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Abstract: Feature screening is an important and challenging topic in current class-imbalance learning.
Most of the existing feature screening algorithms in class-imbalance learning are based on filtering
techniques. However, the variable rankings obtained by various filtering techniques are generally
different, and this inconsistency among different variable ranking methods is usually ignored in
practice. To address this problem, we propose a simple strategy called rank aggregation with re-
balance (RAR) for finding key variables from class-imbalanced data. RAR fuses each rank to generate
a synthetic rank that takes every ranking into account. The class-imbalanced data are modified
via different re-sampling procedures, and RAR is performed in this balanced situation. Five class-
imbalanced real datasets and their re-balanced ones are employed to test the RAR’s performance,
and RAR is compared with several popular feature screening methods. The result shows that RAR
is highly competitive and almost better than single filtering screening in terms of several assessing
metrics. Performing re-balanced pretreatment is hugely effective in rank aggregation when the data
are class-imbalanced.

Keywords: class-imbalance; feature screening; rank aggregation; re-balance; filtering algorithm

1. Introduction

Datasets with imbalanced distribution are quite common in classification. In the
settings of binary category, a dataset is called “imbalanced” if the number of one class is far
larger than the others in the training data. Generally, the majority class is called negative
while the minority class is called positive. Thus, the number of positive instances is often
much lower than that of negative ones.

A hindrance in class-imbalance learning is that standard classifiers are often biased
towards the majority classes. Therefore, there is a higher misclassification rate in the
minority instances [1,2]. Re-sampling is the standard strategy to deal with class-imbalance
learning tasks. Many studies [2–4] have shown that re-sampling the dataset is an effective
way to enhance the overall performance of the classification for several types of classifiers.
Re-sampling methods concentrate on modifying the training set to make it suitable for a
standard classifier. There are generally three types of re-sampling strategies to balance the
class distribution: over-sampling, under-sampling, and hybrid sampling.

• Over-sampling adds a set sampled from the minority class. Randomly duplicating
the minority instances, SMOTE [5] and smoothed bootstrap [6] are three widely used
over-sampling methods.

• Under-sampling removes some of the data points from the majority class to alleviate
the harms of imbalanced distribution. Random under-sampling (RUS) is a simple but
effective way to randomly remove part of the majority class.

• Hybrid-sampling is a combination of over-sampling and under-sampling.

Metabolites 2021, 11, 389. https://doi.org/10.3390/metabo11060389 https://www.mdpi.com/journal/metabolites

https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0002-0138-0004
https://doi.org/10.3390/metabo11060389
https://doi.org/10.3390/metabo11060389
https://doi.org/10.3390/metabo11060389
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/metabo11060389
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo11060389?type=check_update&version=3


Metabolites 2021, 11, 389 2 of 22

Let D be a dataset with p features x1, x2, . . . , xp, the target of feature screening is to
extract a part of features x

′
1, x

′
2, . . . , x

′
m such that m << p and these selected features satisfy

the specified conditions of the task at hand [7]. For instance, the target is to select the subset
of candidate features to maximize classifier accuracy in a classification setting. In the past
two decades, many papers in studies have adopted the feature screening methods [8–10].
Feature screening has many advantages such as reducing susceptibility to over-fitting,
training models faster and offsetting the pernicious effects of the curse of dimensionality [8].
The disadvantage of feature screening is that some crucial features may be omitted, thus
harming classification performance.

Filtering [11], wrapping [12], and embedding [13] are three kinds of approaches
for feature screening. Filter algorithms screen top-ranked variables via a certain metric.
Wrapper methods perform a search in all the combinations to find the best subsets of all
features. Generally, a complete search is often time-consuming and greedy, so the heuristic
technique is frequently utilized to explore the solutions. Embedded algorithms screen
important variables while building the classifier. Of all the three types of feature screening,
filter methods are the simplest and the most frequently used to solve real-world imbalanced
problems [14] in class-imbalance learning community. Many metrics have been utilized to
perform filtering feature screening algorithms, such as t test, Fisher score [15], Hellinger
distance [16], Relief [17], ReliefF [18], information gain [19], Gini index [20], AUCROC [21],
AUCPRC [22], geometric mean [23], F-measure [24], and R-value [25].

Ensemble feature selection has been widely applied to the field of classification [26],
such as Nazrul et al. [27] provided an ensemble feature selection method using feature–class
and feature mutual information to select an optimal subset of features by combining
multiple subsets of features. Yang et al. [28] proposed an ensemble-based wrapper approach
for feature selection from data with highly imbalanced class distribution. Nowadays,
feature selection methods are popular in metabolomics data analysis. In order to resolve
the problem of filtering the discriminative metabolites from high-dimension metabolomics
data, Lin et al. [29] proposed a mutual information (MI)-SVM-RFE method that filters
out noise and non-informative variables by means of artificial variables and MI, then
conducts SVM-RFE to select the most discriminative features. Fu et al. [30] proposed
two feature selection algorithms that, by minimizing the overlap degree between the
majority and the minority, are effective in recognizing key features and control false
discoveries for class-imbalanced metabolomics data. The above feature screening methods
are usually established for balanced datasets, but they are also directly utilized in class-
imbalance situations.

Different filtered approaches give different feature rankings because of their different
theories, even when just counting top-ranked features. Motivated by this problem, we
propose a simple strategy called rank aggregation with re-balance (RAR) to combine all
methods’ ranking results in this study. It is an essential tool to fuse each rank to generate a
synthetic rank that takes every ranking into account for class-imbalanced data. Different
from the general feature selection methods, the proposed method combines different
feature selection methods rather than simply accepting the result of one method, which
can enhance the stability of the algorithm. At the same time, the great performances of
the experiments in balanced and imbalanced metabolomics datasets verify the strong
generalization abilities of RAR.

2. Results
2.1. Kendall’s τ Rank Correlation of Eight Filtering Methods on Class-Imbalanced Data

Each filtered method above can be employed to perform feature screening. However,
we noted that different filtering feature screening techniques may give different rankings,
especially when the data are extremely class-imbalanced. In this section, we compare
methods using Kendall’s τ rank correlation [31].

The Kendall’s τ rank correlation of eight filtering methods (t test, Fisher score, Hellinger
distance, Relief, ReliefF, Information gain, Gini index, and R-value) are computed with simu-
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lated data that are generated by multivariate normal distributions, namely,
X
∣∣(y = 0) ∼ Np(µ0, Σ) and X

∣∣(y = 1) ∼ Np(µ1, Σ), where the label y = 0 denotes the major-
ity class and y = 1 minority class, respectively. The predictors in two classes have the same
covariance matrix Σ, which is set to be a unit matrix for the purpose of simplicity. Two cases
are considered in this study. In case one, the number of p = 8, and eight variables are all set
to be key features. The difference of mean values µ1 − µ0 = [2.4, 2.2, 2, 1.8, 1.6, 1.4, 1.2, 1]. In
case two, p = 16, and the first eight variables are set to be the same with case one, but an-
other eight irrelevant predictors are added. The number of total instances is set to 960. The
negative to the positive ratios here are set be 1:1, 3:1, 9:1, 31:1, and 95:1, respectively. There
are 28 Kendall’s τ rank correlation coefficients among 8 filtering methods, and the mean of
these coefficients (with 100 repeats) is shown in Figure 1. As stated above, τ = 1 if all pairs
are concordant. Whereas the maximum of τ is 0.88 in case one (left, Figure 1) where there
are no irrelevant predictors, and 0.76 in case two (right, Figure 1) where one-half of features
are irrelevant variables. The two maximal τ values are reached when two classes are exactly
balanced, and τ reduces as the imbalance ratio increases in two cases. It indicates that these
filtering methods probably generate different feature rankings, and such differences tend to
be intensified when the class imbalanced ratio increases. Consequently, it is hard to say that
a filtering approach is better or worse than another one, and it is a big risk to just depend
on a single filter algorithm to make decisions. We have known that such a difference will
occur due to the different principles of the filtering methods, but we also presume that class
imbalance intensifies this difference. A natural way to combat this challenge may combine
each filtering approach’s information and relieve the effect of class imbalance. This is the
motivation for why we propose the strategy of rank aggregation with re-balance.

Figure 1. Kendall’s τ rank correlation coefficient under different imbalance ratios (with 100 repeats). Left: eight key
variables; right: eight key plus eight irrelevant variables.

2.2. Rank Aggregation(RA) on Original Balanced Data

In our computation, eight filtering methods—t test, Fisher score, Hellinger distance,
Relief, ReliefF, Information gain, Gini index, and R-value—are aggregated to generate an
incorporative rank. Rank aggregation is firstly tested with the original balanced dataset
“NPC”. Artificial rebalancing is unnecessary, and just case 1 (no resampling) is performed.
Rank aggregation is compared with eight filtering methods: t test, Fisher score, Hellinger
distance, Relief, ReliefF, Information gain, Gini index, and R-value. Gmean, F1, AUCROC
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and AUCPRC are utilized as evaluation measurements. The rank lists ordered by their
importance are shown on the x-axis in Figure 2. The top seven features are selected
according to all four assessment metrics.
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Figure 2. Rank lists of rank aggregation with the dataset “NPC” in case 1.

2.3. Rank Aggregation with Re-Balance (RAR) on Imbalanced Data

Figures 3–6 show the aggregated rank lists on seven cases with the datasets “TBI”,
“CHD2-1”, “CHD2-2”, and “ATR”, respectively. Rank aggregation combines each ranking
into a list reflective of the overall preference, and each subgraph of four figures shows the
aggregation results based on the CE algorithm. The x-axis is the optimal list obtained by
the rank aggregation algorithm. The y-axis also ranks, and the gray line is the rank of the
original data; the black line is their average rank; and the red line is the aggregate result of
the CE algorithm. The order of the x-axis rank is based on the aggregate ranks obtained
by the red line. The performances measured by Gmean, F1, AUCROC, and AUCPRC are
given in Tables 1–4, respectively.
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Figure 3. Rank lists of rank aggregation with the dataset “TBI” on seven cases.
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Figure 4. Rank lists of rank aggregation with the dataset “CHD2-1” on seven cases.
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Figure 5. Rank lists of rank aggregation with the dataset “CHD2-2” on seven cases.
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Figure 6. Rank lists of rank aggregation with the dataset “ATR” on seven cases.
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Table 1. Gmean from rank aggregation and eight filtering techniques (The best result is in bold).

Dataset Resampling No. RA RAR t Test Fisher Hellinger Relief ReliefF IG Gini R-Value

NPC Case 1 7 1.00 − 0.87 0.97 0.95 0.95 0.95 0.95 1.00 0.92
TBI Case 1 6 0.96 − 0.41 0.68 0.68 0.70 0.88 0.72 0.58 0.63

Case 2 11 − 1.00 0.84 0.88 0.95 0.90 0.94 0.86 0.90 0.90
Case 3 1 − 1.00 0.95 0.84 0.95 0.90 0.80 0.95 0.90 1.00
Case 4 10 − 1.00 0.96 1.00 0.89 0.93 0.97 0.93 0.85 1.00
Case 5 7 − 1.00 0.93 0.90 0.97 0.97 0.93 0.97 0.86 0.93
Case 6 12 − 1.00 0.75 0.83 0.82 0.83 0.91 0.85 0.71 1.00
Case 7 29 − 1.00 0.71 0.70 0.65 0.82 0.85 0.78 0.71 0.71

CHD2-1 Case 1 10 0.87 − 0.67 0.71 0.87 0.00 0.77 0.77 0.47 0.87
Case 2 11 − 0.94 0.85 0.85 1.00 0.87 0.93 0.94 0.85 0.91
Case 3 6 − 1.00 0.86 1.00 1.00 1.00 0.93 1.00 0.93 1.00
Case 4 31 − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00
Case 5 37 − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Case 6 11 − 0.87 0.61 0.75 0.87 0.87 0.89 0.87 0.50 0.87
Case 7 10 − 0.87 0.61 0.71 0.87 0.87 0.87 0.87 0.71 0.71

CHD2-2 Case 1 3 0.58 − 0.48 0.58 0.48 0.58 0.55 0.68 0.00 0.73
Case 2 34 − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Case 3 14 − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Case 4 24 − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Case 5 28 − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Case 6 7 − 1.00 1.00 0.82 0.82 1.00 0.82 0.82 0.47 0.82
Case 7 4 − 0.86 0.82 1.00 0.82 1.00 0.61 1.00 0.00 0.75

ATR Case 1 25 1.00 − 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00
Case 2 9 − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Case 3 8 − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Case 4 2 − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89 1.00
Case 5 2 − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 1.00
Case 6 9 − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.71 1.00
Case 7 10 − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2. F1 from rank aggregation and eight filtering techniques (The best result is in bold).

Dataset Resampling NO. RA RAR t Test Fisher Hellinger Relief ReliefF IG Gini R-Value

NPC Case 1 8 1.00 − 0.88 0.95 0.95 0.97 1.00 0.95 0.95 0.92
TBI Case 1 11 0.93 − 0.82 0.86 0.87 0.90 0.90 0.88 0.83 0.88

Case 2 13 − 1.00 0.84 0.90 0.94 0.95 0.94 0.84 0.87 0.86
Case 3 1 − 1.00 0.87 0.87 1.00 1.00 0.96 0.95 0.83 1.00
Case 4 7 − 1.00 0.91 0.97 0.93 0.97 0.90 0.93 0.89 1.00
Case 5 10 − 1.00 0.87 0.93 0.93 0.93 0.93 0.97 0.88 0.93
Case 6 19 − 1.00 0.73 0.80 0.86 0.86 0.77 0.80 0.71 0.91
Case 7 11 − 1.00 0.83 0.92 0.80 0.86 0.86 0.75 0.50 0.86

CHD2-1 Case 1 10 0.88 − 0.87 0.88 0.87 0.87 0.87 0.87 0.83 0.87
Case 2 11 − 0.94 0.94 0.71 0.93 0.89 0.93 0.88 0.67 0.89
Case 3 6 − 1.00 0.89 1.00 1.00 1.00 0.93 0.94 0.94 0.92
Case 4 31 − 1.00 0.95 0.95 0.96 0.90 0.96 0.90 0.86 0.95
Case 5 37 − 1.00 1.00 0.91 0.95 0.95 1.00 0.95 0.86 0.95
Case 6 11 − 0.89 0.50 0.75 0.73 0.89 1.00 0.83 0.55 0.67
Case 7 10 − 0.86 0.73 0.57 0.80 0.75 0.86 0.67 0.55 0.57
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Table 2. Cont.

Dataset Resampling NO. RA RAR t Test Fisher Hellinger Relief ReliefF IG Gini R-Value

CHD2-2 Case 1 3 0.91 − 0.87 0.86 0.95 0.87 0.91 0.90 0.87 0.91
Case 2 34 − 1.00 1.00 1.00 0.88 0.92 0.93 1.00 0.88 0.93
Case 3 14 − 1.00 1.00 0.92 0.86 0.92 1.00 0.93 0.86 0.93
Case 4 24 − 1.00 0.90 0.91 0.95 0.95 0.95 1.00 0.95 0.95
Case 5 28 − 1.00 0.95 0.95 0.95 0.95 1.00 0.96 0.95 1.00
Case 6 7 − 0.86 0.57 0.80 0.80 0.75 0.86 0.86 0.50 0.86
Case 7 4 − 0.86 0.80 0.75 0.57 0.86 0.86 0.86 0.50 0.67

ATR Case 1 25 1.00 − 1.00 0.89 1.00 1.00 1.00 1.00 0.89 1.00
Case 2 9 − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Case 3 8 − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Case 4 2 − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89 1.00
Case 5 2 − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Case 6 9 − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 1.00
Case 7 10 − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 1.00

Table 3. AUCROC from rank aggregation and eight filtering techniques (The best result is in bold).

Dataset Resampling NO. RA RAR t Test Fisher Hellinger Relief ReliefF IG Gini R-Value

NPC Case 1 16 0.96 − 0.90 0.91 0.94 0.93 0.96 0.93 0.93 0.95
TBI Case 1 3 0.70 − 0.48 0.61 0.52 0.61 0.65 0.58 0.49 0.67

Case 2 11 − 0.89 0.80 0.81 0.78 0.82 0.87 0.79 0.72 0.83
Case 3 1 − 0.95 0.83 0.74 0.94 0.85 0.83 0.85 0.76 0.95
Case 4 28 − 0.91 0.85 0.86 0.87 0.88 0.86 0.86 0.84 0.89
Case 5 26 − 0.93 0.91 0.92 0.90 0.90 0.92 0.90 0.88 0.90
Case 6 22 − 0.77 0.65 0.68 0.69 0.73 0.74 0.73 0.50 0.71
Case 7 25 − 0.71 0.63 0.56 0.68 0.53 0.61 0.61 0.35 0.66

CHD2-1 Case 1 10 0.60 − 0.48 0.51 0.61 0.50 0.59 0.60 0.45 0.59
Case 2 11 − 0.76 0.66 0.60 0.75 0.77 0.73 0.72 0.61 0.73
Case 3 6 − 0.92 0.85 0.81 0.92 0.90 0.81 0.88 0.80 0.79
Case 4 31 − 0.86 0.81 0.79 0.86 0.87 0.82 0.84 0.75 0.84
Case 5 37 − 0.87 0.85 0.84 0.86 0.86 0.81 0.86 0.90 0.82
Case 6 11 − 0.64 0.57 0.45 0.50 0.57 0.57 0.64 0.36 0.62
Case 7 10 − 0.60 0.52 0.55 0.52 0.48 0.52 0.60 0.36 0.52

CHD2-2 Case 1 3 0.60 − 0.52 0.49 0.54 0.50 0.52 0.55 0.39 0.57
Case 2 34 − 0.86 0.79 0.84 0.88 0.73 0.80 0.80 0.70 0.79
Case 3 14 − 0.90 0.85 0.84 0.82 0.90 0.68 0.88 0.81 0.84
Case 4 24 − 0.93 0.88 0.88 0.88 0.90 0.86 0.91 0.87 0.93
Case 5 28 − 0.91 0.88 0.90 0.88 0.85 0.91 0.89 0.89 0.90
Case 6 7 − 0.63 0.53 0.56 0.66 0.59 0.44 0.56 0.28 0.59
Case 7 4 − 0.66 0.56 0.63 0.50 0.66 0.66 0.63 0.22 0.56

ATR Case 1 25 0.88 0.98 − 0.51 0.85 0.85 0.76 0.85 0.50 0.76
Case 2 9 − 0.96 0.79 0.86 0.96 0.96 0.93 0.96 0.75 0.93
Case 3 8 − 0.97 1.00 0.90 0.97 0.90 0.97 0.97 0.80 0.93
Case 4 2 − 0.98 0.93 0.83 0.88 0.98 0.95 0.98 0.81 0.95
Case 5 2 − 0.98 0.81 0.86 0.76 0.93 0.93 0.95 0.71 0.88
Case 6 9 − 0.94 0.81 0.75 0.88 0.94 0.88 0.81 0.19 0.81
Case 7 10 − 0.94 0.81 0.63 0.69 0.63 0.94 0.88 0.19 0.75
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Table 4. AUCPRC from rank aggregation and eight filtering techniques (The best result is in bold).

Dataset Resampling NO. RA RAR t Test Fisher Hellinger Relief ReliefF IG Gini R-Value

NPC Case 1 15 0.96 − 0.87 0.90 0.91 0.92 0.96 0.92 0.91 0.91
TBI Case 1 8 0.62 − 0.27 0.58 0.40 0.47 0.56 0.47 0.26 0.46

Case 2 18 − 0.85 0.79 0.81 0.78 0.86 0.84 0.81 0.65 0.75
Case 3 1 − 0.93 0.77 0.60 0.91 0.85 0.74 0.85 0.74 0.89
Case 4 27 − 0.89 0.84 0.81 0.83 0.85 0.86 0.83 0.81 0.85
Case 5 13 − 0.91 0.81 0.82 0.81 0.82 0.90 0.86 0.79 0.81
Case 6 30 − 0.78 0.61 0.69 0.64 0.62 0.66 0.67 0.50 0.70
Case 7 24 − 0.71 0.65 0.54 0.64 0.59 0.57 0.62 0.41 0.58

CHD2-1 Case 1 10 0.61 − 0.33 0.30 0.52 0.28 0.45 0.43 0.23 0.45
Case 2 11 − 0.77 0.56 0.58 0.69 0.65 0.64 0.68 0.55 0.65
Case 3 6 − 0.88 0.79 0.88 0.81 0.77 0.81 0.86 0.79 0.86
Case 4 31 − 0.86 0.81 0.80 0.80 0.82 0.83 0.85 0.73 0.80
Case 5 37 − 0.87 0.81 0.75 0.84 0.85 0.82 0.84 0.78 0.82
Case 6 11 − 0.66 0.46 0.45 0.48 0.65 0.53 0.55 0.40 0.50
Case 7 10 − 0.63 0.44 0.53 0.52 0.55 0.56 0.56 0.40 0.48

CHD2-2 Case 1 3 0.45 − 0.22 0.33 0.27 0.32 0.31 0.27 0.21 0.26
Case 2 34 − 0.87 0.68 0.78 0.76 0.82 0.85 0.86 0.73 0.80
Case 3 14 − 0.87 0.81 0.74 0.81 0.86 0.76 0.83 0.79 0.78
Case 4 24 − 0.91 0.84 0.90 0.87 0.85 0.85 0.87 0.85 0.81
Case 5 28 − 0.90 0.86 0.88 0.80 0.88 0.86 0.89 0.79 0.79
Case 6 7 − 0.71 0.42 0.62 0.64 0.66 0.45 0.57 0.35 0.63
Case 7 4 − 0.64 0.64 0.57 0.50 0.63 0.55 0.66 0.40 0.60

ATR Case 1 25 0.93 − 0.75 0.52 0.52 0.82 0.82 0.82 0.25 0.60
Case 2 9 − 1.00 0.81 0.88 0.92 0.94 0.94 0.94 0.68 0.88
Case 3 8 − 1.00 1.00 0.78 1.00 0.88 0.93 1.00 0.82 0.88
Case 4 2 − 0.95 0.84 0.79 0.91 0.91 0.88 0.91 0.70 0.91
Case 5 2 − 0.95 0.79 0.78 0.78 0.88 0.90 0.95 0.61 0.88
Case 6 9 − 1.00 0.89 0.69 0.85 0.89 0.76 0.85 0.36 0.80
Case 7 10 − 1.00 0.61 0.54 0.64 0.54 0.80 0.89 0.37 0.80

3. Discussion

Tables 1 and 2 show that RA reached the maximal values of Gmean and F1. It can be
seen from Tables 3 and 4 that RA and ReliefF obtained the maximal values of AUCROC
and AUCPRC. Therefore, RA outperformed single filtering methods when assessed with
Gmean, F1, AUCROC, and AUCPRC. The NPC dataset had a completely balanced dis-
tribution, and RA worked well on it. Thus, rank aggregation is necessary to integrate
different results, even if in a totally balanced situation, and a consensual feature ranking
list is provided.

Aggregation ranking lists in Figures 3–6 tell us the order of importance of each feature.
Though the rank lists derived from different subsampling methods were not the same,
the top features were approximately consistent. After obtaining the rank list, another
task is to figure out how many features should be considered as key variables. In this
computation, we performed 5-fold cross-validation [32] to find the optimal number of key
features. As recent studies have showed that AUCPRC is more informative in imbalanced
learning [32,33], AUCPRC was employed as perfomance metric in this section, and random
forest classifier was utilized to implement classification. Namely, the value of AUCPRC
was calculated, as the top k ranked features were used each time, where k varies from 1 to
p (see Figures 7–10). We chose the optimal k- value such that the random forest classifier
had the maximal AUCPRC in identifying classification. It can be seen from Tables 1–4
that the optimal number of important features varied greatly under different re-balanced
strategies. One possible reason is that the artificial data generated by different subsampling
have difference to some extent. Another possible reason is the measurement changes
sightly as the number of candidate features changes. This seems to be true from the
Figures 7–10 where each curve tends to be flat as the changes in the number of features
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used for classification. It also noted that the AUCPRC under no re-sampling (case 1) was
generally lower than that under six re-sampling methods.

Tables 1–4 report the results of these real datasets with the assessing metrics Gmean,
F1, AUCROC, and AUCPRC, respectively. We can perform comparisons in several aspects.
Original imbalanced datasets are employed in case 1 from Tables 1–4 (except NPC dataset).
Of all the 16 “no re-balance” situations, the aggregation rank method reached the maximal
measures in 12 situations compared with the other 8 filtering methods (t test, Fisher score,
Hellinger distance, Relief, ReliefF, information gain, Gini, and R-value). It indicates that
aggregation rank was better than a single filtering rank with the proportion of 75.00% when
the data are class-imbalanced. If the original dataset NPC was counted in, this proportion
was 80.00%. Therefore, rank aggregation is generally superior to single filtering methods,
no matter how the data are balanced or imbalanced.
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Figure 7. AUCPRC when top k features are used with the dataset “TBI” on seven cases.
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Figure 8. AUCPRC when top k features are used with the dataset “CHD2-1” on seven cases.
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Figure 9. AUCPRC when top k features are used with the dataset “CHD2-2” on seven cases.
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Figure 10. AUCPRC when top k features are used with the dataset “ATR” on seven cases.

Re-balanced datasets were artificially generated and utilized in cases 2–7 from
Tables 1–4. Of all the 96 scenarios with re-balance, the aggregation rank method reached the
maximal measures in 83 scenarios compared to the other eight filtering methods. It means
that aggregation rank outperformed single filtering rank with the proportion of 86.46%
when the class-imbalanced data were treated with re-balance strategies. Thus, performing
aggregation rank is extremely effective in dealing with class-imbalanced data.

Rank aggregation was performed on both imbalanced datasets (RA) and re-balanced
datasets (RAR). Of all the 96 scenarios with re-balance (cases 2–7 in Tables 1–4), there
were 93 situations whose measurements were equal or greater than those from case 1 (no
re-balance). It shows that aggregation rank with re-balance strategies performed better with
the proportion of 96.88% than that with original class-imbalanced data. Therefore, perform-
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ing re-balance can play a crucial role in improving the performance of rank aggregation
when the data are class-imbalanced.

Figures 7–10 show the AUCPRC curves of seven cases on four imbalanced datasets.
AUCPRC from re-balanced data (cases 2–7) was generally higher than that from imbal-
anced data (case 1). In other words, the performance can be promoted after re-sampling
to balance the imbalanced data artificially. Case 5 and case 6 are two under-sampling
methods, and the AUCPRC was generally lower than that from over-sampling or hybrid
sampling (cases 2–4). The possible reason is that some of the useful information is missed
in doing under-sampling when the size of the minority instances is too small (see Table 5).
Therefore, one should be cautious about using under-sampling in practice.

Table 5. The summary of five datasets.

Datasets Attributes Instances Majority Minority Ratio

NPC 24 200 100 100 1.00
TBI 42 104 73 31 2.35

CHD2-1 50 72 51 21 2.43
CHD2-2 50 67 51 16 3.19

ATR 104 29 21 8 2.63

In sum, different filter methods generate different rankings. Rank aggregation is
necessary to integrate different results and provide a consensual feature ranking list. Class-
imbalance usually leads to degraded performance from a filtering method on feature
importance ranking. This harmfulness can be alleviated via different re-balance strategies
in sample space.

4. Materials and Methods
4.1. Notations

The notations used in this study are listed below:

D a dataset with two classes C1 and C2
C1 the minority (positive) class
C2 the majority (negative) class
n the size of the total instances in D
p the number of the features in D
nk the size of Ck, k = 1, 2
|D| the number of samples in D
xj the jth feature, j = 1, 2, . . . , p
xi the ith instance, i = 1, 2, . . . , n
µkj the expectation of jth feature in Ck , k = 1, 2; j = 1, 2, . . . , p
σ2

kj the variance of jth feature in Ck , k = 1, 2; j = 1, 2, . . . , p
x̄kj the sample mean of jth feature in Ck , k = 1, 2; j = 1, 2, . . . , p
s2

kj the sample variance of jth feature in Ck , k = 1, 2; j = 1, 2, . . . , p

4.2. Eight Filtering Methods
4.2.1. t Test

Feature screening using the t test statistic [34] is similar to performing a hypothesis test
(the null hypothesis is that there is no difference in the means) on the class’s distribution,
and its significance indicates the difference between majority and minority classes. The
lower the p value of this t test, the higher the majority and minority classes’ significant
difference. Consequently, the considered feature is more relevant to the separation of
two classes.
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4.2.2. Fisher Score

Fisher score [35] is simple and generally quite effective, which can be a criterion of
feature screening. Fisher score of a single feature is defined as follows:

Fisher(xj) =

∣∣µ1j − µ2j
∣∣

σ2
1j + σ2

2j
, j = 1, 2, . . . , p, (1)

µ1j, µ2j, σ2
2j, and σ2

2j can be replaced by their corresponding sample statistics in computa-
tion, namely,

Fisher(xj) =

∣∣x̄1j − x̄2j
∣∣

s2
1j + s2

2j
, j = 1, 2, . . . , p (2)

A feature with a large Fisher score is more crucial for discriminating the two categories.

4.2.3. Hellinger Distance

Hellinger distance can be used to measure a distributional divergence [36]. Denoted
the two normal distributions by P and Q, Hellinger distance is calculated as follows:

D2
H(P, Q) = 2− 2

√
2σ1σ2

σ2
1 + σ2

2
exp

{
− (µ1 − µ2)

2

4(σ2
1 + σ2

2 )

}
, (3)

where µ1, σ2
1 , µ2, and σ2

2 are the expectation and variance of P and Q, respectively, and their
corresponding sample statistics are used in practice [37]. The larger the Hellinger distance
is, the more divergent the two distributions are.

4.2.4. Relief and ReliefF

The Relief is an iteration method that tries to give each feature a score to indicate its
level of relevance to the response [37,38]. Let xi be an instance; nearhiti and nearmissi be
its two nearest neighbors from the same class and the other class by the Euclidean distance,
respectively. The score vector s = (s1, s2, . . . , sp)T is refreshed as follows:

sj ←− sj − (xij − nearhitij)
2 + (xij − nearmissij)

2, j = 1, 2, . . . , p, (4)

where xij, nearhitij and nearmissij are the jth element of xi, nearhiti and nearmissi, respec-
tively. A feature with a higher score is more crucial to the response. Though ReliefF [39] is
originally developed for dealing with multi-class and noise datasets, it can be applied to
binary classification cases. Compared with Relief that searches one nearest instance from
the same class and one from the other class in updating the weights, ReliefF finds k nearest
neighbors. Similarly, a feature with a higher score is more important to the response.

4.2.5. Information Gain (IG)

Information gain [40] is the measurement of informational theory and can be utilized
to assess the importance of a given feature. In the settings of binary classification, the
information entropy of the set D is defined as follows:

Ent(D) = −
2

∑
k=1

nk
n

log2
nk
n

(5)

Assuming that a discrete feature (attribute) x has V different values {x1, x2, . . . , xV},
and Dv is the subset of instance set D satisfying x = xv. The information gain of the
variable x is

IG(D, x) = Ent(D)−
V

∑
v=1

|Dv|
n

Ent(Dv), (6)
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The larger the information gain is, the more important the feature is for separating the
classes. A continuous feature should be discretized before using the IG metric.

4.2.6. Gini Index

Gini index [41] fits binary digits, continuous numerical values, ordinal numbers, etc.
It is a non-purity split method. Gini index of D is defined as follows:

Gini(D) = 1−
2

∑
k=1

p2
k , (7)

where pk is the probability that any instance belongs to Ck, and it is replaced with nk/n,
(k = 1, 2) in practice. If we divide D into M subsets D1, D2, . . . , DM, the Gini index after
splitting is:

Ginisplit(D) =
M

∑
m=1

|Dm|
n

Gini(Dm) (8)

The smaller the Gini index is, the more important the feature is.

4.2.7. R-Value

R-value [30,42] indicates the degree of overlap for the class-imbalanced dataset. R-
value for a dataset D is defined as follows:

R(D) =
1
n

2

∑
k=1

|Ck |

∑
m=1

λ(|kNN(Pkm, D− Ck)| − θ), (9)

where

λ(x)=
{

1, i f x > 0,
0, otherwise

(10)

where kNN(P, Ci) is the subset of k nearest neighbors of instance P that belong to the set
of instances Ci, and θ is the threshold generally set to be k/2 [43]. The smaller the R-value
is, the more important the feature is for discriminating the categories.

4.3. Four Evaluation Metrics
4.3.1. Geometric Mean and F-Measure

True positive, true negative, false positive, and false negative are denoted by TP, TN,
FP, and FN, respectively. Some common metrics are listed below:

TPR = recall =
TP

TP + FN
;

TNR =
TN

TN + FP
;

FPR =
FP

FP + TN
;

precision =
TP

TP + FP
;

Gmean =
√

TPR× TNR;

F1 =
2precision× recall
precision + recall

The range of both Gmean and F1 is [0, 1]. The larger they are, the better the clas-
sifer works.

4.3.2. AUCROC and AUCPRC

AUCROC is the area under the receiver operating characteristic curve (ROC) [44].
AUCPRC is the area under the precision recall curve (PRC) [45]. Both AUCROC and
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AUCPRC range from 0 to 1, and the larger they are, the better the classifier is built for the
imbalanced learning. More details on AUCROC or AUCPRC can be found in our previous
studies [37,46].

Gmean, F1, AUCROC, and AUCPRC are more widely used than the metric Accuracy in
class-imbalance learning. These metrics actually pay more attention to the minority samples.

4.4. Kendall’S τ Rank Correlation

Kendall’s τ rank correlation statistic [47] can be applied to calculate the degree of
comparability between the feature rankings of two filtering techniques. Let the two feature
rankings generated by two filters be

f1 : r11, r21, r31, . . . , rp1,

f2 : r12, r22, r32, . . . , rp2,

and there are no ties in each of ranking list. Then Kendall’s τ is calculated as follows,

τ( f1, f2) =

∑
i<j

sgn(ri1 − rj1)sgn(ri2 − rj2)

p(p− 1)/2
, (11)

where sgn(x) is the sign function, namely it equals 1 if x is positive and −1 if x negative.
A pair of (i, j) is called concordant if ri1 > rj1 and ri2 > rj2 or ri1 < rj1 and ri2 < rj2.
Otherwise, they are considered discordant. The numerator ∑

i<j
sgn(ri1 − rj1)sgn(ri2 − rj2)

is the difference between the number of concordant pairs and the number of discordant
pairs, and the denominator p(p− 1)/2 is the number of all distinct pairs of p elements.
The range of τ is [−1, 1]. If τ = 0, the correlation of two rankings is weak; if τ = −1, then
all pairs will be discordant, and the two rankings are exactly opposite; if τ = 1, then all
pairs are exactly concordant [48].

4.5. Rank Aggregation with Re-Balance for Class-Imbalanced Data

As mentioned above, there are differences among the ranks from different filtering
methods, but we assume that they are equal in match, namely, no one is better or worse
than another. Rank aggregation (RA) is a greatly intuitive metric that computes the
absolute differences between the ranks of all individual features [49]. Rank aggregation
with re-balance (RAR) consists of two stages for class-imbalanced data and is illustrated in
Figure 11. In sample space, the data are artificially balanced by generating new instances
of the minority class or (and) removing some of the majority class instances. In feature
space, m rank lists are first computed using m different filtering methods. Each rank list is
the full permutation of all the features. Then, they are merged to be an aggregated rank.
Feature screening and classification can be performed according to this aggregated rank.

Figure 11. The frame of rank aggregation with re-balance.
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4.5.1. Rank Aggregation

As mentioned above, different filter techniques will give different feature ranking
results. The rank aggregation method [34,50] combines all the rankings together, by
aggregating all feature ranking lists generated from different filtering methods.

RA is to find an optimal ranking δ∗ such that

δ∗ = arg min
K

∑
i=1

wid(δ, fi), (12)

where fi is the ith feature ranking list, δ represents a ranking list with the same length of fi,
d is a distance function, and wi is the important weight related with list fi. In this study, d
is chosen to be the Spearman’s foot rule distance [50]:

d(δ, LM) = ∑t∈LM∪δ
|M(rδ(t))−M(rLM (t))| × |rδ(t)− rLM (t)| (13)

LM = {AM
1 , ..., AM

m } denotes an ordered list of top m algorithms produced by the validation
measure M. Let M(1), ..., M(m) be the scores for the top m algorithms in LM, where M(1) is
the best score given by measure M and so on. Let rM(A) be the rank of A under M (1 means
“best”) if A is within top m, and be equal to m + 1; otherwise, rδ(A) is defined likewise.

The optimization of the objective (12) is achieved by using the Monte Carlo cross-
entropy (CE) algorithm [51,52]. CE Monte Carlo algorithm is a stochastic search method,
which produces a “better” sample in the future, which is concentrated around an x that
corresponds to an optimal δ∗ [50].

4.5.2. Strategies to Generate New Samples

Before performing rank aggregation, the training instances are to be modified to
produce a more balanced class distribution. To achieve this task, new minority or (and)
majority class samples need to be generated or drawn from the original dataset. We employ
the following three strategies to gain new samples:

Randomly Sampling

In the over-sampling, some (all) the minority class instances are randomly duplicated;
in the under-sampling, a portion of majority samples are randomly removed.

SMOTE

Synthetic minority over-sampling technique (SMOTE) is a popular over-sampling
algorithm [5]. Figure 12 illustrates how to generate new samples according to the selected
point xi in SMOTE. The five selected nearest neighbors of xi are xi1 to xi5. x

′
i1 to x

′
i5 are the

synthetic data points created by the randomized interpolation. Namely,

x
′
ih = xi + uh(xih − xi), h = 1, 2, . . . , 5,

where uh is a random number between 0 and 1. The above operation can be repeated to
obtain requested synthetic minority instances.

Smoothed Bootstrap

Smoothed bootstrap technique repeatedly bootstraps the data from the two classes and
employs smoothed kernel functions to generate new approximately balanced samples [53].
A new instance is generated by performing the following three steps:

step 1: choose y = k ∈ {1, 2} with probability 0.5;
step 2: choose (xi, yi) in the original daa set such that yi = k with probability 1/nk;
step 3: sample x from a probability distribution KHk (·, xi), which is centered at xi and

depends on the smoothing matrix Hk.
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In brief, smoothed bootstrap firstly draws randomly from the original dataset an
instance from one of the two categories, then generates a new instance in its neighborhood.

Figure 12. An illustration of how to create the synthetic data points in the SMOTE algorithm.

4.6. Experiment and Assessing Metrics

As shown in Table 5, five metabolomics datasets were employed to test our algorithm.
NPC is a nasopharyngeal carcinoma dataset [32,54] that is exactly balanced. In this study,
NPC was utilized to investigate the performance of rank aggregation strategy on original
balanced data, which included 100 patients with nasopharyngeal carcinoma and 100 healthy
controls. Traumatic brain injury (TBI) is from our previous studies [32,55], which reports
the serum metabolic profiling of TBI patients with (or without) cognitive impairment
(CI). The TBI dataset included 73 TBI patients with CI and 31 TBI patients without CI.
CHD2-1 and CHD2-2 datasets are actually from the same experiment about coronary heart
disease (CHD) [30]. The CHD2-1 dataset contains 21 patients with CHD, and the CHD2-2
dataset contains 16 patients with coronary heart disease associated with type 2 diabetes
mellitus (CHD-T2DM), which are compared with a control group of 51 healthy adults.
ATR is an Acori Tatarinowii Rhizoma dataset, which included 21 samples collected from
Sichuan Province, and 8 samples were from Anhui Province in China [56]. Table 5 lists
the summary of five datasets; included are the numbers of attributes, total instances, the
majority, the minority instances, and the imbalance ratio. The NPC dataset was utilized
to test the performance of rank aggregation under original balanced distribution. The
other four imbalanced data sets were used to evaluate the RAR algorithm with artificially
re-balanced data.

This section shows the efficacy of the proposed RAR algorithm on one original bal-
anced dataset and four class-imbalanced datasets and compares it with other filtering
feature screening methods via several assessing metrics. Rank aggregation was performed
under the following seven situations:

• Case 1: no re-sampling: the original datasets are directly utilized to perform rank
aggregation. Denoted case 1 by “RA” because there is no re-sampling in it.

• Case 2: hybrid-sampling A: some instances of the majority class are randomly elim-
inated, and new synthetic minority examples are generated by SMOTE. The size
of the remaining majority is equal to the size of the (original plus new generated)
minority class.

• Case 3: hybrid-sampling B: A new synthetic dataset is generated according to the
smoothed bootstrap re-sampling technique. The sizes of the majority and minority
classes are approximately equal.

• Case 4: over-sampling A: new minority class instances are randomly duplicated
according to the original minority group.
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• Case 5: over-sampling B: new synthetic minority examples are generated on the basis
of the smoothed bootstrap re-sampling technique.

• Case 6: under-sampling A: some instances from the majority class are randomly
removed so that the size of the remaining majority class is equal to the size of the
minority.

• Case 7: under-sampling B: new synthetic majority examples are generated according
to the smoothed bootstrap re-sampling technique.

Note that NPC is balanced, and just case 1 is performed on it. Table 6 lists the summary
of the six re-balanced strategies. In this study, Gmean, F1, AUCROC, and AUCPRC are
employed to assess the performance of RA or RAR algorithm on five datasets under
seven cases.

Table 6. Re-balanced strategies.

Methods Re-Sampling Process Algorithm Process

Under-Sampling Over-Sampling Hybrid SMOTE Random Smoothed Bootstrap

Case 2 Yes Yes
Case 3 Yes Yes
Case 4 Yes Yes
Case 5 Yes Yes
Case 6 Yes Yes
Case 7 Yes Yes

5. Conclusions

In this paper, we propose a simple but effective strategy called RAR for feature
screening of class-imbalanced data by aggregating rankings from individual filtering
algorithms and modifying the class-imbalanced data with various re-sampling methods to
provide balanced or more adequate data. RAR can address the problem of inconsistency
between different feature ranking methods to a large extent. The results on real datasets
show that RAR is highly competitive and almost better than single filtering screening
in terms of geometric mean, F-measure, AUCROC, and AUCPRC. After performing re-
balanced pretreatment, the performance of rank aggregation can be highly improved, so
re-sampling to balance the classes is extremely useful in rank aggregation when the data
are class-imbalanced in metabolomics. Our proposed method serves as a reference for
future research on feature selection for the diagnosis of diseases.

Rank aggregation is a general idea to investigate the importance of features. In this
study, rankings from eight filtering algorithms are employed to generate the aggregated
rank. There are many other filter techniques, such as Chi-squared, power, Kolmogorov–
Smirnov statistic, and signal-to-noise ratio [57], which are all widely utilized in class-
imbalance learning. In addition, considering that a re-sampling method can also generate
a rank list, rank aggregation can be performed according to the various re-sampling
algorithms rather than different filtering methods. Further, if necessary, ensemble multiple
rank aggregations could be performed to combine those aggregated rankings derived from
different algorithms. Finally, although RAR is used in the metabolomics datasets in this
study, it is potentially available for handing high-dimensional imbalanced data from other
fields, such as economics and biology.

Author Contributions: Conceptualization, G.-H.F.; Data curation, G.-H.F. and J.-B.W.; Funding
acquisition, L.-Z.Y.; Software, J.-B.W.; Writing—original draft, M.-J.Z.; Writing—review and editing,
G.-H.F. and L.-Z.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work is financially supported by the National Natural Science Foundation of China
(Grant Nos. 11761041 and 21775058).

Institutional Review Board Statement: Not applicable.



Metabolites 2021, 11, 389 21 of 22

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets for this article are available from the corresponding author.

Acknowledgments: The authors sincerely thank the academic editor and four anonymous reviewers
for their constructive comments that led to the current improved version of the paper. We would
like to thank the National Natural Science Foundation of China for its financial support (Grant Nos.
11761041 and 21775058).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brodley, C.; Friedl, M. Identifying mislabeled training data. J. Artif. Intell. Res. 1999, 11, 131–167. [CrossRef]
2. Chawla, N. Data mining for imbalanced datasets: An overview. In Data Mining and Knowledge Discovery Handbook; Springer:

Berlin/Heidelberg, Germany, 2009; pp. 875–886.
3. Krawczyk, B. Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221–232.

[CrossRef]
4. Cordón, I.; García, S.; Fernández, A.; Herrera, F. Imbalance: Oversampling algorithms for imbalanced classification in R. Knowl.

Based Syst. 2018, 161, 329–341. [CrossRef]
5. Chawla, N.; Bowyer, K.; Hall, L.; Kegelmeyer, W. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002,

16, 321–357. [CrossRef]
6. Lunardon, N.; Menardi, G.; Torelli, N. ROSE: A Package for Binary Imbalanced Learning. R J. 2014, 6, 79–89. [CrossRef]
7. Hulse, J.V.; Khoshgoftaar, T.; Napolitano, A.; Wald, R. Feature selection with high-dimensional imbalanced data. In Proceedings

of the 2009 IEEE International Conference on Data Mining Workshops, Miami, FL, USA, 6 December 2009; pp. 507–514.
8. Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182.
9. Saeys, Y.; Inza, I.; Larrañaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23, 2507–2517.

[CrossRef]
10. Yun, Y.H.; Li, H.D.; Deng, B.C.; Cao, D.S. An overview of variable selection methods in multivariate analysis of near-infrared

spectra. TrAC Trends Anal. Chem. 2019, 113, 102–115. [CrossRef]
11. Su, X.; Khoshgoftaar, T. A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 2009, 421425 . [CrossRef]
12. Ambjørn, J.; Janik, R.; Kristjansen, C. Wrapping interactions and a new source of corrections to the spin-chain/string duality.

Nucl. Phys. B 2006, 736, 288–301. [CrossRef]
13. Higman, G.; Neumann, B.; Neuman, H. Embedding theorems for groups. J. Lond. Math. Soc. 1949, 1, 247–254. [CrossRef]
14. Guo, H.; Li, Y.; Shang, J.; Gu, M.; Huang, Y.; Gong, B. Learning from class-imbalanced data: Review of methods and applications.

Expert Syst. Appl. 2017, 73, 220–239.
15. Gu, Q.; Li, Z.; Han, J. Generalized fisher score for feature selection. arXiv 2012, arXiv:1202.3725.
16. Yin, L.; Ge, Y.; Xiao, K.; Wang, X.; Quan, X. Feature selection for high-dimensional imbalanced data. Neurocomputing 2013,

105, 3–11. [CrossRef]
17. Spolaôr, N.; Cherman, E.; Monard, M.; Lee, H. ReliefF for multi-label feature selection. In Proceedings of the 2013 Brazilian

Conference on Intelligent Systems, Fortaleza, Brazil, 19–24 October 2013; pp. 6–11.
18. Kira, K.; Rendell, L. The feature selection problem: Traditional methods and a new algorithm. Aaai 1992, 2, 129–134.
19. Lee, C.; Lee, G. Information gain and divergence-based feature selection for machine learning-based text categorization. Inf.

Process. Manag. 2006, 42, 155–165. [CrossRef]
20. Lerman, R.; Yitzhaki, S. A note on the calculation and interpretation of the Gini index. Econ. Lett. 1984, 15, 363–368. [CrossRef]
21. Lobo, J.; Jiménez-Valverde, A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob.

Ecol. Biogeogr. 2008, 17, 145–151. [CrossRef]
22. Boyd, K.; Eng, K.; Page, C. Area under the precision-recall curve: point estimates and confidence intervals. In Joint European

Conference on Machine Learning and Knowledge Discovery in Databases; Springer: Berlin/Heidelberg, Germany, 2013; pp. 451–466.
23. Altidor, W.; Khoshgoftaar, T.; Napolitano, A. Wrapper-based feature ranking for software engineering metrics. In Proceedings of

the 2009 International Conference on Machine Learning and Applications, Miami, FL, USA, 13–15 December 2009; pp. 241–246.
24. Pillai, I.; Fumera, G.; Roli, F. F-measure optimisation in multi-label classifiers. In Proceedings of the 21st International Conference

on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; pp. 2424–2427.
25. Lee, J.; Batnyam, N.; Oh, S. RFS: Efficient feature selection method based on R-value. Comput. Biol. Med. 2013, 43, 91–99.

[CrossRef] [PubMed]
26. Ali, M.; Ali, S.I.; Kim, D.; Hur, T.; Bang, J.; Lee, S.; Kang, B.H.; Hussain, M.; Zhou, F. UEFS: An efficient and comprehensive

ensemble-based feature selection methodology to select informative features. PLoS ONE 2018, 13, e0202705. [CrossRef] [PubMed]
27. Hoque, N.; Singh, M.; Bhattacharyya, D.K. EFS-MI: An ensemble feature selection method for classification. Complex Intell. Syst.

2018, 4, 105–118. [CrossRef]
28. Yang, P.; Liu, W.; Zhou, B.B.; Chawla, S.; Zomaya, A.Y. Ensemble-Based Wrapper Methods for Feature Selection and Class Imbalance

Learning; Springer: Berlin/Heidelberg, Germany, 2013; pp. 544–555.

http://doi.org/10.1613/jair.606
http://dx.doi.org/10.1007/s13748-016-0094-0
http://dx.doi.org/10.1016/j.knosys.2018.07.035
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.32614/RJ-2014-008
http://dx.doi.org/10.1093/bioinformatics/btm344
http://dx.doi.org/10.1016/j.trac.2019.01.018
http://dx.doi.org/10.1155/2009/421425
http://dx.doi.org/10.1016/j.nuclphysb.2005.12.007
http://dx.doi.org/10.1112/jlms/s1-24.4.247
http://dx.doi.org/10.1016/j.neucom.2012.04.039
http://dx.doi.org/10.1016/j.ipm.2004.08.006
http://dx.doi.org/10.1016/0165-1765(84)90126-5
http://dx.doi.org/10.1111/j.1466-8238.2007.00358.x
http://dx.doi.org/10.1016/j.compbiomed.2012.11.010
http://www.ncbi.nlm.nih.gov/pubmed/23261163
http://dx.doi.org/10.1371/journal.pone.0202705
http://www.ncbi.nlm.nih.gov/pubmed/30153294
http://dx.doi.org/10.1007/s40747-017-0060-x


Metabolites 2021, 11, 389 22 of 22

29. Lin, X.; Yang, F.; Zhou, L.; Yin, P.; Kong, H.; Xing, W.; Lu, X.; Jia, L.; Wang, Q.; Xu, G. A support vector machine-recursive
feature elimination feature selection method based on artificial contrast variables and mutual information. J. Chromatogr. B 2012,
910, 149–155. [CrossRef] [PubMed]

30. Fu, G.H.; Wu, Y.J.; Zong, M.J.; Yi, L.Z. Feature selection and classification by minimizing overlap degree for class-imbalanced
data in metabolomics. Chemom. Intell. Lab. Syst. 2020, 196, 103906. [CrossRef]

31. Sen, P. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [CrossRef]
32. Fu, G.H.; Xu, F.; Zhang, B.Y.; Yi, L.Z. Stable variable selection of class-imbalanced data with precision-recall criterion. Chemom.

Intell. Lab. Syst. 2017, 171, 241–250. [CrossRef]
33. Takaya, S.; Marc, R.; Guy, B. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers

on Imbalanced Datasets. PLoS ONE 2015, 10, e0118432.
34. Yun, Y.H.; Deng, B.C.; Cao, D.S.; Wang, W.T.; Liang, Y.Z. Variable importance analysis based on rank aggregation with applications

in metabolomics for biomarker discovery. Anal. Chim. Acta 2016, 911, 27–34. [CrossRef]
35. Weston, J.; Mukherjee, S.; Chapelle, O. Feature selection for SVMs. In Proceedings of the Advances in Neural information

Processing Systems, Vancouver, BC, Canada, 3–8 December 2001; pp. 668–674.
36. Kailath, T. The Divergence and Bhattacharyya Distance Measures in Signal Selection. IEEE Trans. Commun. Technol. 1967,

15, 52–60. [CrossRef]
37. Fu, G.H.; Wu, Y.J.; Zong, M.J.; Pan, J. Hellinger distance-based stable sparse feature selection for high-dimensional class-

imbalanced data. BMC Bioinform. 2020, 21, 121. [CrossRef]
38. Robnik-Šikonja, M.; Kononenko, I. Theoretical and Empirical Analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53, 23–69.

[CrossRef]
39. Kononenko, I. Estimating attributes: analysis and extensions of RELIEF. In European Conference on Machine Learning; Springer:

Berlin/Heidelberg, Germany, 1994; pp. 171–182.
40. Yang, Y.; Pedersen, J. A comparative study on feature selection in text categorization. Icml 1997, 97, 35.
41. Shang, W.; Huang, H.; Zhu, H.; Lin, Y.; Qu, Y.; Wang, Z. A novel feature selection algorithm for text categorization. Expert Syst.

Appl. 2007, 33, 1–5. [CrossRef]
42. Borsos, Z.; Lemnaru, C.; Potolea, R. Dealing with overlap and imbalance: a new metric and approach. Pattern Anal. Appl. 2018,

21, 381–395. [CrossRef]
43. Oh, S. A new dataset evaluation method based on category overlap. Comput. Biol. Med. 2011, 41, 115–122. [CrossRef]
44. Provost, F.; Fawcett, T. Robust classification for imprecise environments. Mach. Learn. 2001, 42, 203–231. [CrossRef]
45. Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International

Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240.
46. Fu, G.H.; Yi, L.Z.; Pan, J. Tuning model parameters in class-imbalanced learning with precision-recall curve. Biom. J. 2019,

61, 652–664. [CrossRef]
47. Kendall, M.G. A New Measure of Rank Correlation. Biometrika 1938, 30, 81–93. [CrossRef]
48. Shieh, G. A weighted Kendall’s tau statistic. Stat. Probab. Lett. 1998, 39, 17–24. [CrossRef]
49. Pihur, V. Statistical Methods for High-Dimensional Genomics Data Analysis; University of Louisville: Louisville, KY, USA, 2009.
50. Pihur, V.; Datta, S.; Datta, S. RankAggreg, an R package for weighted rank aggregation. BMC Bioinform. 2009, 10, 62. [CrossRef]
51. Pihur, V.; Datta, S.; Datta, S. Weighted rank aggregation of cluster validation measures: a Monte Carlo cross-entropy approach.

Bioinformatics 2007, 23, 1607–1615. [CrossRef]
52. Pihur, V.; Datta, S.; Datta, S. Finding common genes in multiple cancer types through meta–analysis of microarray experiments:

A rank aggregation approach. Genomics 2008, 92, 400–403. [CrossRef] [PubMed]
53. Menardi, G.; Torelli, N. Training and assessing classification rules with imbalanced data. Data Min. Knowl. Discov. 2014,

28, 92–122. [CrossRef]
54. Fu, G.H.; Yi, L.Z.; Pan, J. LASSO-based false-positive selection for class-imbalanced data in metabolomics. J. Chemom. 2019, 33.

[CrossRef]
55. Fu, G.H.; Zhang, B.Y.; Kou, H.D.; Yi, L.Z. Stable biomarker screening and classification by subsampling-based sparse regularization

coupled with support vector machines in metabolomics. Chemom. Intell. Lab. Syst. 2017, 160, 22–31. [CrossRef]
56. Ma, S.S.; Zhang, B.Y.; Chen, L.; Zhang, X.J.; Ren, D.B.; Yi, L.Z. Discrimination of Acori Tatarinowii Rhizoma from two habitats

based on GC-MS fingerprinting and LASSO-PLS-DA. J. Cent. South Univ. 2018, 25, 1063–1075. [CrossRef]
57. Fernández, A.; García, S.; Galar, M.; Prati, R.C.; Krawczyk, B.; Herrera, F. Dimensionality Reduction for Imbalanced Learning. In

Learning from Imbalanced Data Sets; Springer: Cham, Switzerland, 2018; pp. 227–251. [CrossRef]

http://dx.doi.org/10.1016/j.jchromb.2012.05.020
http://www.ncbi.nlm.nih.gov/pubmed/22682888
http://dx.doi.org/10.1016/j.chemolab.2019.103906
http://dx.doi.org/10.1080/01621459.1968.10480934
http://dx.doi.org/10.1016/j.chemolab.2017.10.015
http://dx.doi.org/10.1016/j.aca.2015.12.043
http://dx.doi.org/10.1109/TCOM.1967.1089532
http://dx.doi.org/10.1186/s12859-020-3411-3
http://dx.doi.org/10.1023/A:1025667309714
http://dx.doi.org/10.1016/j.eswa.2006.04.001
http://dx.doi.org/10.1007/s10044-016-0583-6
http://dx.doi.org/10.1016/j.compbiomed.2010.12.006
http://dx.doi.org/10.1023/A:1007601015854
http://dx.doi.org/10.1002/bimj.201800148
http://dx.doi.org/10.1093/biomet/30.1-2.81
http://dx.doi.org/10.1016/S0167-7152(98)00006-6
http://dx.doi.org/10.1186/1471-2105-10-62
http://dx.doi.org/10.1093/bioinformatics/btm158
http://dx.doi.org/10.1016/j.ygeno.2008.05.003
http://www.ncbi.nlm.nih.gov/pubmed/18565726
http://dx.doi.org/10.1007/s10618-012-0295-5
http://dx.doi.org/10.1002/cem.3177
http://dx.doi.org/10.1016/j.chemolab.2016.11.006
http://dx.doi.org/10.1007/s11771-018-3806-8
http://dx.doi.org/10.1007/978-3-319-98074-4_9

	Introduction
	Results
	Kendall's  Rank Correlation of Eight Filtering Methods on Class-Imbalanced Data
	Rank Aggregation(RA) on Original Balanced Data
	Rank Aggregation with Re-Balance (RAR) on Imbalanced Data

	Discussion
	 Materials and Methods
	Notations
	Eight Filtering Methods
	t Test
	Fisher Score
	Hellinger Distance
	Relief and ReliefF
	 Information Gain (IG)
	Gini Index
	R-Value

	Four Evaluation Metrics
	Geometric Mean and F-Measure
	AUCROC and AUCPRC

	Kendall'S   Rank Correlation
	Rank Aggregation with Re-Balance for Class-Imbalanced Data
	Rank Aggregation
	Strategies to Generate New Samples

	Experiment and Assessing Metrics

	Conclusions
	References

