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Abstract: Comprehensive profiling of primary and secondary metabolites was performed to un-
derstand metabolic differences associated with color formation in pigmented rice (Oryza sativa L.).
Overall, 110 metabolites from non-pigmented, black, and red rice cultivars were identified. Black
and red rice contained high levels of flavonoids associated with plant color. Black rice also contained
high levels of terpenoids (carotenoids, tocopherols, phytosterols, and monoterpenes). The non-
pigmented rice contained relatively low levels of secondary metabolites. Multivariate and pathway
analyses were performed to data-mine the metabolite profiles. Hierarchical clustering analysis of
correlation coefficients revealed metabolite clusters based on nitrogen and carbon sources. These
clusters suggested a negative correlation between nitrogen and carbon. Pathway analysis revealed
that black rice was rich in carbon-based secondary metabolites, with relatively low levels of primary
metabolites compared with other rice cultivars. These data highlight the complex interactions be-
tween nitrogen and carbon metabolism of primary and secondary metabolites in rice. For the first
time, the relationships and metabolic differences in terpenoid content (monoterpenes, triterpenes,
and tetraterpenes) of non-pigmented and pigmented rice cultivars were analyzed. These findings
should greatly contribute to the understanding of pigmented rice metabolome and inform breeding
programs for new rice cultivars.

Keywords: carbon; metabolomics; metabolite profiling; multivariate analysis; nitrogen; PathVisio 3;
pigmented rice; terpenoid

1. Introduction

Rice (Oryza sativa L.) is a staple diet for over half of the world’s population and is the
second largest cultivated cereal crop worldwide [1,2]. Pigmented rice comes in various
colors, such as black, red, and green. The major coloring agents in black rice (BR) are
anthocyanins, such as cyanidin-3-O-glucoside and peonidin-3-O-glucoside, whereas those
in red rice (RR) are proanthocyanidins and flavan-3-ols oligomers, with catechin as the
main synthesis unit [3,4]. Consumption of pigmented rice is associated with several health
benefits, for example, antioxidant, anti-cancer, anti-tumor, anti-diabetic, and cardiovascular-
protective activities [5].
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Genotypic diversity of phytochemicals linked to the rice color has been described
in several recent studies on pigmented rice cultivars [6–8]. However, to date, most of
the research into pigmented rice has focused on the relationship between anthocyanins
and antioxidants, and on nutrients, because rice is considered to be a functional food in
many Asian countries, with several health-promoting effects reported [9]. For example, BR
contains high levels of anthocyanins, carotenoids, phytosterols, tocopherols, protocatechuic
acid, and other phenolics [3,10,11], whereas RR contains high levels of proanthocyanidins
and other phenolics [12,13]. Furthermore, the antioxidant activity of pigmented rice
is higher than that of non-pigmented rice. The phenolic and flavonoid contents, and
antioxidant activity are significantly and positively correlated [11,14].

The pleasant aroma of rice during or after cooking is an important preference factor for
the consumer [15]. This pleasant odor has been extensively studied. The major volatile com-
pound of raw and cooked rice is 2-acetyl-1-pyrroline (responsible for popcorn aroma) [9].
BR varieties with a relatively strong aroma have been identified, and contain more 2-acetyl-
1-pyrroline, guaiacol, indole, and p-xylene than white rice (WR) [16]. Sukhonthrea et al. [9]
compared the volatile aroma compounds of BR and RR. The main volatiles of RR were
identified as myristic acid, nonanal, (E)-β-ocimene, and 6,10,14-trimethyl-2-pentadenone.
In BR, these were myristic acid, nonanal, caproic acid, pentadecanal, and pelargonic acid.

To date, only few metabolomic studies on pigmented and non-pigmented rice have
been published. In one such study, Kim et al. [3] reported that the levels of flavonoids
and carotenoids in pigmented rice are positively correlated. Furthermore, Kim et al. [11]
showed that the levels of all phenolics and shikimic acid are positively correlated in BR
and WR. In another study, Kim et al. [17] observed that phenolic acid composition of rice
grain is determined by environmental factors rather than genetic factors. Furthermore,
Liu et al. [18] presented metabolic explanation for the yellowing mechanism during rice
storage using non-targeted metabolomics. However, to date, no reports on the correlations
between monoterpenes, sesquiterpenes, triterpenes, and tetraterpenes in non-pigmented
and pigmented rice have been published.

The various metabolites present in pigmented rice have been studied in detail. How-
ever, to the best of our knowledge, comprehensive metabolic profiling, including that of
primary and secondary metabolites in various pigmented rice cultivars is lacking, as is
the understanding of metabolic networks linking big data from metabolite profiling with
metabolic pathways.

In this study, we present a comprehensive interpretation of metabolic networks in
rice. Non-pigmented (WR), red-pigmented (RR), and black-pigmented (BR) rice were ana-
lyzed. We performed extensive metabolite profiling of primary and secondary metabolites,
specifically, organic acids, sugars, sugar alcohols, amino acids, phenolic acids, flavan-
3-ols (catechin and epicatechin), anthocyanins (peonidin-3-O-glucoside and cyanidin-3-
O-glucoside), tocopherols, carotenoids, phytosterols, fatty acids, and volatiles) by using
gas chromatography-quadrupole mass spectrometry (GC-qMS), GC×GC-time-of-flight
(TOF) mass spectrometry (MS), GC-flame ionization detection (FID), head-space (HS)-
GC-TOF-MS, high-performance liquid chromatography (HPLC), and LC-MS. To interpret
the generated big data to allow understanding of metabolic differences between the rice
samples, multivariate statistical analyses (principal component analysis, PCA; partial least
squares discriminant analysis, PLS-DA; orthogonal partial least squares discriminant anal-
ysis, OPLS-DA; Pearson’s correlation analysis; and hierarchical clustering analysis, HCA),
and a tool for visualization and analysis of metabolic pathways (PathVisio 3.3.0) were used.
The study considerably broadens the understanding of rice metabolome in different rice
cultivars, and may be used to inform the breeding of new cultivars.

2. Results and Discussion
2.1. PCA, PLS-DA, and OPLS-DA

To elucidate the overall metabolome patterns in rice seeds of three different colors,
GC×GC-TOF-MS, solid-phase micro-extraction (SPME)-GC-TOF-MS, GC-qMS, GC-FID,
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HPLC-MS, and HPLC-UV were used to comprehensively profile primary and secondary
metabolites in seeds of 16 cultivars of rice. Overall, 110 metabolites, including amino acids,
organic acids, sugars, sugar alcohols, phenolic acids, flavonoids, anthocyanins, carotenoids,
phytosterols, policosanols, tocopherols, fatty acids, and volatiles, were identified.

Multivariate statistical analysis is an important tool used for obtaining an overview
of patterns in complex experimental data. Specifically, PCA is a preliminary step in a
multivariate analysis performed to discern novel information hidden in the big data.
Accordingly, PCA of the obtained metabolite profiles was performed so that each point
in the score plot indicated an individual sample, and samples with similar metabolite
composition clustered together. PCA did not reveal a clear separation of the rice seeds by
color (Figure S1).

PLS-DA was then performed to optimize the separation of samples and to determine
metabolic differences arising from the rice color. PLS-DA is a projection method, which
rotates the PCA projection to obtain maximum separation by classes of observations based
on their variables. In the analysis, the rice seed colors were set as classes and an internal
validation method was used for model validation. For the latter, validation parameters
(R2 and Q2) indicate the quality of the model. R2 specifies the proportion of variation in
the data that is explained by the model, and Q2 specifies the proportion of variation in the
data that is predictable by the model. The R2- and Q2-values fall between zero and one: R2

close to 1 is desirable; Q2 > 0.5 indicates a good prediction model; and Q2 > 0.9 indicates
an excellent prediction model. PLS-DA showed clear separation by color of rice seeds
(Figure 1A). The validation analysis of the PLS-DA model yielded R2X of 0.312, R2Y of 0.792,
and Q2 of 0.725. The Q2-value was larger than 0.50, indicating a good predictive ability of
the model. PLS 1 significantly contributed to the separation of BR from other rice samples.
Metabolites in the loading plots explain the separation of corresponding samples on score
plots. Significant metabolites of PLS 1 were fumaric acid, malic acid, epicatechin, catechin,
xylose, lutein, vanillic acid, β-carotene, stigmasterol, and protocatechuic acid, for which the
eigenvector values were−0.145934,−0.133728,−0.129379,−0.122005,−0.103077, 0.203814,
0.200285, 0.190348, 0.180684, and 0.178313, respectively (Figure 1B and Table S1). The
eigenvector values of fumaric acid, malic acid, epicatechin, catechin, and xylose were
negative, and contributed to the separation of BR from RR, and their content in RR was
higher than that in other rice samples (Tables S2 and S3). RR contains high amounts of
proanthocyanidin, which is composed of oligomers of catechin and epicatechin, and has a
red color [4,19]. Hence, catechin and epicatechin significantly contributed to the separation
of RR from other rice samples. By contrast, lutein, vanillic acid, β-carotene, stigmasterol,
and protocatechuic acid, which had positive eigenvector values, contributed significantly
to BR identity, and their amounts were higher in BR than in RR and WR (Tables S1, S2
and S4). According to a previous study, BR contains high amounts of carotenoids and
phytosterols [3,20]. This is in agreement with our findings. Stigmasterol was the most
abundant phytosterol in BR (Table S4). The BR color is driven by anthocyanins, such as
peonidin-3-glucoside and cyanidin-3-glucoside [21,22]. Furthermore, most volatiles, such
as, nonanal, octanal, benzaldehyde, 2-heptanone, 1-octen-3-ol, and naphthalene, were
more abundant in BR than in other rice samples (Table S5). In addition, inositol was also
identified as an important contributor to the separation of BR from others in the PLS-DA
loading plots (Table S1). Based on a previous study, BR contains more inositol than RR and
WR [23]. These previously reported observations were consistent with our findings in the
present study (Table S2).
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Figure 1. Partial least squares-discriminant analysis (PLS-DA) score (A) and loading plots (B) derived from 110 metabolites
of black, red, and non-pigmented (white) rice cultivars. The ellipse represents the Hotelling T2 with 95% confidence in the
score plot. Plot annotation 1, C20-ol (Eicosanol); 2, C21-ol (Heneicosanol); 3, C22-ol (Docosanol); 4, C24-ol (Tetracosanol); 5,
C26-ol (Hexacosanol); 6, β-Tocopherol; 7, γ-Tocopherol; 8, C27-ol (Heptacosanol); 9, C28-ol (Octacosanol); 10, γ-Tocotrienol;
11, α-Tocopherol; 12, Cholesterol; 13, α-Tocotrienol; 14, Campesterol; 15, C30-ol (Triacontanol); 16, Stigmasterol; 17, β-
Sitosterol; 18, Lutein; 19, Zeaxanthin; 20, β-Carotene; 21, Cyanidin-3-O-glucoside; 22, Peonidin-3-O-glucoside; 23, Catechin;
24, Epicatechin; 25, C16:0 (Palmitic acid); 26, C18:0 (Stearic acid); 27, C18:1 (Oleic acid); 28, C18:2 (Linoleic acid); 29, C18:3
(α-Linolenic acid); 30, C20:0 (Arachidonic acid); 31, Pyruvic acid; 32, Lactic acid; 33, Alanine; 34, Oxalic acid; 35, Valine; 36,
Ethanolamine; 37, Leucine; 38, Glycerol; 39, Phosphoric acid; 40, Isoleucine; 41, Proline; 42, Glycine; 43, Succinic acid; 44,
Fumaric acid; 45, Serine; 46, Threonine; 47, β-Alanine; 48, Malic acid; 49, Salicylic acid; 50, Methionine; 51, Aspartic acid; 52,
Pyroglutamic acid; 53, γ-Aminobutyric acid; 54, Cysteine; 55, Threonic acid; 56, Glutamic acid; 57, p-Hydroxy benzoic acid;
58, Phenylalanine; 59, Asparagine; 60, Xylose; 61, Vanillic acid; 62, Glutamine; 63, Protocatechuic acid; 64, Shikimic acid; 65,
Citric acid; 66, Fructose; 67, Galactose; 68, Lysine; 69, Glucose; 70, p-Coumaric acid; 71, Tyrosine; 72, Mannitol; 73, Ferulic
acid; 74, Inositol; 75, Caffeic acid; 76, Tryptophan; 77, Sinapinic acid; 78, Sucrose; 79, Raffinose 80, 1-Butanol; 81, Pentanal;
82, 1-Pentanol; 83, Toluene; 84, Hexanal; 85, 1-Hexanol; 86, Ethylbenzene; 87, p-Xylene; 88, 2-Heptanone; 89, 2-Butyl furan;
90, Styrene; 91, Heptanal; 92, 2-Acetyl-1-pyrroline; 93, α-Pinene; 94, 1-Heptanol; 95, Benzaldehyde; 96, 1-Octen-3-ol; 97,
2-Pentyl furan; 98, Octanal; 99, p-Cymene; 100, D-Limonene; 101, 3-Octen-2-one; 102, γ-Terpinene; 103, 1-Octanol; 104,
Linalool; 105, o-Cymene; 106, Nonanal; 107, 1-Nonanol; 108, Naphthalene; 109, Decanal; 110, 1H-Indole.
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The important metabolites of PLS 2 were C18:0, sinapinic acid, C20:0, ferulic acid,
β-tocopherol, 1-butanol, catechin, epicatechin, malic acid, and shikimic acid, for which
the eigenvector values were 0.234828, 0.209490, 0.189271, 0.164575, 0.200056, −0.26382,
−0.19669, −0.18505, −0.16048, and −0.13863, respectively (Table S1). These metabolites
significantly contributed to the separation of non-pigmented rice (WR) from pigmented
rice. In addition, the analysis revealed that WR contained more fatty acids than other rice
samples.

OPLS-DA was next performed to delineate the differences in metabolism in rice
samples by maximum separation (Figure 2). OPLS-DA is an extension of a supervised
PLS method. In this approach, the X-variables separate the systematic variation into
two parts, one that models the correlation between X and Y (prediction), and one that
models the orthogonal components. Thus, OPLS-DA yields maximum separation by
classes of observations based on their variables. Consequently, OPLS-DA outcomes are
more easily interpreted than PLS-DA outcomes. At first, data for non-pigmented (WR)
and pigmented rice were compared to construct the OPLS-DA model for identifying the
metabolic differences determined by the formation of rice pigment. Non-pigmented rice
(WR) and pigmented rice groups were compared in OPLS-DA models (Figure 2A). The
Y-variables for WR were set to 0 and those for pigmented rice to 1. The score plots of
OPLS-DA model showed good separation. The projection model of WR and pigmented
rice group showed R2X of 0.311, R2Y of 0.823, and Q2 of 0.753. The Q2-value was higher
than 0.50, indicating a good prediction power of the model. Two OPLS in the score plots
explained 31.1% of the total variance (OPLS 1, 8.29%; OPLS 2, 22.8%). OPLS 1 explained
the separation of WR and pigmented rice, whereas OPLS 2 elucidated the separation of RR
and BR. Variable importance in projection (VIP) plots were used to explain the contribution
of metabolites to the OPLS models. VIP values greater than 1.00 indicate a significant
influence on the model. Overall, 46 metabolites in the VIP plot had VIP values greater
than 1.00 (Table S6). In the analysis, C18:0, C20:0, sinapinic acid, and C18:3 were top-
ranked metabolites. These results were in agreement with PLS-DA data. However, OPLS 2
had a greater explanatory power in this OPLS-DA model than OPLS 1. Next, OPLS-DA
was performed for BR and RR groups to clarify the metabolic differences between them
(Figure 2B). The validation parameters of the projection model were R2X of 0.374, R2Y
of 0.986, and Q2 of 0.935. The Q2-value was above 0.90, indicating excellent prediction
ability of this model. In addition, the score plot showed good separation by color. Overall,
50 metabolites in VIP plots had cut-off values above 1.00 (Table S7). Lutein, stigmasterol,
vanillic acid, protocatechuic acid, and β-carotene were top-ranked metabolites in VIP plots.
These results were consistent with those of PLS-DA.

Finally, the two OPLS-DA models were tested by a permutation test and analysis of
variance of the cross-validated residuals (CV-ANOVA) to determine the risk of over-fitting
the OPLS model (Figure S2). The permutation test was performed with 200 permuted
models generated by using randomized Y-variables. When the Q2-value of the permutation
test is smaller than that of the actual (unpermuted) OPLS model, the model is considered to
be predictive. Both OPLS models had Q2-values smaller than those of the permuted models.
Hence, the two OPLS-DA models were predictive. Furthermore, p-value in the CV-ANOVA
test of the two OPLS models was lower than 0.05 (pigmented rice vs. non-pigmented rice
(WR), 1.48× 10−15; BR vs. RR, 1.20× 10−21). A p-value below 0.05 indicates that the model
is validated.
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Glutamic acid; 57, p-Hydroxy benzoic acid; 58, Phenylalanine; 59, Asparagine; 60, Xylose; 61, Vanillic acid; 62, Glutamine; 63,
Protocatechuic acid; 64, Shikimic acid; 65, Citric acid; 66, Fructose; 67, Galactose; 68, Lysine; 69, Glucose; 70, p-Coumaric acid;
71, Tyrosine; 72, Mannitol; 73, Ferulic acid; 74, Inositol; 75, Caffeic acid; 76, Tryptophan; 77, Sinapinic acid; 78, Sucrose; 79,
Raffinose 80, 1-Butanol; 81, Pentanal; 82, 1-Pentanol; 83, Toluene; 84, Hexanal; 85, 1-Hexanol; 86, Ethylbenzene; 87, p-Xylene;
88, 2-Heptanone; 89, 2-Butyl furan; 90, Styrene; 91, Heptanal; 92, 2-Acetyl-1-pyrroline; 93, α-Pinene; 94, 1-Heptanol; 95,
Benzaldehyde; 96, 1-Octen-3-ol; 97, 2-Pentyl furan; 98, Octanal; 99, p-Cymene; 100, D-Limonene; 101, 3-Octen-2-one; 102,
γ-Terpinene; 103, 1-Octanol; 104, Linalool; 105, o-Cymene; 106, Nonanal; 107, 1-Nonanol; 108, Naphthalene; 109, Decanal;
110, 1H-Indole.

2.2. Pearson’s Correlation Analysis and HCA

Pearson’s correlation analysis and HCA were performed to understand the relation-
ships and metabolic network formed by the 110 identified metabolites (Figure 3 and
Table S8). HCA revealed four metabolite clusters with strong correlations between metabo-
lites and that were involved in closely related metabolic pathways (Figure 3A). Most amino
acids, p-hydroxybenzoic acid, catechin, and epicatechin were placed together in cluster
1 (Figure 3B). Cluster 2 contained most organic acids, sugars, and fatty acids. Cluster 3
consisted of terpenoids, policosanols, phenolic acids, and anthocyanins. Finally, cluster 4
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contained most volatiles, some tocopherols, and sugars (raffinose and mannitol). These
four clusters revealed grouping of metabolites with closely related biosynthesis pathways.
Furthermore, the metabolite concentrations in each cluster were positively correlated. Most
metabolites in clusters 1 and 2 were primary metabolites, whereas those in clusters 3 and
4 were secondary metabolites. In addition, the levels of nitrogen compounds, such as
amino acids, in clusters 1 and 2 were positively correlated; however, they were negatively
correlated with the content of most carbon metabolites in the correlation matrix. Cellular
carbon metabolism and nitrogen metabolism in plants are closely coordinated for opti-
mal growth [24,25]. The above analyses demonstrated the complex interactions between
nitrogen and carbon metabolism of primary and secondary metabolites, connected via
biochemical networks of metabolic pathways. Most amino acids, catechin, and epicatechin
levels in cluster 1 were positively correlated with each other; however, they were nega-
tively correlated with the levels of terpenoids and anthocyanins in clusters 3 and 4, such
as tocopherols, carotenoids, phytosterols, peonidin-3-glucoside, and cyanidin-3-glucoside.
In addition, the levels of terpenoids and anthocyanins in clusters 3 and 4 were positively
correlated. These observations were in agreement with the findings of a previous study
reporting that carotenoids and flavonoids are positively correlated [3]. However, in the
present study, correlations of the levels of not only carotenoids, but also of terpenoids,
such as monoterpenes, phytosterols, and tocopherols, with the levels of flavonoids were
determined. The metabolite with the highest correlation coefficient for anthocyanins was β-
carotene (peonidin-3-O-glucoside, r = 0.7162, p < 0.0001; cyanidin-3-O-glucoside, r = 0.7481,
p < 0.0001) (Table S8). In addition, monoterpenes, such as D-limonene, p-cymene, α-pinene,
linalool, and γ-terpinene, showed positive correlation coefficient values. Among monoter-
penes, D-limonene (peonidin-3-O-glucoside, r = 0.5655, p < 0.0001; cyanidin-3-O-glucoside,
0.6052, p < 0.0001) and p-cymene (peonidin-3-O-glucoside, r = 0.4633, p = 0.0005; cyanidin-
3-O-glucoside, r = 0.4857, p = 0.0005) showed high correlation coefficient values and were
closely clustered with anthocyanins. The highest correlation coefficient between triterpenes
and flavonoids was for stigmasterol (peonidin-3-O-glucoside, r = 0.4343, p = 0.002; cyanidin-
3-O-glucoside, r = 0.4412, p = 0.0017) and campesterol (peonidin-3-O-glucoside, r = 0.4226,
p = 0.0028; cyanidin-3-O-glucoside, r = 0.4530, p = 0.0012). Furthermore, the most significant
positive correlation between tetraterpenes and flavonoids was for lutein (peonidin-3-O-
glucoside, r = 0.4245, p = 0.0026; cyanidin-3-O-glucoside, r = 0.4409, p = 0.0017) and
α-tocopherol (peonidin-3-O-glucoside, r = 0.3198, p = 0.0267; cyanidin-3-O-glucoside,
r = 0.3408, p = 0.0178), except for β-carotene (the highest correlation value). Accord-
ing to these correlations between terpenoids and anthocyanins, the BR cultivars showed
abundance of terpenoids in proportion to the concentrations of anthocyanins (Tables S9
and S10). The BR cultivars in order of pigment (anthocyanins) concentration were as
follows: SW 505 (cyanidin-3-O-glucoside, 742.65 ± 15.69 µg/g; peonidin-3-O-glucoside,
32.65 ± 0.73 µg/g), HJJ (cyanidin-3-O-glucoside, 493.23 ± 30.50 µg/g; peonidin-3-O-
glucoside, 20.73 ± 0.53 µg/g), and JSHC (cyanidin-3-O-glucoside, 267.27 ± 13.27 µg/g;
peonidin-3-O-glucoside, 14.06 ± 1.46 µg/g) (Table S10). These three BR cultivars showed
2–5-times higher concentrations of monoterpenes as well as of triterpenes and tetrater-
penes compared with the respective concentrations in other rice cultivars. On the contrary,
the concentrations of catechin and epicatechin showed negative correlation coefficients
(r =−0.5040 to 0.0090) with those of terpenoids (Table S8). In cluster 2, fatty acids concentra-
tions were negatively correlated with the levels of flavonoids, such as catechin, epicatechin,
peonidin-3-glucoside, and cyanidin-3-glucoside. Furthermore, in cluster 3, protocatechuic
acid (peonidin-3-O-glucoside, r = 0.6936, p < 0.0001; cyanidin-3-O-glucoside, r = 0.6654,
p < 0.0001) and vanillic acid (peonidin-3-O-glucoside, r = 0.6860, p < 0.0001; cyanidin-3-O-
glucoside, r = 0.6079, p < 0.0001) concentrations were positively correlated with those of
anthocyanins. According to a previous study, soluble free protocatechuic acid and vanillic
acid might act as precursors or accelerants in the anthocyanin biosynthesis pathway [26].
According to another study, cyanidin-3-glucoside is deglycosylated upon heating, with
subsequent formation of protocatechuic acid upon degradation of deglycosylated cyani-
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din [27]. Furthermore, vanillic acid might be generated from peonidin-3-glucoside via the
same mechanism [28]. Consequently, protocatechuic acid, vanillic acid, and anthocyanins
are positively correlated. These observations were also consistent with the PLS-DA loading
plot and OPLS-DA VIP plot analysis (Figures 1 and 2). Almost all terpenoids, including
monoterpenes, triterpenes, and tetraterpenes, were placed together in cluster 3, except for
β-tocopherol, γ-tocopherol, γ-tocotrienol, γ-terpinene, and o-cymene. Most volatiles were
placed together in cluster 4, except for α-pinene, p-cymene, D-limonene, ethylbenzene, and
2-acetyl-1-pyrroline, which clustered together in cluster 3. Monoterpenes in cluster 3, such
as α-pinene, p-cymene, and D-limonene, were strongly correlated.
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2.3. PathVisio Pathway Analysis

To interpret the findings of multivariate statistical analyses described in Sections 2.1
and 2.2 in the context of metabolic pathways, PathVisio was used to visualize metabolic
changes in 110 metabolites in pathway diagrams (18 metabolites are not shown in these
diagrams) (Figure 4) [29]. The fold change (FC) was calculated by dividing the average
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values for pigmented rice by the average values for non-pigmented rice (WR), and then
log2-transforming (log2FC) (Table S11). The log2FC data (ranging from −1 to 1) were
visualized on pathway diagrams by PathVisio.
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Concerning the phenylpropanoid pathway, BR contained more cyanidin-3-glucoside
and peonidin-3-glucoside than WR (Figure 4A). On the contrary, RR contained more
catechin and epicatechin than WR. These metabolites determine the color of pigmented
rice [3,4]. Hence, these observations indicated that the synthesis of color metabolites
in pigmented rice proceeds via a different route in the same phenylpropanoid path-
way. These findings were in agreement with the HCA and Pearson’s correlation analysis,
which indicated that catechin and epicatechin are negatively correlated with anthocyanins
(Figure 3). In addition, in PLS-DA and OPLS-DA, catechin and epicatechin were significant
contributing metabolites in RR, whereas anthocyanins were important metabolites in BR
(Figures 1 and 2). Shikimic acid is the starting point of the phenylpropanoid pathway,
which then proceeds to phenylalanine, trans-cinnamic acid, and p-coumaric acid. These
metabolites are important precursors of flavonoids and phenolics, and were more abundant
in pigmented rice than in WR, except for phenylalanine (lower levels in BR than in WR) and
trans-cinnamic acid (not detected). Although BR contained less phenylalanine than WR,
p-coumaric acid was notably more abundant in BR than in RR and WR. These observations
suggested that the high level of p-coumaric acid in BR might arise from the biotransforma-
tion of phenylalanine, stimulated by upregulation of phenylalanine ammonia-lyase (PAL)
activity. PAL is a key enzyme that acts at the first step of the phenylpropanoid pathway,
and converts phenylalanine to trans-cinnamic acid and ammonia. According to a previous
study, PAL activity impacts anthocyanin levels in the flavonoid pathway [30]. In addition,
PAL regulates anthocyanin accumulation [31]. A further, genomics, study is needed to
address this issue.

Furthermore, fatty acid levels in pigmented rice were lower than those in WR. Malonyl-
CoA is the precursor of both, fatty acid and flavonoid biosynthesis. Chalcone synthase
(CHS) converts three molecules of malonyl-CoA and one molecule of 4-coumaroyl-CoA
into naringenin chalcone [32,33]. Therefore, pigmented rice might consume more malonyl-
CoA than WR to synthesize flavonoids for pigment formation, such as black and red.
Consequently, pigmented rice might lack malonyl-CoA for fatty acid synthesis. On the
contrary, WR does not synthesize flavonoids, and contained relatively more fatty acids
than pigmented rice, as explained above. Similarly, wild beans, which contain high levels
of flavonoids, have relative lower fatty acid levels than cultivated beans [34]. The above
results were consistent with PLS-DA and OPLA-DA (Figures 1 and 2).

As shown in Figure 4B, carotenoids and phytosterols, such as β-carotene, lutein, zeax-
anthin, campesterol, β-sitosterol, cholesterol, and stigmasterol, were more abundant in BR
than in RR and WR, which was consistent with previous studies reporting the abundance
of carotenoids and phytosterols in BR [3,20]. However, in the present study, pigmented
rice contained less β-tocopherol, γ-tocopherol, and γ-tocotrienol than WR. In addition,
these metabolites contributed to the separation of WR from other rice samples in PLS-DA
and OPLS-DA, and they clustered together, separately from other terpenoids. The major
tocopherols in rice are α-tocopherol, α-tocotrienol, γ-tocopherol, and γ-tocotrienol [35].
According to a previous study, α-tocopherol levels are highest in BR, [36].

In addition, most volatiles, such as monoterpenes, fatty acid-driven volatiles, and other
volatiles, were most abundant in BR. Therefore, BR exhibited higher secondary metabolic
activity, such as that involving terpenoid (monoterpene, triterpene, and tetraterpene)
and phenylpropanoid (anthocyanin) biosynthesis, than RR and WR. To the best of our
knowledge, this is the first report on the differences in terpenoid metabolism in non-
pigmented and pigmented rice associated with their color.

To elucidate the metabolic differences between pigmented rice samples, FC was
calculated by dividing the average data of BR by the average data of RR, and then log2-
transforming (log2FC) (Table S11). The log2FC data (ranging from −1 to 1) were visualized
on pathway diagrams in PathVisio (Figure 5). Most amino acids and organic acids were
more abundant in RR than in BR, except for γ-aminobutyric acid, asparagine, proline,
glutamine, tryptophan, glutamic acid, oxalic acid, and citric acid (Figure 5A). Furthermore,
most organic acids and amino acids significantly contributed to the separation of RR
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from BR in the PLS-DA loading plot and OPLS-DA VIP plot (Figures 1 and 2). Among
“other” metabolites, γ-aminobutyric acid and asparagine are reportedly highly abundant
in BR [37,38], which is consistent with the data presented herein. In addition, the t-test
p-value for these metabolites comparing BR and RR was below 0.05, and these metabolites
contributed to the separation of BR from RR in the PLS-DA loading plot and OPLS-DA
VIP plot.
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Protocatechuic acid was not detected in RR in one study [26]; however, here, we have
detected this metabolite in RR (Figure 5A). In HCA, cluster 3 revealed a positive correlation
of vanillic acid, protocatechuic acid, and anthocyanins, and these metabolites were more
abundant in BR than in RR (Figures 3 and 5A). In addition, these metabolites significantly
contributed to the separation of BR from others in PLS-DA and OPLS-DA (Figures 1 and 2).
These observations supported the notion that vanillic acid and protocatechuic acid are the
major precursors or accelerants of the anthocyanin biosynthesis pathway [26].

Most volatiles, except for 1-butanol, were more abundant in BR than in RR. Specifically,
fatty acid-derived volatiles, such as 1-hexanol, 2-heptanone, hexanal, 3-octen-2-one, 1-
octen-3-ol, and nonanal, were notably more abundant in BR than in RR (Figure 5B and
Table S5). These observations were consistent with previous studies, which showed that
fatty acid-derived volatiles are abundant in BR [9,16].

Considering the terpenoid biosynthesis pathway, carotenoid, tocopherol, phytosterol,
and monoterpene levels were higher in BR than in RR. Furthermore, policosanols were
more abundant in BR than in RR. In multivariate statistical analysis, these metabolites sig-
nificantly contributed to the separation of BR from other rice samples, and were positively
correlated.

To sum up, BR has active secondary metabolism responsible for the black color, such
as terpenoid (carotenoid, tocopherol, phytosterol, and monoterpene), anthocyanin, poli-
cosanol, and fatty acid-derived volatile metabolism. By contrast, from the secondary
metabolic pathways, RR only exhibited active phenylpropanoid metabolism for the syn-
thesis of red color compounds. Therefore, BR contained high amounts of carbon-based
secondary metabolites, with relatively lower levels of primary metabolites, such as amino
acids and organic acids, than those in other rice samples. The primary metabolites are
the building blocks for the synthesis of secondary metabolites. Hence, BR contained only
low levels of most of the primary metabolites. In addition, BR contained high levels
of sugars, except for fructose, because they are important carbon sources for secondary
metabolism starting from glycolysis. Specifically, sucrose and genes associated with sucrose
metabolism modulate phenylpropanoid metabolism and induce flavonoid production and
accumulation in various plants [39,40].

2.4. Quality Assessment of Pigmented Rice

The statistical analysis presented in the preceding sections focused on a comprehen-
sive analysis of metabolic differences among pigmented rice cultivars associated with
their color. However, these analyses do not provide information on the nutritional com-
position of individual rice cultivars. Therefore, we performed quality assessment to
identify rice cultivars containing high amounts of bioactive compounds. SW 505 (BR)
rice cultivar had the highest anthocyanin content of all samples (cyanidin-3-O-glucoside,
742.65 ± 15.69 µg/g; penonidin-3-O-glucoside, 32.65 ± 0.73 µg/g) (Table S9). The concen-
tration of catechin and epicatechin was generally the highest in AM (RR) rice cultivars
(catechin, 630.85 ± 152.48 µg/g; epicatechin, 29.11 ± 1.40 µg/g). The volatiles were most
abundant in most BR cultivars (Table S3). Specifically, the levels of volatiles, such as hexanal
(57.56 ± 3.13 × 108 area/g), nonanal (28.46 ± 1.37 × 108 area/g), 1-hexanol (164.37 ± 5.47
× 108 area/g), 2-heptanone (14.30 ± 0.80 × 108 area/g), and styrene (41.81 ± 5.27 × 108

area/g) were the highest in JSHC (Table S12). In addition, 2-acetyl-1-pyrroline, responsible
for the major flavor preferred by the customer, was only detected in HJJ and HH (Table S12).

3. Materials and Methods
3.1. Samples and Chemicals

The 16 cultivars of rice (Oryza sativa L.) analyzed in the present study were catego-
rized as non-pigmented (white), black, or red, in accordance with their pericarp color
(Figure S3), as follows: WR: Purple check (PC), Dongjin (DJ), and Heugdaegu (HDG);
BR: Heughyang (HH), Heugjinju (HJJ), Heugnam (HN), Josengheugchal (JSHC), Mali-
gate Pirurutong (MP), Suwon 493 (SW 493), and Suwon 505 (SW 505); RR: Aengmi (AM),
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Goryeong 8 (GR8), Hongjinju (HoJJ), Hanyangjo (HYJ), Siga-Chata (SC), and Jagwangdo
(JGD). The rice samples were obtained from the Agricultural Genetic Resources Center at
the National Academy of Agricultural Science (Suwon, Korea). The seeds were harvested
in 2016 and the rice samples were manually hulled. The samples were pulverized on
the same day using a mortar and a pestle. The rice powder was stored in a refrigera-
tor at −20 ◦C prior to analysis. Pyridine, N-methyl-N-(trimethylsilyl) trifluoroacetamide
(MSTFA), methoxyamine hydrochloride, ribitol, 5α-cholestane, and fatty acid methyl ester
(FAME) mixture (C8–C24) were obtained from Sigma-Aldrich Corp. (St. Louis, MO, USA).
Peonidin-3-O-glucoside and cyanidin-3-O-glucoside were purchased from Extrasynthese
(Genay, France). All chemicals and reagents used in the study were HPLC grade.

3.2. Extraction and Analysis of Hydrophilic Compounds

Hydrophilic compounds (amino acids, organic acids, sugars, phenolic acids, and
sugar alcohols) were extracted as previously described [29]. Briefly, 100 mg of ground
rice samples were placed in 2 mL tubes with 1 mL of methanol:chloroform:water (2.5:1:1,
v/v/v) solution. Then, 60 µL of ribitol (200 µg/mL in methanol) was added as an internal
standard (IS). After vortexing, the samples were incubated at 37 ◦C for 30 min, with
shaking at 1200 rpm. Next, the mixtures were centrifuged at 16,000× g for 3 min at 4 ◦C.
The supernatant (800 µL) was transferred to a new 2 mL tube and mixed with 400 µL of
deionized water. The samples were centrifuged again at 16,000× g for 3 min at 4 ◦C, and
900 µL of the supernatant were transferred to a new tube. The solvent was completely
evaporated in a centrifugal concentrator (CC-105, TOMY, Tokyo, Japan) for 3 h and freeze-
dried at −80 ◦C for at least 16 h. For derivatization, the samples were treated with 80 µL of
methoxyamine hydrochloride in pyridine (20 mg/mL) and incubated at 30 ◦C for 90 min
in a thermomixer (model 5355, Eppendorf AG, Hamburg, Germany), with shaking at
1200 rpm. Next, 80 µL of MSTFA was added, and the samples incubated at 37 ◦C for 30 min,
with shaking at 1200 rpm. The derivatized samples (80 µL) were transferred to glass
inserts in GC auto sampler vials. The hydrophilic compounds were analyzed using Agilent
7890A GC (Agilent, Santa Clara, CA, USA) coupled to a Pegasus 4D TOF-MS (LECO,
St. Joseph, MI, USA). Helium gas was passed at a rate of 1.20 mL/min. Thereafter, 1 µL
of the extracted sample was injected in a 1:25 ratio split mode, and the inlet temperature
was set at 250 ◦C. Rtx-5 MS (0.25 mm × 0.25 µm × 30 m; Restek, Bellefonte, PA, USA)
and Rxi-17sil MS (0.15 mm × 0.15 µm × 1.2 m; Restek, Bellefonte, PA, USA) were used
as the first and second column, respectively, for GC×GC-TOF-MS. The conditions for
each column were set individually. The oven temperature was programmed as follows:
the oven temperature for the first column was maintained at 80 ◦C for 0.5 min, followed
by ramping to 330 ◦C at 5 ◦C/min, and then holding at this temperature for 5 min. The
oven temperature for the second column was set with 5 ◦C offset from the first column
temperature. The modulator temperature program was 15 ◦C offset above the second
column temperature. The modulation period was set to 4 s, with 0.6 s hot and 1.4 s cool
pulse durations. The ion source and transfer line temperatures were set at 230 ◦C and
260 ◦C, respectively. The data were acquired over an m/z mass range of 45–650, and the
detector voltage was set to 1700 V. Qualitative analysis of peaks was performed using the
Chroma TOF software (version 4.5, LECO, St. Joseph, MI, USA), and peaks were identified
based on the mass spectral data by comparing with in-house libraries, NIST, and Wiley9
(Figure S4 and Table S13). The quantitative estimation was based on peak area ratios
relative to the IS peak area (Table S2).

3.3. Extraction and Analysis of Lipophilic Compounds
3.3.1. Extraction and Analysis of Terpenoids and Policosanols Using GC-qMS

Lipophilic compounds, such as policosanols, tocopherols, and phytosterols, were
extracted following the method of Kim et al. [41]. Briefly, 100 mg of pigmented rice
powder were transferred to 15 mL tubes. For the extraction, ascorbic acid (3 mL; 0.1%,
w/v) in ethanol was added, with 0.05 mL of 5α-cholestane (10 µg/mL in hexane) as an
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IS. The samples were vortexed for 20 s, and incubated in a water bath at 85 ◦C for 5 min.
Saponification with potassium hydroxide (120 µL; 80%, w/v) was conducted in a water
bath at 85 ◦C for 10 min. The mixture was then immediately placed on ice for 5 min. It was
then treated with hexane and deionized water (1.5 mL each), and centrifuged at 4 ◦C and
1200× g for 5 min. The upper layer was pipetted into a new tube and re-extracted with
hexane (1.5 mL). The hexane fraction (approximately 3 mL) was dried under nitrogen gas,
and then concentrated in a centrifugal concentrator (CC-105, TOMY, Tokyo, Japan). For
derivatization, MSTFA (30 µL) and pyridine (30 µL) were added, and the samples incubated
at 60 ◦C for 30 min, with shaking at 1200 rpm. The obtained lipophilic compounds were
analyzed using a GC-MS QP2010 Ultra system equipped with an AOC-20i auto sampler
(Shimadzu, Kyoto, Japan). For the analysis, 1 µL of the extracted sample was injected into
a Rtx-5MS column (30 m × 0.25 mm × 0.25 µm; Restek, Bellefonte, PA, USA) at a 1:10 ratio
split mode. The carrier gas was helium, flowing at a constant rate of 1.00 mL/min. The
front inlet temperature was 290 ◦C. The initial oven temperature of 150 ◦C was held for
2 min, then ramped to 320 ◦C at 15 ◦C/min, and maintained for 10 min. The ion source
and interface temperatures were 230 ◦C and 250 ◦C, respectively. The mass spectra range
for scanning was 85 to 600 m/z, and the ions were detected in selected-ion monitoring (SIM)
mode for peak analysis. Chromatographic data were processed using the Lab solutions
GC-MS solution software (version 4.11, Shimadzu, Kyoto, Japan). For qualitative and
quantitative analysis of the lipophilic compounds, calibration curves were prepared using
lipophilic standards (Tables S4 and S10).

3.3.2. Extraction and Analysis of Fatty Acids Using GC-FID

To determine the fatty acid composition, the extraction and analysis were performed
as previously described [29]. Briefly, 10 mg of pigmented rice powder were mixed with
2.5 mL of a chloroform:methanol solution (2:1, v/v) and 0.1 mL of pentadecanoic acid
(1 mg/mL in chloroform; used as an IS). The samples were vortexed and sonicated for
20 min. Then, 2.5 mL of sodium chloride solution (0.58%, w/v) was added, and the mixtures
were centrifuged at 4 ◦C, 13,000× g for 5 min. The bottom layer was collected into new
tubes. The transferred samples were then evaporated in a centrifugal concentrator for
30 min. Thereafter, 0.18 mL of methanol, 0.1 mL of toluene, and 0.02 mL of 5 M sodium
hydroxide in water were added, and the samples heated at 85 ◦C for 5 min, with shaking
at 300 rpm. For the saponification and methylation, 0.3 mL of 14% (v/v) boron trifluoride
(BF3) was added, and the samples incubated at 85 ◦C for 5 min, with shaking at 300 rpm.
After cooling at 25 ◦C, 400 µL of distilled water and 800 µL of pentane were added, and the
samples centrifuged at 750× g for 15 min at 4 ◦C. The upper pentane layer was transferred
into 2 mL tubes and concentrated in a rotary evaporator (CC-105, TOMY, Tokyo, Japan).
Prior to the analysis, the concentrated samples were diluted in 100 µL of hexane, and then
filtered through a 0.5 µm syringe filter. The samples were analyzed using Agilent 7890B
GC-FID (Agilent, Santa Clara, CA, USA) equipped with Agilent G4513A auto sampler
(Agilent, Santa Clara, CA, USA). For the analysis, 1 µL of the extracted sample was injected
into the column at a 1:10 ratio split mode. The front inlet and detector temperatures were
250 ◦C. The GC was equipped with a DB-WAX column (30 m × 0.25 mm × 0.25 µm,
Agilent, Santa Clara, CA, USA), and nitrogen was used as a carrier gas, at a flow rate of
1.00 mL/min. The column oven temperature was maintained at 130 ◦C for 3 min, and
was then increased at a rate of 20 ◦C/min until it reached 230 ◦C. The temperature was
then increased to 250 ◦C at a rate of 3 ◦C/min, and finally maintained at 250 ◦C for 5 min.
The oven post-run time was 5 min. The peak data were acquired using the ChemStation
software (Agilent, Santa Clara, CA, USA) (Figure S5). Qualitative and quantitative analyses
of FAME were done using standards and FAME mixture (C8–C24) (Tables S10 and S14).

3.3.3. Extraction and Analysis of Carotenoids Using HPLC

The extraction method was as previously described by Kim et al. [29]. Briefly,
carotenoids were released from the pigmented rice powder (300 mg) by adding 3 mL



Metabolites 2021, 11, 367 15 of 19

of ethanol containing 0.1% ascorbic acid (w/v), and the mixture was vortexed for 20 s.
The samples were placed in a water bath at 85 ◦C for 5 min. The carotenoid extract was
saponified with potassium hydroxide (120 µL; 80%, w/v) at 85 ◦C for 10 min in a water
bath. After saponification, the samples were immediately placed on ice. Then, 100 µL
of β-apo-8′-carotinal (25 µg/mL in ethanol) was added as an IS. Deionized water and
hexane (1.5 mL each) were added to the samples, which were then vortexed for 20 s and
centrifuged at 4 ◦C and 1200× g for 5 min. The supernatant was transferred into a new tube,
and the extraction was repeated with hexane (1.5 mL). The hexane fraction was evaporated
under nitrogen, and then dissolved in 250 µL of 50:50 dichloromethane/methanol (v/v)
before HPLC analysis. The carotenoids were separated on a C30 YMC column (250 ×
4.6 mm, 3 µm; YMC Co., Kyoto, Japan) by HPLC (Agilent 1100 HPLC instrument, Santa
Clara, CA, USA) equipped with a diode-array detector. The detector wavelength was set to
450 nm and the column temperature was 40 ◦C. Solvent A consisted of methanol/water
(92:8, v/v) with 10 mM ammonium acetate. Solvent B consisted of 100% methyl tert-butyl
ether. A binary gradient elution system of Solvent A-Solvent B was set, as follows: 0 min,
90% A/10% B; 20 min, 83% A/17% B; 29 min, 75% A/25% B; 35 min, 30% A/70% B;
40 min, 30% A/70% B; 42 min, 25% A/75% B; 45 min, 90% A/10% B; 55 min, 90% A/10%
B. For quantification, a calibration curve was prepared using standard compounds, and the
quantities were calculated as the ratio of the peak area of the standard compound to the
peak area of the IS (Figure S6 and Table S10).

3.4. Extraction and Analysis of Anthocyanins

Anthocyanins were extracted according to the method of Kim et al. [3], with a slight
modification. Briefly, 50 mg of pigmented rice powder was placed in 2 mL tubes, and
0.8 mL of 85% methanol acidified with 1.0 N HCl solution was added to assist the extraction.
The samples were then sonicated for 1 min and centrifuged to separate the layers (4 ◦C,
10,000× g, 5 min). The supernatant (800 µL) was transferred to a new 2 mL tube and stored
below −20 ◦C. The extraction process was repeated, and the new supernatant (800 µL) was
collected and combined with the supernatant stored in the freezer. The extracts were then
incubated at 38 ◦C for 30 min, with a mixing frequency of 500 rpm, using a Thermomixer
Compact (Eppendorf AG, Hamburg, Germany). The crude extract was passed through a
0.22 µm Teflon PTFE syringe filter before HPLC analysis. Anthocyanins were separated on
a C18 column (250 mm, 4.6 mm, 5 µm, Inertsil ODS-3, GL Sciences, Tokyo, Japan) by using
Waters Alliance e2695 HPLC (Waters Corporation, Milford, MA, USA) equipped with a
2998 photodiode array detector. Elution was performed using a binary gradient of 0.1%
formic acid in water (mobile phase A) and 0.1% formic acid in acetonitrile (mobile phase B)
according to the following program: 0 min, 95% A/5% B; 40 min, 50% A/50% B; 42 min,
0% A/100% B; 52 min, 0% A/100% B; 54 min, 95% A/5% B; and 64 min, 95% A/5% B. The
flow rate was 1.0 mL/min, and the column temperature was 40 ◦C. The UV-vis detector
wavelength was set to 520 nm. The qualitative analysis of cyanidin-3-O-glucoside and
peonidin-3-O-glucoside was performed using the retention time of the standard material
(Figure S7). Quantification was done using a standard curve drawn as the peak area to the
concentration of each standard (1.25–62.5 µg) (Table S9).

3.5. Extraction and Analysis of (+)-Catechin and (−)-Epicatechin

Catechin and epicatechin were extracted and analyzed as previously reported [42],
with slight modification. Powdered rice samples (0.01 g) were extracted with 200 µL of
80% ethanol containing 1.2 M HCl. After vortexing, the samples were incubated at 30 ◦C
for 2 h, with shaking at 1200 rpm, and centrifuged at 16,000× g for 10 min at 4 ◦C to
separate the layers. The extract was filtered through a 0.5 µm syringe filter, transferred
into a 2 mL vial, and analyzed by LC-MS. The LC-MS analysis was performed using an
Agilent 1260 Infinity HPLC System (degasser, quaternary pump, auto sampler, an Agilent
6120 single quadrupole MS with electrospray ionization; Open LAB CDS ChemStation
Edition Rev. C.01.07 software (Agilent Technologies, Santa Clara, CA, USA). Elution was
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performed using a binary gradient of 0.1% formic acid in water (mobile phase A) and
0.1% formic acid in acetonitrile (mobile phase B), according to the following program:
0 min, 92% A/8% B; 7 min, 90% A/10% B; 15 min, 85% A/15% B; 20 min, 75% A/25% B;
40 min, 70% A/30% B; 45 min, 0% A/100%; and 55 min, 0% A/100% B. The separation
was achieved using a Develosil ODS-UG-5 column (2.0 × 250 mm, Nomura Chemical,
Seto, Japan) at a flow rate of 0.4 mL/min. A 5 µL portion of each extract was injected
for analysis. The analysis conditions of the electrospray ionization MS were as follows:
negative ionization mode; dry gas (N2), 12 L/min; nebulizer pressure, 35 psig; drying
gas temperature, 350 ◦C; capillary voltage, 3000 V; fragmentor voltage, 120 V; SIM mode,
[M–H]− m/z 289 (catechin, epicatechin). Catechin and epicatechin in pigmented rice grains
were determined based on the retention times of the standards and fragmentation pattern
(Figure S8). The quantification was performed using the MS peak area of each standard;
seven-point analytical curves were prepared (0.078125–5 µg/mL), and a high linearity of
r2 > 0.999 was steadily obtained (Table S3).

3.6. Headspace-SPME (HS-SPME) and Analysis of Volatile Compounds

Volatile organic compounds were analyzed using HS-SPME with a divinylbenzene/
carboxen/polydimethylsiloxane (DVB/CAR/PDMS) StableFlex fiber (50/30 µm thick,
2 cm long; model 57348-U; Supelco Inc., Bellefonte, PA, USA). The volatile compounds
were extracted as reported previously [29], with some modifications. Briefly, a sample
of ground rice (0.5 g) was placed in a 10 mL crimp-type HS vial and analyzed using a
GC-TOF-MS (Pegasus BT Flux, LECO, St. Joseph, MI, USA). Before analysis, the SPME
fiber was conditioned at 270 ◦C for 30 min. Then, the vial containing the rice sample
was heated in an oven at 80 ◦C for 5 min, with a desorption time of 3 min. The injection
port, ion source, and transfer line temperatures were set to 250 ◦C, 230 ◦C, and 250 ◦C,
respectively. Helium was used as the carrier gas, and the flow rate was 1.00 mL/min.
Individual samples were automatically injected into an Rtx-5MS column (30 m × 0.25 mm
× 0.25 µm; Restek, Bellefonte, PA, USA) at a splitless mode. The GC oven temperature
program was set as follows: the initial oven temperature was set to 40 ◦C, held for 1 min,
then increased to 250 ◦C at 8 ◦C/min, and maintained for 10 min. The data were acquired
over an m/z mass range of 35–400, and the acquisition rate was 20 spectra/s. The data were
analyzed using the Chroma TOF software (version 5.50, LECO, St. Joseph, MI, USA), and
the peaks were identified based on the MS data by comparing with in-house libraries, NIST,
and Wiley9 (Figure S9 and Tables S5 and S12).

3.7. Statistical Analysis

All analyses were performed at least in triplicate. PCA, PLS-DA, and OPLS-DA
(SIMCA-P version 13.0; Umetrics, Umeå, Sweden) were used to analyze metabolite pro-
file data obtained from GC×GC-TOF-MS, GC-qMS, GC-FID, HPLC, and LC-MS, for an
overview of the relationship of the 16 pigmented rice cultivars and their metabolites. All
data were transformed with unit variance scaling, before multivariate analysis. PCA,
PLS-DA, and OPLS-DA were based on the calculated eigenvectors and eigenvalues (Tables
S1, S6, S7 and S15). PCA, PLS-DA, and OPLS-DA score plots were used to visualize the
grouping of samples, and loading plots explained the separation of groups in the score
plots. Pearson’s correlation analysis was performed by using the SAS 9.4 software package
(SAS Institute, Cary, NC, USA), and HCA of the correlation coefficients was performed
using the Multi-Experiment Viewer software version 4.9.0 (http://www.mev.tm4.org/
(accessed on 8 June 2021)) (Table S7). PathVisio (version 3.3.0) was used to visualize
metabolic pathways reflecting the experimental data. The biological pathways were
drawn based on AtMetExpress overview pathway of Arabidopsis thaliana in WikiPathways
(https://www.wikipathways.org/ (accessed on 8 June 2021)). All metabolite profiling data
were calculated as FC and log2-transformed (log2FC) (Table S11).

http://www.mev.tm4.org/
https://www.wikipathways.org/
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4. Conclusions

In the present study, we conducted comprehensive metabolite profiling of 16 rice cul-
tivars based on GC×GC-TOF-MS, HS-SPME-GC-TOF-MS, GC-qMS, GC-FID, HPLC-MS,
and HPLC-UV analyses. We identified 110 metabolites, including amino acids, organic
acids, sugars, sugar alcohols, phenolic acids, flavonoids, anthocyanins, carotenoids, phy-
tosterols, policosanols, tocopherols, fatty acids, and volatiles. BR contained high levels of
metabolites from the terpenoid and phenylpropanoid biosynthesis pathways, whereas RR
only contained high levels of metabolites from the phenylpropanoid biosynthesis pathway.
Furthermore, WR contained low levels of secondary metabolites. Metabolome profil-
ing was achieved by multivariate statistical analysis and PathVisio (metabolic pathway
analysis), to determine the relationship between the rice cultivars and their metabolites.
The multivariate and pathway analyses revealed correlations and metabolic differences
associated with common and closely linked biosynthesis pathways. For the first time,
the relationships and metabolic differences in terpenoid (monoterpenes, triterpenes, and
tetraterpenes) content were demonstrated between non-pigmented and pigmented rice.
Furthermore, the complex interactions between nitrogen and carbon metabolism of primary
and secondary metabolites, via metabolic networks, in rice were demonstrated. These
findings provide major new insights for understanding the metabolic networks in WR, BR,
and RR, and should support future breeding programs for new rice cultivars.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11060367/s1, Figure S1: Principal component analysis (PCA) score plots (A) and loading
plots (B) derived from 110 metabolites in 16 rice cultivars, Figure S2: Permutation test by OPLS-DA of
pigmented rice and non-pigmented rice (A), and black rice and red rice (B), Figure S3: Phenotypes of
16 rice cultivars used in this study, Figure S4: GCxGC-TOF-MS analytical ion chromatogram (AIC) of
hydrophilic compounds extracted from Dongjin (DJ), Figure S5: GC-FID chromatogram of fatty acid
compounds from Suwon 505 (SW 505), Figure S6: HPLC chromatogram of carotenoid compounds
from Heugnam (HN), Figure S7: HPLC chromatogram of anthocyanin compounds from Heugjinju
(HJJ), Figure S8: HPLC chromatogram of catechin and epicatechin from Aengmi (AM), Figure S9:
HS-SPME GC-TOF-MS analytical ion chromatogram of volatile compounds from Heugjinju (HJJ),
Table S1: PLS-DA loading and VIP of variables, Table S2: Composition and content (ratio/g) of
hydrophilic compounds in 16 pigmented rice cultivars, Table S3: Composition and content (µg/g) of
catechin and epicatechin in 16 pigmented rice cultivars, Table S4: Relative retention times (RRT) and
mass spectral data of lipophilic compounds as trimethylsilyl derivatives, Table S5: Composition and
content (original peak areas × 108) of volatiles compounds in 16 pigmented rice cultivars, Table S6:
VIP values of OPLS-DA (pigmented rice and non-pigmented rice), Table S7: VIP values of OPLS-DA
(black rice and red rice), Table S8: Results of Pearson’s correlation analysis, Table S9: Composition and
content (µg/g) of anthocyanins in 16 pigmented rice cultivars, Table S10: Composition and content
(µg/g) of lipophilic compounds, fatty acids, and carotenoids in 16 pigmented rice cultivars, Table S11:
Pubchem CID and log2-transformed fold change (FC) (Log2FC) of metabolites, Table S12: Retention
times (RT) and mass spectral data for volatile compounds, Table S13: Relative retention times (RRT)
and mass spectral data for hydrophilic compounds as trimethylsilyl derivatives, Table S14: Relative
retention times (RRT) and concentrations of fatty acid methyl ester (FAME) mixture and fatty acids,
Table S15: Loadings of the variables in the first two principal components.
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