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Abstract: In the arcuate nucleus, neuropeptide Y (NPY) neurons, increase food intake and decrease
energy expenditure, and control the activity of pro-opiomelanocortin (POMC) neurons, that decrease
food intake and increase energy expenditure. Both systems project to other hypothalamic nuclei such
as the paraventricular and dorsomedial hypothalamic nuclei. Endocrine disrupting chemicals (EDCs)
are environmental contaminants that alter the endocrine system causing adverse health effects in an
intact organism or its progeny. We investigated the effects of long-term exposure to some EDCs on the
hypothalamic NPY and POMC systems of adult male mice that had been previously demonstrated
to be a target of some of these EDCs after short-term exposure. Animals were chronically fed for
four months with a phytoestrogen-free diet containing two different concentrations of bisphenol
A, diethylstilbestrol, tributyltin, or E2. At the end, brains were processed for NPY and POMC
immunohistochemistry and quantitatively analyzed. In the arcuate and dorsomedial nuclei, both
NPY and POMC immunoreactivity showed a statistically significant decrease. In the paraventricular
nucleus, only the NPY system was affected, while the POMC system was not affected. Finally, in
the VMH the NPY system was affected whereas no POMC immunoreactive material was observed.
These results indicate that adult exposure to different EDCs may alter the hypothalamic circuits that
control food intake and energy metabolism.

Keywords: endocrine disrupting chemicals; bisphenol A; diethylstilbestrol; tributyltin; neuropeptide
Y; pro-opiomelanocortin

1. Introduction

Two neurochemically distinct sets of hypothalamic neurons controlling food intake
are located in the arcuate nucleus (ARC). One group expresses neuropeptide Y (NPY)
and agouti-related protein (AgRP). The NPY release by these neurons results in increased
food intake and decreased energy expenditure. The other group expresses cocaine- and
amphetamine-regulated transcript (CART) and pro-opiomelanocortin POMC, which is
processed to melanocortin peptides, such as α-melanocyte-stimulating hormone (α-MSH).
The activation of these neurons decreases food intake and increases energy expenditure [1]
with an opposite effect of the NPY/AgRP system. Interactions between these two popula-
tions allow the NPY neurons to control the activity of the POMC cells. NPY/AgRP and
POMC/CART neuronal projections reach hypothalamic nuclei such as the paraventricular
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nucleus (PVN), dorsomedial hypothalamic nucleus (DMH), and perifornical area [2]. These
secondary centers process information regarding energy homeostasis.

Many factors can influence the activity of this system (for example the secretion of
leptin by adipocytes), but estrogenic signaling may intersect at several levels with the
hypothalamic circuits controlling food intake [3]. In fact, estradiol is involved in the regula-
tion of metabolism through the modulation of food intake, body weight, glucose/insulin
balance, body fat distribution, lipogenesis, lipolysis, and energy consumption [4]. The
estradiol regulates neuroendocrine circuits controlling the metabolism [5] by acting on
the POMC neurons through the estrogen receptor α (ERα) and on the NPY cells through
an estrogen-activated membrane receptor, Gq-mER [6]. Indeed, estradiol has an inhibitor
function on food intake, repressing the synthesis of NPY and AgRP [7]. Moreover, it
seems that the leptin (secreted by adipocytes in proportion to fat mass and the activator of
anorexigenic signals) has a common pathway with estradiol to regulate energy metabolism,
namely the STAT3 pathway in POMC neurons [7]. Peripherally E2 increases both leptin
mRNA expression in 3T3 adipocytes and leptin secretion in omental adipose tissue [8].
Alternatively, lack of E2 after ovariectomy may affect body weight regulation at a central
level and mice deficient in ERα show a marked increase of adipose tissue [9]. There is also
some evidence that ovariectomy increases hypothalamic NPY expression and decreases
CRH immunoreactivity, promoting hyperphagia [10]. Moreover, E2 deficiency causes
central leptin insensitivity [9].

Endocrine-disrupting chemicals (EDCs) are industrial pollutants or natural molecules,
which can be found as contaminants in the environment. They can interact with natural
hormones by mimicking, antagonizing, or altering their actions [11] and may interfere
with several brain circuits [12]. Recent evidence from many laboratories has shown that a
variety of environmental EDCs (now called metabolic disrupting chemicals, MDCs) can
influence adipogenesis and obesity and these effects may be partly mediated by sex steroid
dysregulation due to the exposure to these substances and by alterations of nervous circuits
involved in the control of food intake and energy metabolism [13,14].

In the present study, we analyzed three widely diffused MDCs—bisphenol A (BPA),
diethylstilbestrol (DES), and tributyltin (TBT).

The BPA, one of the most diffused chemicals in the world, is a xenoestrogen present
in a very large number of products and may affect multiple endocrine pathways, due to
its ability to bind classical estrogen receptors (particularly ER-α) and non-classical ones
(membrane receptors) [15], as well as the G-protein-coupled receptor 30 (GPR30) [16]. BPA
can also act through non-genomic pathways [17] and bind to a variety of other hormone
receptors (e.g., androgen receptor, thyroid hormone receptor, glucocorticoid receptor, and
PPARγ) [18]. In vitro experiments have demonstrated that BPA may dysregulate NPY,
AgRP, and POMC expression in hypothalamic immortalized cell lines [19–21].

The DES is a powerful nonsteroidal synthetic estrogen (pharmaceutical) used until the
early 70s to prevent miscarriage in pregnant women. Later this compound was recognized
as a cause of reproductive cancers, genital malformations, and infertility in sons or daugh-
ters that had been exposed to this drug in utero [22], but it is still in use for veterinary
purposes in some countries and is bioaccumulated in the environment [23]. DES exerts an
agonistic effect against ER-α and an antagonistic effect against estrogen-related receptor-γ
(ERR-γ) [24]. In ovariectomized female rats exposed to an isoflavone-rich diet, DES had no
effect on hypothalamic NPY mRNA and increased POMC mRNA [25].

TBT belongs to the EDC family of organotins, it has been employed primarily as an
antifouling agent in paint for boats. Other uses are as a fungicide on food crops, and an
antifungal agent in wood treatments and industrial and textile water systems [26]. Due to
its use in paint for boats, TBT has exerted toxicological effects on marine organisms. For
example, TBT can induce masculinization in fish species [27]. Humans are exposed to TBT
largely through contaminated dietary sources (seafood and shellfish [28]). In mammals TBT
can increase body weight [29], alter hypothalamic NPY and POMC systems in short-term
(4 weeks) exposed adult mice [30,31], and may also alter behavior—exposure to a low



Metabolites 2021, 11, 368 3 of 15

dose of TBT induced lower activity, high level of anxiety, and fear in mice [32]. TBT binds
with high affinity to steroid receptors; in particular, it binds androgen receptor [33] and
interferes with the expression of brain aromatase and estrogen receptors [34]. TBT can act
as an agonist of retinoid X receptor (RXR) and peroxisome proliferator-activated receptor-γ
(PPARγ) [35]. This inappropriate receptor activation could lead to disruption of the normal
developmental and homeostatic controls over adipogenesis and energy balance, especially
under the influence of the typical high-fat Western diet [36]. In addition, changes in the
microbiome are associated with TBT exposure [37].

As previously reported, studies on the action of EDC on hypothalamic neurons
related to eating behavior and energy control used a variety of experimental conditions
(exposure to isoflavones, in vitro experiments, and short-term exposure). For this reason,
in the present study, we exposed, for a longer time period (4 months), adult male mice to
phytoestrogen-free food containing different putative MDCs to understand if the central
neuroendocrine, orexinergic, and anorexinergic circuits are differentially affected by these
compounds. Due to the alleged xenoestrogenic activity of some of them we also included,
as a positive control, a group of animals treated with E2.

2. Results
2.1. Body Weight

At the end of the experiment the animals were weighted. Data collected showed a
global effect of treatment on the body weight of exposed animals (p < 0.05, F(8) = 2.185). In
particular, the post-hoc analysis with Fisher’s LSD test showed a reduction in body weight
for mice treated with the higher dose of DES (p < 0.05) and for those treated with both
doses of E2 (p < 0.05). No statistically significant effects were observed in the other groups
(see Table 1).

Table 1. Summary of statistical analysis of body weight data. The values (in grams) are indicated as
mean± standard error of the mean (SEM). Bold numbers and asterisks indicate significant differences
among the differently treated groups: * p < 0.05, different from control (p < 0.05, Fisher’s test).

Groups Body Weight (g)
Mean +/− SEM p Value

CRL 31.2 ± 2.92

TBT 0.5 31 ± 0.89 0.912

TBT 500 31.2 ± 0.80 1.000

DES 0.05 29.4 ± 1.21 0.323

DES 50 26.6 ± 0.93 0.015 *

BPA 5 28.6 ± 0.75 0.156

BPA 500 29.6 ± 0.93 0.379

E2 5 26.75 ± 0.48 0.025 *

E2 50 27.17 ± 0.65 0.025 *

2.2. Immunohistochemistry
2.2.1. NPY System

A preliminary qualitative analysis showed a distribution similar to those already
reported in previous contributions [30,38–41]. In particular, we did not observe positive
cell bodies (confirming previous reports that NPY cell bodies in ARC are visible only after
colchicine treatment [42]), whereas a large number of positive fibers was observed along the
entire hypothalamus. These were particularly dense within the PVN (Figure 1) and the ARC
(Figure 2) nuclei, but they were also abundant within the suprachiasmatic, supraoptic, and
DMH (Figure 2) nuclei. Other regions displayed less dense innervations, as for example,
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the VMH (Figure 2). In the experimental groups, we observed a qualitative decrease of the
NPY immunoreactivity (ir) in all the considered nuclei for all the different treatments.

Figure 1. NPY and POMC immunohistochemistry in the PVN. Microphotographs and histograms
illustrating the immunohistochemical immunoreactivity for NPY and POMC in the paraventricular
nucleus (PVN). (A) Low magnification of a control mouse (CRL) illustrating the NPY immunoreactiv-
ity in PVN. The white box represent the ROI selected for the quantitative analysis. (B) Low magnifica-
tion of a control mouse (CRL) illustrating the POMC immunoreactivity in PVN. Scale bar = 100 µm.
* = Third ventricle. (C,D) Histograms illustrating the quantitative analysis of the fractional area
covered by NPY (C) and POMC (D) immunoreactivity in the PVN. Bars represent the mean and
the standard error of the mean (SEM). Asterisks indicate significant differences (Fisher’s test) of the
experimental groups in comparison to controls (CRL): ** p < 0.01, *** p < 0.001.

This qualitative impression was confirmed by the statistical analysis. For all nuclei
we found a statistically significant effect of treatment (PVN: p < 0.001, F(8) = 10.672; ARC:
p < 0.01, F(8) = 3.566; DMH: p < 0.01, F(8) = 3.767; VMH: p < 0.001, F(8) = 5.780).

The post-hoc analysis with Fisher’s LSD test showed a significant decrease of NPYir
in all nuclei and for almost all the treatments. In PVN, all groups showed a significantly
lower NPYir than controls (p < 0.01, Figure 1). In ARC, we did not observe statistically
significant differences for the lowest dose of TBT and the highest dose of BPA, while all the
other treatments induced a significant decrease of NPY expression (p < 0.05, Figure 2). In
DMH we observed a significant reduction of NPYir in all treated groups (p < 0.05; Figure 2),
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except for the lowest dose of DES. Finally, in VMH we observed a strong reduction of
NPYir due to the treatments (p < 0.01) except for the highest dose of TBT (for details see
Table S2, Supplementary Materials).

Figure 2. NPY immunohistochemistry. Microphotograph and histograms illustrating the immunohistochemical immunore-
activity for NPY in the dorsomedial (DMH), ventromedial (VMH), and arcuate (ARC) nuclei. (A) Low magnification of the
hypothalamic region of a control mouse (CRL) illustrating the NPY immunoreactivity in DMH, VMH, and ARC nuclei. The
white boxes represent the ROI selected for each nucleus in the quantitative analysis. Scale bar = 100 µm. (B–D) Histograms
illustrating the quantitative analysis of the fractional area covered by NPY immunoreactivity in the DMH (B), VMH (C),
and ARC (D) nuclei in the different experimental groups. Bars represent the mean and the standard error of the mean
(SEM). Asterisks indicate significant differences (Fisher’s test) of the experimental groups in comparison to controls (CRL):
* p < 0.05, ** p < 0.01, *** p < 0.001.

2.2.2. POMC System

The distribution of POMCir in control mice was in agreement with the few previous
studies that described this system in rats [43–45] and mice [31,46]. Contrary to NPY,
hypothalamic POMC cell bodies are clearly visible, and they were fully included within the
rostrocaudal extent of the ARC (Figure 3) and periarcuate area, which also showed a local
dense innervation of ir fibers. Two major targets of this system are the PVN and the DMH.
In the PVN, POMCir fibers outlined the entire nucleus, starting from its rostral portion
up to the more caudal levels. The distribution of these fibers was not homogeneous, in
particular they were denser in the medial PVN (corresponding to the parvocellular regions
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of this nucleus) compared to the lateral PVN (corresponding to the magnocellular region)
(Figure 1). The DMH nucleus (Figure 3) showed a denser innervation in the caudal part of
the nucleus compared with the rostral part. Other hypothalamic nuclei, such as the VMH,
did not show a significant number of positive fibers.

Figure 3. POMC immunohistochemistry. Microphotograph and histograms illustrating the immunohistochemical im-
munoreactivity for POMC in the dorsomedial (DMH), and arcuate (ARC) nuclei. (A) Low magnification of the hypotha-
lamic region of a control mouse (CRL) illustrating the POMC immunoreactivity in DMH, and ARC nuclei. Due to the
extreme paucity of immunoreactive structures, it was not possible to measure POMC immunoreactivity in the VMH.
Scale bar = 100 µm. (B,C) Histograms illustrating the quantitative analysis of the fractional area covered by POMC im-
munoreactivity in the DMH (B), and ARC (C) nuclei in the different experimental groups. Bars represent the mean and the
standard error of the mean (SEM). Asterisks indicate significant differences (Fisher’s test) of the experimental groups in
comparison to controls (CRL): ** p < 0.01, *** p < 0.001.

In the PVN we did not observe variations due to treatment. In fact, the statistical
analysis showed no effect of treatment (F =1.097, p = 0.396, Figure 1). On the contrary, data
collected in the ARC showed a decrease of the POMCir (including positive cell bodies
and fibers), following the different treatments (F(8) = 8.289, p < 0.001). The Fisher LSD test
showed a statistically significant decrease in the groups treated with the highest dose of
DES (p < 0.001), the lowest of E2 (p < 0.001) and in both groups treated with BPA (p < 0.001,
Figure 3).

The quantitative analysis also showed a decrease of the POMCir in the DMH following
different treatments (F(8) = 19.563, p < 0.001). The Fisher LSD test showed a decrease of
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POMC ir in all groups compared to controls, except for the lowest dose of TBT (Figure 3;
for details see Table S2, Supplementary Materials).

3. Discussion

The control of energy metabolism and food intake is in part dependent on central
neuroendocrine circuits that have been detailed in the introduction. Among the various
systems, the NPY and the POMC systems (both located in the hypothalamic arcuate
nucleus and sending their axons to other hypothalamic nuclei) exert orexigenic (NPY) and
anorexigenic (POMC) effects. Several studies (recently reviewed by [14]) demonstrated
that these neural circuits are altered when the animals are exposed to some environmental
compounds that are now classified as metabolism-disrupting chemicals (MDCs) [13,47].

In the present study, we showed that some of the putative MDCs, when chronically
administered through a phytoestrogen-free diet (reported in the literature as inducing body
weight gain [48]), affected the expression of both NPY and POMC in the hypothalamic
circuits of adult male mice. For comparison, we included two additional groups, one
without any treatment (control group) and the second one exposed to E2 (added to the
diet), which has a well-known anti-adipogenic effect [49,50].

As expected, in the present experiment, both doses of E2 induced a significant reduc-
tion of the body weight in comparison to the control group. On the contrary, male mice fed
with the same diet but with different concentrations of three different EDCs, except the
group treated with the highest dose of DES, did not show any significant reduction of the
body weight. These results suggest that BPA, DES, and TBT are not able, in adult male mice,
to counteract the consequence of an exposure to a phytoestrogen-free diet on the body
weight, whereas E2 is able to do this. Therefore, whereas E2 has an anti-obesogenic effect,
the EDCs considered in this study do not show this property. It is possible that the lack of
effect on body weight is due to the fact that the reduction of the activity of the orexinergic
circuits originated by the reduction of NPY is compensated by the reduction of the activity
of the anorexinergic circuits caused by the reduction of the expression of POMC.

Our data show that the NPY expression in male mice hypothalamic nuclei involved in
food intake regulation is reduced by E2 as well as by all tested EDCs at almost all doses.
Therefore DES, BPA, and TBT have the same effect of E2 on the NPY system. In particular,
DES and BPA have a well-known strong xenoestrogenic activity because they specifically
bind to ERs [51]. On the contrary, TBT does not bind ERs, but it also has xenoandrogenic or
antiandrogenic activity [52]. The reduction of NPY expression in the hypothalamus after
TBT treatment confirms our previous results [30] and may be due to the activation of other
pathways, not directly regulated by E2.

The effects of treatments on the POMC system of male mice are less homogeneous.
In fact, we observed significant effects on ARC and DMH, while in the PVN we have
not detected significant effects. DES, BPA, and also E2 significantly decreased the POMC
expression in ARC, while TBT showed no significant effect. It is important to note that
30% of POMC cells in ARC colocalize with ERα while they do not express ERβ [53], thus
suggesting a possible direct role of ERs in regulating part of this system that represents,
consequently, a putative target for xenoestrogens, like BPA and DES. The lack of TBT effect
is also in line with our recent results that showed no effects of TBT on the POMC system in
adult male mice [31].

The POMC neurons of the ARC send axons to two main targets, the DMH and the
PVN. All treatments (including TBT at the highest dose) induced a significant decrease in
the immunoreactivity in the DMH, whereas no effect was detected in the PVN, even when
the quantitative analysis was performed on the different parts of the PVN, according to the
method detailed in [54] (results summarized in Figure S3 of Supplementary Material). It is
still possible that the paucity of POMC fibers in the PVN (compared to the NPY ones) has
prevented the detection of small differences in the present experimental material.

In a limited number of experimental groups, the tested EDCs showed a significant
effect in reducing immunoreactivity at the low dose and not at the high dose, for example
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see the effect of TBT on VMH NPY immunoreactivity, the effect of BPA on ARC NPY
immunoreactivity, or the effect of E2 on ARC POMC immunoreactivity. These results
confirm the nonmonotonic dose response described in many experimental situations for
several EDCs [55]. The differences of the results of EDC treatments on NPY and POMC
immunoreactivity with those obtained with E2, are probably due to the activation of
pathways not directly or indirectly regulated by E2. For example, it has been found that
intracerebroventricular injections of oxytocin (OT) in adult fasted male rats decreases food
intake [56]. Moreover, a retrograde tracer study revealed OT projection from PVN and
SON to ARC, demonstrating that oxytocinergic signaling may regulate feeding [57]. OT
cells, expressing ER-β, of the PVN [58], are a possible target for xenoestrogen that binds
ER-β, like the phytoestrogen genistein [59]. This suggests that some EDCs may alter POMC
expression via the OT system. However, the physiological significance of the OT neuronal
projections from PVN and SON to ARC POMC neurons, still remains unclear, and further
studies are required to clarify it.

One of the most important regulators of the NPY [60] and POMC [61] systems is
represented by the cannabinoid receptor CB1. Some EDCs may modulate the expression
of this receptor: prolonged exposure to DES produced a reduction in the mRNA for CB1
receptor in the rat pituitary [62], while BPA caused a downregulation of CB1 receptor in the
mice hypothalamus [63]. No data are yet available for an action of TBT on the expression
of CB1 receptor. Therefore, it is possible that present results on the alterations of NPY and
POMC systems are partly due to an effect of the EDCs on the expression of CB1 receptor
and a consequent functional alteration of these two systems. Future work should clarify
this aspect.

The levels of circulating glucose are also important in controlling the NPY and POMC
circuits, through glucose sensitive neurons located in the VMH and LH (for a recent review
see [64]). All the three EDCs analyzed in this study disrupt glucose homeostasis by acting
on pancreatic islets [37,65,66]. Even if in the present study we have not detected glucose
blood levels, it is therefore possible that part of the dysregulation of the NPY and POMC
systems is due to alterations of glucose homeostasis.

Another crucial point is that we do not know, at the moment, if we are observing an
activational or an organizational effect of these EDCs. In the first case we may expect that
the differences in the expression of immunoreactivity are due to an increase or a decrease
in the production of neuropeptides in stable circuits (see the effects of BPA on NPY mRNA
in neuronal cell cultures [20]). In the second case the hypothesis is that the exposure to
the EDCs may induce permanent (or long-term) changes in the observed circuits. In fact,
it has been demonstrated that gonadal hormones produced during puberty are inducing
neurogenesis in some hypothalamic [67] or extrahypothalamic [68] nuclei and that this
process is necessary to stabilize the sexual differences evidenced in these nuclei. A recent
review [69] analyzed the available data for the development of hypothalamic circuits that
control food intake and energy balance. In summary, in these circuits neurogenesis is
only present during the prenatal period [70], but the full maturation of the connections
ARC–PVN is reached during the postnatal days 28–35 [71]. However, more recent stud-
ies demonstrated that adult neurogenesis of NPY and POMC neurons in mice ARC is
stimulated by changes among high fat–low fat diets [72]. Being our animal was three
weeks old, it is therefore possible that exposure to EDCs had altered the connection of
ARC towards VMH, DMH, and PVN, or even determined a change in the number of NPY
and POMC neurons (BPA may induce apoptosis in hippocampal cells [73]). According
to this hypothesis the observed changes in the immunoreactivity could be linked to an
alteration (plasticity) of fibers’ system reaching these nuclei. At the moment it is impossible
to know if NPY and POMC circuits, after such a long exposure to EDCs, when provided
with EDCs-free food, may recover to a status comparable to the non-treated animals (this
is compatible with an activational effect). Future studies should elucidate this point, in
particular not only if there is a recovery, but also how long it will take to recover.



Metabolites 2021, 11, 368 9 of 15

In conclusion, these data, together with those already present in the literature, suggest
that EDCs may alter energy metabolism not only at the level of peripheral tissues [13], but
also in neuroendocrine circuits involved in the control of food intake, in particular, the
NPY and POMC systems. The control of physiological processes by these systems is highly
complex, making the understanding of neuroendocrine disruption a particular challenge.

4. Materials and Methods
4.1. Animals and Treatment

The procedures involving animals and their care were performed in Brescia accord-
ing to the Union Council Directive of 22 September 2010 (2010/63/UE). The study was
approved by the Ethical Committee of Animal Experimentation of the Hospital and the
Italian Minister of Health (407/2018-PR). All care was taken to use the minimum number
of animals.

C57BJ/6 male mice (Harlan, Udine) were housed in same-sex groups of 4 per cage
on a 12:12-h light/dark cycle; animal rooms were maintained at a temperature of 23 ◦C.
Estrogen-free diet was purchased from Dottori Piccioni S.r.L. Via Guglielmo Marconi, 29/31
Gessate (MI, Italy) (https://totofood.it/, assessed on 7 June 2021). The diet was prepared
in pellets (the composition is reported in Table S1, Supplementary Materials).

The treatment started when mice were three weeks old and lasted for four months.
Animals were divided randomly in nine experimental groups: control mice were fed
with the base diet (estrogen-free diet) while experimental groups were fed with the base
diet enriched with two different concentrations of E2, BPA, DES, or TBT (according to
previous studies [74]). All the chemicals were obtained from Sigma-Aldrich, Milano, Italy,
dissolved in DMSO and further diluted before their addition to the diet, for homogeneous
preparations. These are the doses used: E2 (stock solution 97%, cat. number E8515; 5 or
50 µg/kg diet); BPA (stock solution 99%, cat. number 239658; 5 or 500 µg/kg diet); DES
(stock solution 99%, cat. number D-4628; 0.05 or 50 µg/kg diet); and TBT (stock solution
96%, cat. number T50202; 0.5 or 500 µg/kg diet).

The normal food consumption in adult mice corresponds to 15g/100g body
weight/day [75]; since mice used in this experiment had a mean body weight of 30g,
it was considered an approximate consumption of 4.5 g food/day was appropriate. Ac-
cordingly, in this case mice were exposed daily to approximately 0.15–1.5 µg/g body
weight of E2, 0.15–15 µg/g body weight of BPA, 0.0015–1.5 µg/g body weight of DES, and
0.015–15 µg/g body weight of TBT.

Body weights were recorded at the end of the experiment, before sacrifice (see Table 1).
Food consumption was monitored every two days as the difference between the

weight of the pellets supplied and that consumed. Spilled food, if any, was collected in
apposite trays underneath the food containers, measured, and taken into account.

4.2. Tissue Sampling and Histological Examination

Four months after the beginning of treatment adult mice were deeply anesthetized
with an intraperitoneal injection of a mixture of ketamine (100 mg/kg of body weight,
Ketavet, Gelling, Italy) and xylazine (10 mg/kg of body weight, Rompun, Bayer, Germany)
solution, monitored until the pedal reflex was abolished and killed by cervical dislocation.
Animals were decapitated, brains were quickly dissected and placed into acrolein (5% in
0.01 M saline phosphate buffer, PBS) for 150 min at room temperature. Brains were rinsed
several times in PBS, placed overnight in a 30% sucrose solution in PBS at 4 ◦C, frozen in
liquid isopentane at −40 ◦C and stored in a deep freezer at −80 ◦C until sectioning.

Brains (N = 4 for each group) were serially cut in the coronal plane with a cryostat
(Leica CM 1900) at 25 µm of thickness. Sections were collected in four series for free-
floating procedure in multiwell dishes, filled with a cryoprotectant solution [76] and stored
at −20 ◦C until used for immunohistochemistry. One series of sections was stained for
NPY immunohistochemistry and another for POMC immunohistochemistry. Brain sections

https://totofood.it/
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were always stained in groups containing each treatment, so that between-assay variance
could not cause systematic group differences.

After overnight washing in PBS, sections were incubated in 0.01% sodium borohy-
dride for 20 min to remove the acrolein and rinsed in PBS several times. Then, sections
were exposed to Triton X-100 (0.2% in PBS) for 30 min and treated for blocking endoge-
nous peroxidase activity with PBS solution containing methanol/hydrogen peroxide for
20 min. Sections were afterwards incubated with normal goat serum (Vector Laboratories,
Burlingame, CA, USA) for 30 min. One series was incubated overnight at 4 ◦C with the
rabbit polyclonal antibody against synthetic porcine NPY (gift by Professor Vaudry, France)
diluted 1:5000 in 0.2% PBS-Triton X-100, pH 7.3–7.4 and another with the rabbit polyclonal
antibody against POMC (Phoenix Pharmaceuticals, Inc.,Burlingame, CA USA) [31,77,78]
diluted 1:5000 in 0.2% PBS-Triton X-100 and 1% of BSA, pH 7.3–7.4. The next day, sec-
tions were incubated for 60 min in biotinylated goat anti-rabbit IgG (Vector Laboratories,
Burlingame, CA, USA) 1:200. The antigen–antibody reaction was revealed by 60 min
incubation with the biotin–avidin system (Vectastain ABC Kit Elite, Vector Laboratories,
Burlingame, CA, USA). The peroxidase activity was visualized with a solution contain-
ing 0.400 mg/mL of 3,3′-diamino-benzidine (DAB, Sigma–Aldrich, Milano, Italy) and
0.004% hydrogen peroxide in 0.05 M Tris–HCl buffer, pH 7.6. Sections were mounted on
chromallum-coated slides, air-dried, cleared in xylene, and cover slipped with Entellan
(Merck, Milano, Italy).

The production and characterization of NPY polyclonal antibody has been previously
reported [79,80] and it has been employed to detect the NPY system in a wide range of
species [40].

The POMC antibody from Phoenix Pharmaceuticals recognizes a sequence corre-
sponding to N terminal amino acids 27–52 of Pig POMC precursor and has often been used
in mouse and rat studies [31,42,81].

We performed the following additional controls in our material: (a) the primary
antibody was omitted or replaced with an equivalent concentration of normal serum
(negative controls) and (b) the secondary antibody was omitted. In these conditions, cells
and fibers were completely unstained.

4.3. Quantitative Analysis

All sections were acquired with a NIKON Digital Sight DS-Fi1 video camera connected
to a NIKON Eclipse 80i microscope (Nikon Italia S.p.S., Firenze, Italy). The staining density
of NPY- and POMC-immunoreactive (ir)-containing structures was measured in selected
nuclei with the freeware ImageJ (version 1.49b, Wayne Rasband, NIH, Bethesda, MD, USA)
by calculating in binary transformations of the images (threshold function) the fractional
area (percentages of pixels) covered by immunoreactive structures in predetermined fields
(area of interest, ROI). Due to differences in the immunostaining, according to our previous
reports [50,63], the range of the threshold was individually adjusted for each section.

For quantification of NPY and POMC systems we selected four hypothalamic nuclei
involved in controlling food intake—ARC, DMH, PVN, and ventromedial hypothalamic nu-
cleus (VMH). For each nucleus, we measured the density of immunoreactive structures on
three consecutive sections identified by the Mouse Brain Atlas (ARC, VMH, DMH: bregma
−1.46mm, −1.58mm, −1.70mm; PVN: bregma −0.70mm, −0.82mm, −0.94mm [82,83].

The ROI selected for each nucleus was a box of fixed size and shape, selected
to cover immunoreactive material only within the boundaries of each nucleus (about
140,000 µm2 for VMH and DMH, 110,000 µm2 for ARC, and 200,000 µm2 for PVN). Due to
the extreme paucity of immunoreactive structures, it was not possible to measure POMC-
immunoreactivity in the VMH.

4.4. Statistical Analysis

Collected data were analyzed with the program SPSS 24.0 (SPSS Inc., Chicago, IL,
USA); the p values and the significance threshold were set at p ≤ 0.05. Data collected for
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the body weight were analyzed by one-way ANOVA followed by post-hoc analysis with a
Fisher LSD test. Data collected for the immunohistochemistry were analyzed by repeated-
measure one-way ANOVA. When the analysis did not show significant differences between
different levels of the same nucleus, we calculated a mean value for each nucleus that was
used to assess variations due to the treatment. When statistically significant, the ANOVA
analysis was followed by a Fisher LSD test.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11060368/s1, Figure S1: NPY immunoreactivity. Immunohistochemical comparison of
NPY immunoreactivity among control animals (CRL) and the different treated groups (in all case it
was shown to be the lowest dose used) in the dorsomedial (DMH), ventromedial (VMH), arcuate
(ARC), and paraventricular (PVN) nuclei. Estradiol, E2; tributyltin, TBT; diethylstilbestrol, DES;
bisphenol A, BPA. Scale bar = 100 µm, Figure S2: POMC immunoreactivity. Immunohistochemical
comparison of POMC immunoreactivity among control animals (CRL) and the different treated
groups (in all case it was shown to be the lowest dose used) in the dorsomedial (DMH), arcuate
(ARC), and paraventricular (PVN) nuclei. Estradiol, E2; tributyltin, TBT; diethylstilbestrol, DES;
bisphenol A, BPA. Scale bar = 100 µm, Figure S3: Regional analysis of POMC immunoreactivity in
the PVN. To further confirm the absence of variations in the POMC expression within the PVN, we
measured the immunoreactivity, according to our previous studies [54], by dividing the PVN into
four quadrants: dorsomedial (DM), dorsolateral (DL), ventromedial (VM), and ventrolateral (VL).
The results of this analysis reported no significant differences for all the analyzed subregions and
are summarized in the histograms (B−E). Scale bar = 100 µm, Table S1. Composition of the soy-free
diet (SFSD), Table S2. Summary of quantitative analysis of the fractional area. Fractional area data
in the different nuclei and in the different groups analyzed in this study. The values reported are
the mean and standard error of the mean (SEM). Bold numbers and asterisks indicate significant
differences (Fisher’s test) among the differently treated groups: * p < 0.05, ** p < 0.01, *** p < 0.001
different from control.
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