

Figure S1. Effect of wheat root extracts (50 µg/mL) on the growth of *Pseudomonas* strains in minimum medium (MM) with or without fructose after 3 days (a). Growth curves of *Pseudomonas protegens* CHA0 (b), *P. kilonensis* F113 (c), *P. koreensis* JV222 (d), *P. chlororaphis* JV395B (e) and JV497 (f) in MM fructose complemented with wheat extracts from genotype Adular, Bordeaux and Soissons at 50 µg/mL.

Figure S2. Principal component analysis obtained from LC–HRMS profiles of *Pseudomonas kilonensis* F113 (a), *P. koreensis* JV222 (b), *P. chlororaphis* JV497 (c) and JV395B (d) cultivated in MMF medium complemented with wheat root extract from Adular (A), Soissons (S), or Bordeaux (B) at 25 mg/mL (C1) and 50 µg/mL (C2) after 6 days incubation. Uninoculated medium was used as control.

Figure S3. MS/MS fragmentation spectra of enantio-pyochelin I and II, aeruginoic acid, dihydroaeruginoic acid, dihydroaeruginol and dihydroaeruginaldehyde.

Table S1. Chemical characterization of annotated secondary metabolites combined with statistically significant differences between wheat genotypes (Adular, Bordeaux, Soissons). Data include compound number (N°), retention time (rt, min), UV maximum absorption (nm), molecular formula, negative high resolution mass spectrum (HR-MS (-)), positive high resolution mass spectrum (HR-MS (+)), MS/MS fragmentation in positive ionisation mode (HR-MS/MS (+)), neutral loss and putative annotation.

N°	rt (min)	UV (nm)	Formula	HR-MS (-)	HR-MS (+)	HR-MS/MS (+)	Neutral loss	Putative annotation	Adu- lar*	Bor- deaux*	Sois- sons*
AMINO ACIDS AND DERIVATIVES											
1	0.96	-	C6H11NO2	129.0152	130.0861	-	-	Methyl proline	-	-	-
2	1.58	275	C9H11NO3	180.0648	182.0568	136.0766; 123.0430; 119.0447	-	Tyrosine	a	a	a
3	4.83	218; 278	$C_{11}H_{12}N_2O_2$	203.0811	205.0974	146.0611; 132.0809; 118.0667	-	Tryptophan	а	а	а
4	3.29	-	C9H11NO2	164.0697	166.0501	120.0809; 103.0538; 84.9605	-	Phenylalanine	a	a	a
BENZOXAZINOIDS											
5	3.88	264; 286	C14H17NO9	342.0804	344.0957; 366.0786 [M+Na]	182.0439 ; 164.0333 ; 136.0383	162	DHBOA-Glc	b	c	а
6	4.09	264; 288	C14H17NO9	342.0813	344.0952; 366.0786 [M+Na]	182.0437 ; 164.0333 ; 136.0412	162	DIBOA-Glc	ab	b	a
7	5.96	254; 280	C14H17NO8	326.0858	328.1006; 350.0835 [M+Na]	166.0484 ; 148.0358 ; 120.0424	162	HBOA-Glc	с	b	a
8	6.03	255; 282	C14H17NO9	342.0817	344.0960; 366.0787 [M+Na]	182.0450 ; 164.0314 ; 136.0351	162	BX4	с	b	a
9	6.20	265; 287	C15H19NO10	372.0912	374.1062; 396.0907 [M+Na]	212.0550 ; 194.0444 ; 166.0488	162	BX5	b	b	a
10	6.39	267; 290	C21H29NO15	534.1406	558.1490 [M+Na]	212.0550 ; 194.0444 ; 166.0488	162 X 2	DIMBOA-Glc-Glc	а	a	a
11	6.96	263; 286	C15H19NO9	356.0948	358.1164; 380.0977 [M+Na]	196.0610 ; 178.0506 ; 150.0523	162	HMBOA-Glc	с	b	a
12	7.17	265; 292	C15H19NO10	372.0893	374.1056; 396.0884 [M+Na]	212.0537 ; 194.0531 ; 166.0483	162	DIMBOA-Glc	а	a	a
13	7.61	265; 290	C9H9NO5	210.0371	212.0556	194.0439; 166.0479; 110.0599; 95.0464	-	DIMBOA	a	a	a

14	9.18	264; 294	C16H21NO10	386.0993 432.1107 [M + FA- H] [.]	388.1222; 410.1042 [M+Na]	88.1222; 226.0703 ; 208.0588 ; 042 [M+Na] 194.0433 ; 166.0484		HDMBOA-Glc	b	a	a
15	9.33	231; 287	C8H7NO3	164.0350	166.0489	110.0596; 95.0466	-	MBOA	а	а	а
					F	LAVONOIDS					
16	8.12	223; 270; 333	nd	563.1401	565.1571	nd	nd	Schaftoside /isoschaftoside	b	a	b
17	8.52	223; 270; 333	nd	563.1402	565.1567	nd	nd	Schaftoside /isoschaftoside	b	a	с
18	8.62	223; 270; 333	nd	563.1368	565.1570	nd	nd	Schaftoside /isoschaftoside	ab	a	b
19	9.03	223; 270; 333	nd	563.1330	565.1574	nd	nd	Schaftoside /isoschaftoside	b	a	b
	HYDROXYCINNAMIC ACIDS AND HYDROXYCINNAMIC ACID AMIDES DERIVATIVES										
20	4.03	nd	C13H18N2O2	233.1259	235.1444	176.07 ; 147.0437 ; 119.0509	88	Coumaroyl-putres- cine	а	a	a
21	4.12	nd	nd	249.0876	251.1386	174.0535 ; 147.0449 ; 119.0506	104	Coumaroyl deriva- tive	а	а	a
22	4.40	270 ; 295	nd	249.1222	251.1407	174.0535 ; 147.0449 ; 119.0506	104	Coumaroyl deriva- tive	a	а	b
23	4.93	300	C13H18N2O2	233.1296	235.1448	176.07 ; 147.0437 ; 119.0509	88	Coumaroyl-putres- cine	a	а	b
24	4.28	288; 304	nd	291.1457	293.1615	164.0662; 147.0439	146	Coumaroyl deriva- tive	b	а	a
25	4.39	290; 310	nd	289.1278	291.1451	255.1237; 147.0442; 127.0973	144	Coumaroyl deriva- tive	c	b	a
26	5.02	280; 308	nd	279.1305	281.1511	225.0751; 177.0537; 145.0286	104	Feruloyl derivative	b	а	c
27	5.04	290; 323	nd	321.1550	323.1724	247.1205; 177.0524; 145.0258	146	Feruloyl derivative	с	b	a
28	5.26	288; 304	nd	291.1427	293.1615	164.0662; 147.0439	146	Coumaroyl deriva- tive	b	a	a

29	5.26	265; 295	$C_{14}H_{20}N_4O_2$	275.1200	277.1648	218.1206 ; 147.0436 ; 119.0503	130	Coumaroyl-agmatine	a	а	a
30	5.36	290; 310	nd	289.1281	291.1451	255.1237; 147.0442; 127.0973	144	Coumaroyl deriva- tive	b	b	a
31	5.73	290; 320	$C_{14}H_{20}N_2O_3$	263.1389	265.1523	225.1061; 177.0535; 145.0264; 117.0312	88	Feruloyl-putrecine	a	a	b
32	5.92	nd	$C_{14}H_{20}N_2O_2$	nd	249.1581	175.0803; 147.0436; 119.0504	102	Coumaroyl-cadaver- ine	a	b	с
33	6.03	290; 323	nd	321.1521	323.1724	247.1205; 177.0524; 145.0258	146	Feruloyl derivative	b	а	a
34	6.07	nd	C17H20O9	367.1008	369.1181	177.0521; 149.0514; 145.0249	192	Feruloyl-quinic	a	b	b
35	6.27	nd	C16H24N4O4	335.1670	337.1885	207.0641; 175.0375; 147.0463	130	Sinapoyl-agmatine	a	b	a
36	6.32	265; 295	$C_{14}H_{20}N_4O_2$	275.1491	277.1648	218.1206 ; 147.0436 ; 119.0503	130	Coumaroyl-agmatine	a	а	a
37	6.71	nd	C15H22N2O3	nd	279.1693	262.0273; 177.0528; 145.0284	102	Feruloyl-cadaverine	a	b	c
38	7.59	nd	C16H24N4O4	335.1657	337.1858	207.0641; 175.0375; 147.0463	130	Sinapoyl-agmatine	a	а	a
39	11.89	297; 328	nd	nd	557.1687	177.0541; 169.0462; 145.0268	nd	Ferruloyl derivative	a	b	a
40	11.26	240; 295; 328	nd	nd	515.1603	177.0557	nd	Feruloyl derivative	a	b	a
41	11.49	295; 325	nd	nd	445.1483	177.0545 ; 145.0282	nd	Feruloyl derivative	а	а	а
42	11.84	288; 328	nd	nd	343.1106	187.0384 ; 173.0720 ; 157.0896 ; 131.0469	nd	Cinamoyl derivative	a	a	a
	CLUSTER N°1										
43	3.38	225; 278	nd	nd	452.1778	193.0611; 177.0544; 141.0565	nd	nd	a	b	b
44	6.78	257; 300	nd	nd	420.1854	193.0475; 163.0600; 145.0508	nd	nd	a	b	b
45	9.94	-	nd	nd	438.2353	223.0574 ; 145.0491; 127.0412	nd	nd	a	b	a

46	10.36	257; 282; 318	nd	nd	440.2503	223.0594; 193.0516; 163.0600; 145.0493	nd	nd	а	b	b
	CLUSTER N°2										
47	2.98	-	nd	219.1106	221.1294	176.0720; 148.06673; 130.0639	nd	nd	b	a	b
48	3.83	-	nd	235.1076	237.1238	176.0705; 148.0759; 130.0650	nd	nd	с	a	b
49	4.05	-	nd	nd	205.1328	160.0744; 142.0602; 132.0816	nd	nd	а	a	a
	CLUSTER N°3										
50	2.85	-	nd	245.1121	247.1295	184.0978; 130.0474; 84.0429; 72.0820	nd	nd	b	a	с
51	4.69	-	nd	259.1309	261.1428	246.0746; 84.0457	nd	nd	b	a	с
52	5.03	-	nd	259.1272	261.1434	198.1123; 132.1024; 86.0986	nd	nd	b	а	c

* Different letters in a row indicate statistically significant differences between genotypes (non-parametric test corrected for false discovery p value ≤ 0.05).

Step	Method	Parameters	Values wheat root sam- ples	Values <i>Pseudomonas</i> strains culture samples
Peak detection (Peakpicking) ^a	centWave	ppm	10	10
		mzdiff	0.05	0.001
		prefilter	3, 5000	3, 1500
		snthresh	10	10
		peakwidth	4, 15	4, 15
		noise	10000	2000
Peak grouping (group) ª	density	bw	4	2
		mzwid	0.25	0.25
		minfrac	0.2	0.2
FillPeaks	chrom			

Table S2. Setting parameters used for processing of the metabolomics data.

^a data processed with xcms R-package on collaborative Galaxy platform "Workflow4metabolomics" version 3.3.

 Table S3. Molecular networking: MZmine 2 data-preprocessing parameters.

Steps	Methods	Parameters	Values	
Mass datastics		Noise level MS1	0	
Mass detection		Noise level MS2	0	
		Minimum group size of scan	4	
shromato area hadildar		Group intensity threshold	3000	
chromatogram builder	ADAF	Minimum highest intensity	4000	
		m/z tolerance	0.005 (20 ppm)	
		S/N threshold	8	
		Minimum feature height	4000	
Deconvolution	ADAP wavelets algo-	Coefficient/area threshold	20	
	11(1111	Peak duration range	0.05 – 1 min	
		Tr wavelet range	0.01 – 0.07 min	
MS2 scaps paired		m/z tolerance	0.02 Da	
		t _R tolerance	0.3 min	
Isotopologue grouping	Isotopic peak grouper	m/z tolerance	0.005 (20 ppm)	
	algorithm	t _R tolerance	0.2 min	
Filtoring	Footuro lict rows filtor	Retention time range	1 – 14 min	
	reature list rows litter	Keep only peaks with MS2 scan		
		m/z tolerance	0.005 (20 ppm)	
Post alignment	Join alignor modulo	Weight for m/z	2	
i eak angiment	Join anglier module	t ^R tolerance	0.5 min	
		Weight for tr	1	
Cap filled		m/z tolerance	0.005 (20 ppm)	
Gap Illeu		t _R tolerance	0.5 min	

N°	Name	Molecular formula	Origin	Purity
1	Monoacetylphloroglucinol	$C_8H_8O_4$	Cayman Chemical	≥98%
2	2,4-diacetylphloroglucinol	$C_{10}H_{10}O_5$	Toronto Research Chemicals Inc.	≥98%
3	Pyrrolnitrin	$C_{10}H_6Cl_2N_2O_2$	SIGMA Chemical Co.	≥98%
4	Phenazine-1-carboxylic acid	$C_{13}H_8N_2O_2$	Toronto Research Chemicals Inc.	≥98%
5	3-OH-C6-HSL	$C_{10}H_{17}NO_4$	SIGMA Chemical Co.	≥98%
6	Dimethyl 2,6-pyridinedicarboxylate	C9H9NO4	SIGMA Chemical Co.	≥98%
7	Indole-acetic-acid	$C_{10}H_9NO_2$	SIGMA Chemical Co.	≥98%
8	Tryptophan	$C_{11}H_{12}N_2O_2$	SIGMA Chemical Co.	≥98%
9	Phenylalanin	C9H11NO2	SIGMA Chemical Co.	≥98%
10	Fumaric acid	$C_4H_4O_4$	SIGMA Chemical Co.	≥98%
12	Caffeic acid	$C_9H_8O_4$	SIGMA Chemical Co.	≥98%
13	Succinic acid	$C_4H_6O_4$	SIGMA Chemical Co.	≥98%
14	DIBOA-Glc	$C_{14}H_{17}NO_9$	-	-
15	MBOA	C8H7NO3	SIGMA Chemical Co.	≥98%

Table S4. List of the 15 chemical standards used in UHPLC-DAD-qTOF analyses.