously for P. canaliculus juveniles [32].

4.3.2. Enzymatic Antioxidants

The remaining protein extract was used to perform antioxidant enzyme assays: su-
peroxide dismutase activity (SOD), catalase (CAT), glutathione peroxidase (GPx) and
glutathione reductase (GR) as described by Delorme et al. [32] In brief, SOD was de-
termined using a Cayman Chemicals Superoxide Dismutase Assay Kit and the activity
expressed as units of SOD mg of protein−1. CAT was assayed using the chemiluminescent
method of Maral et al. [63], as adapted by Janssens et al. [64] for 96-well microplates, and
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the activity expressed as µmol min−1 mg protein−1. GPx activity was measured according
to the spectrophotometric method described by Paglia and Valentine [65] and expressed as
nmol min−1 mg of protein−1. GR was assayed using the method of Cribb et al. [66], with
minor modifications and activity expressed as nmol min−1 mg of protein−1. All enzymatic
assays were carried out using a Perkin Elmer Wallac Victor 1420 multilabel counter (Perkin
Elmer, Waltham, MA, USA) as detailed above.

4.4. Statistical Analyses

All analyses were carried out using analysis of variance (ANOVA) with α = 0.05 unless
otherwise stated. Assumptions of ANOVA were checked using appropriate tests (Shapiro–
Wilk, Brown Forsythe, Mauchly) and graphical observations. Water content, mortality and
staining percentage data were arcsine-square root transformed prior to analysis. Water
content data were not normally distributed but met the assumption of homoscedasticity
and were analysed using a two-way ANOVA with RH level and emersion time as factors
since balanced ANOVA is robust to deviations from normality [67]. Estimates of mortality
data were analysed using a repeated measures ANOVA with RH and emersion time as the
between-subjects effects, and re-immersion time as the within-subjects effect to account for
repeated observations of individual sieves. Estimated mortality data were non-normal and
variances were heterogeneous but met the assumption of sphericity and were analysed
with α = 0.01 [68]. Staining data were analysed using a two-way ANOVA (α = 0.01), with
RH level and emersion time as fixed factors. All oxidative damage (PCs, LPs, 8-OHdG)
and enzymatic antioxidants (SOD, CAT, GPx, GR) data were analysed with three-way
ANOVA using RH, emersion time, and recovery time as fixed factors. PC data did not meet
parametric assumptions and were transformed to the reciprocal before analysis. Differences
among treatments were identified using Tukey pair-wise tests with α = 0.05. Analyses were
carried out using Sigma Plot 14.0 (SYSTAT Software, Inc., Chicago, IL, USA) or Statistica 12
(Statsoft) software.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11090580/s1, Figure S1: Correlations between oxidative damage and mortality
observations after 10 h of recovery in seawater. A: Protein carbonyls (PCs); B: Lipid hydroperoxides
(LPs); C: 8-hydroxydeoxyguanosine (8-OHdG; DNA damage). Data from different emersion times
were combined to plot oxidative damage versus mortality across emersion time for each relative
humidity (RH) treatment, Figure S2: Correlations between oxidative damage and mussel staining
after 10 h of recovery in seawater. A: Protein carbonyls (PCs); B: Lipid hydroperoxides (LPs);
C: 8-hydroxydeoxyguanosine (8-OHdG; DNA damage). Data from different emersion times were
combined to plot oxidative damage versus staining across emersion time for each relative humidity
(RH) treatment.
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