
Ranking metabolite sets by their activity levels

Karen McLuskeya, Joe Wandya, Isabel Vincentb, Justin J. J. van der Hooftc, Simon
Rogersd, Karl Burgesse, and Rónán Dalya,*

aGlasgow Polyomics, University of Glasgow, Glasgow, G61 1BD, United Kingdom
bIBioIC, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of

Strathclyde, Glasgow, G1 1XQ, United Kingdom.
cBioinformatics Group, Department of Plant Sciences, Wageningen University,

Wageningen, The Netherlands.
dSchool of Computing Science, University of Glasgow, Glasgow G12 8RZ, United

Kingdom.
eCentre for Synthetic and Systems Biology, School of Biological Sciences, University of

Edinburgh, United Kingdom.

November 26, 2020

1



Supplementary Section S1: File format and data imputation

To use PALS, users have to provide information on feature intensities, feature annotations
and the experimental design. Feature intensities should be provided as a matrix where the
first column contains the feature IDs and further columns represent individual samples. When
uploading a CSV file to the PALS Viewer or via the command line, the second line of this file
should be used to indicate which groups this sample belongs to.

For example, the intensity matrix takes the form of:

peak_id,A001C.mzXML,A001P.mzXML,A002P.mzXML,A003C.mzXML,A004C.mzXML,A005C.mzXML,
A008C.mzXML,A008P.mzXML,A009C.mzXML,A010C.mzXML,A010P.mzXML,A011C.mzXML

group, Control,Stage_2,Stage_2,Control,Control,Control,
Control,Stage_1,Control,Control,Stage_1,Control

36186,612715072,408723328,356592704,575874816,627733440,399707168,
621499008,545524352,522808352,557363328,541595328,476640800,531225312,535235328

36187,272679552,222055984,187961552,254896960,274777440,204597328,
271147648,244269440,246383280,262514720,255993888,228511584

In addition to the feature intensities, users also provide a list of compound annotations assigned
to features (features that do not have annotations will not be used for pathway analysis). As a
result of the uncertainty during identification, multiple features IDs could be mapped to multiple
compound IDs and vice versa. As such, annotations are provided as another matrix having two
columns. The first column (or DataFrame index) is the peak ID while the second column is the
assigned metabolite annotation as either KEGG or ChEBI database IDs.

peak_id,entity_id
36883,C00111
37231,C00111
37309,C00661
37231,C19156
36368,C02718
37714,C05100
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Supplementary Section S2: Running PALS

PALS can be run in a variety of ways: from the command-line, from the Web interface (PALS
Viewer) as well as imported directly as a Python library. Users should begin by first installing
PALS using the following command: pip install pals-pathway, This retrieves the latest stable
version of PALS from the Python Package Index.

S2.1 Running PALS from the command-line

To run PALS from the command-line, the script pals/run.py is used. This script accepts a
number of parameters, documented here (* indicates required parameters):

usage: run.py [-h] --db {PiMP_KEGG,COMPOUND,ChEBI,UniProt,ENSEMBL}
--comparisons COMPARISONS [COMPARISONS ...]
[--min_replace MIN_REPLACE]
[--species {Arabidopsis thaliana,Bos taurus,Caenorhabditis elegans,
Canis lupus familiaris,Danio rerio,Dictyostelium discoideum,
Drosophila melanogaster,Gallus gallus,Homo sapiens,Mus musculus,
Oryza sativa,Rattus norvegicus,Saccharomyces cerevisiae,Sus scrofa}]
[--use_all_reactome_pathways] [--connect_to_reactome_server]
{PLAGE,ORA,GSEA} intensity_csv annotation_csv output_file

method *
Pathway ranking method to use, e.g. PLAGE, ORA or GSEA.

intensity_csv *
Input intensity CSV file (see Supplementary Section S1).

annotation_csv *
Input annotation CSV file (see Supplementary Section S1).

output_file *
Output pathway ranking file.

–db *
The pathway database to use. Valid choices are as follows.

• PiMP_KEGG : KEGG compound database exported from PiMP.
• COMPOUND : Reactome compound database matching by KEGG ids.
• ChEBI : Reactome compound database matching by ChEBI ids.
• UniProt : Reactome protein database matching by UniProt ids.
• ENSEMBL: Reactome gene database matching by ENSEMBL ids.

Note that PiMP_KEGG, COMPOUND and ChEBI are for metabolomics use, while
UniProt and ENSEMBL are for proteomics and transcriptomics use respectively and are
not considered in this paper (refer to the project Web site for more information).

–comparisons *
Specifies the comparisons to make, e.g. –comparisons Stage_1/Control Stage_2/Control
to specify Stage 1 (case) vs control, as well as Stage_2 (case) vs control.
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–min_replace
The minimum intensity value for data imputation, e.g. –min_replace 5000. Defaults to
5000.

–species
Species name for Reactome pathway query, e.g. –species "Homo sapiens". Defaults to
Homo Sapiens.

–use_all_reactome_pathways
Whether to use all pathways for Reactome pathway query. If this option is not used, only
metabolic pathways will be queried.

–connect_to_reactome_server
Whether to connect to an instance of Neo4j server hosting Reactome database (online
mode). If not specified, then offline mode (using a downloaded copy of selected Reactome
pathways) will be used.

S2.2 Running PALS Viewer

To assist in results interpretation, PALS Viewer provides a user-friendly Web-based interface to
run PALS and analyse pathway ranking results as well as inspect significantly changing pathways.
It can be installed and run locally or accessed from the project Web site, and can be used
analyse three types of metabolite sets: pathways, molecular families (MFs) and Mass2Motifs.
An online instance of PALS Viewer can also be accessed from the project Web site at https:
//pals.glasgowcompbio.org/.

For pathway analysis, users start by uploading their intensity and annotation CSV files; input
format is detailed in Supplementary Section S1 but example files are also available directly from
PALS Viewer. Users can then easily configure the appropriate parameters such as experimental
design, preferred species and database. Once the pathway decomposition is run the analysis
results are shown in an interactive pathway ranking table (Figure 1).

Each entry in the table shows pathways, their corresponding mPLAGE p-values and the number
of formula hits. These can be used for sorting and filtering by chosen thresholds. Choosing to
order the pathways by the p-values means small but consistent changes in a group of path-
way metabolites appear near the top (most interesting), even if the changes in the individual
metabolites are modest.

Selecting a pathway from the Pathway Browser reveals the Reactome (or KEGG) pathway
diagram. Information on the fold changes of annotated compounds are submitted to Reactome
Analysis Service and mapped onto the Reactome pathway diagram, which is linked from the
Viewer. As an option, users can also display a heatmap of the annotated formula hits in the
pathway. A heatmap displaying the feature intensity levels of the annotated formula hits, across
all samples grouped by experimental factors, in the pathway is also shown. This allows the user
to easily visualise the changes in the pathway metabolites between experimental factors.

To analyse both MFs and Mass2Motifs using PALS Viewer users must provide links to an
existing GNPS FBMN result containing the MS1 peak table (for the feature intensity matrix)
and a csv file containing information on the sample groups. For Mass2Motifs analysis, users
provide an addition link to a GNPS MS2LDA result which describes the grouping of features
into Mass2Motifs. As for pathway analysis, example files are given in PALS Viewer. This data
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(A) Pathway Ranking Table 

(B) Reactome Pathway

Figure 1: An example of PALS Viewer results for analysing pathways in the CSF HAT data is
shown: (A) Activity results are shown in the Pathway Ranking table. Entries can be sorted and
filtered by p-value threshold or the number of formula hits. (B) An example Reactome pathway
selected from the Pathway Browser. Fold change values are mapped onto the pathway diagram
using Reactome Analysis Service.

is loaded into PALS, and features are allocated to metabolite sets according to their groups
(note that a feature can be assigned to only one MF but to multiple Mass2Motifs). Activity
level decomposition is then performed on the metabolite sets using mPLAGE. The results are
presented in PALS Viewer in a similar manner to pathways: MFs or Mass2Motifs are shown
in a ranked interactive table next to their mPLAGE p-values. Upon selecting a metabolite set
(either an MF or a Mass2Motif), a heatmap is displayed showing the intensity values of member
features across samples, as well as any additional metadata retrieved from GNPS or MS2LDA.

S2.3 Using PALS as a library

PALS can be imported as a Python library and incorporated into your own Python application.
This is illustrated in the following code snippet (for additional documentation and tutorials,
please refer to the project Web site):

from pals.PLAGE import PLAGE
from pals.ORA import ORA
from pals.GSEA import GSEA
from pals.common import *
from pals.feature_extraction import DataSource

# TODO: correctly initialise the following data structures for your data
# See Section S2.3.1 below.
int_df = pd.DataFrame()
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annotation_df = pd.DataFrame()
experimental_design = {}

# Using Reactome pathways matching by KEGG ID
database_name = ’COMPOUND’

# If true, we limit to metabolic pathways only. Otherwise all pathways will be queried.
reactome_metabolic_pathway_only = True

# If true, we use online mode that queries Reactome on a local Neo4j server.
# Otherwise offline mode will be used (using downloaded database files).
reactome_query = True

# Minimum intensity value for data imputation
min_replace = 5000

ds = DataSource(int_df, annotation_df, experimental_design, database_name,
reactome_species=reactome_species,
reactome_metabolic_pathway_only=reactome_metabolic_pathway_only,
reactome_query=reactome_query, min_replace=min_replace)

# choose a method
method = PLAGE(ds)
# method = ORA(ds)
# method = GSEA(ds)

df = method.get_pathway_df()

S2.3.1. Data structures

When PALS is used programatically, pandas DataFrames storing the intensity and annotation
data, along with a dictionary describing the experimental design, can be passed directly to the
program.

In the example above, int_df is the intensity DataFrame containing feature intensity informa-
tion described in Section S1 (with the second line of grouping information omitted). Similarly
annot_df is the annotation DataFrame containing feature annotations as described in Section
S1. The experimental design data in experimental_design contains information on ‘groups’,
which relates all samples in a particular experimental factor together as well as ‘comparisons’,
which describes the desired comparisons for the PALS analysis in terms of a case and a control.
An example of this can be found below:

experimental_design = {
’comparisons’: [

{’case’: ’Stage_1’, ’control’: ’Control’, ’name’: ’Stage_1/Control’},
{’case’: ’Stage_2’, ’control’: ’Control’, ’name’: ’Stage_2/Control’},
{’case’: ’Stage_2’, ’control’: ’Stage_1’, ’name’: ’Stage_2/Stage_1’}

],
’groups’: {
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’Stage_1’: [
’A008P.mzXML’,
’A009P.mzXML’,
’A010P.mzXML’

],
’Stage_2’: [

’A001P.mzXML’,
’A002P.mzXML’,
’A003P.mzXML’

],
’Control’: [

’A001C.mzXML’,
’A002C.mzXML’,
’A003C.mzXML’

],
}

}
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Supplementary Section S3: Synthetic data generation

Synthetic pathway data is constructed to have differentially expressed intensity matrix (an ex-
ample is shown in the figure below). Two groups (case and control) are included. The log
intensity values of the control group is drawn from a normal (Gaussian) distribution with mean
20.0 and standard deviation 5.0, while for the case group, a normal distribution with mean 40.0
and standard deviation 5.0 is used. Each pathway is associated with the specified number of
metabolites within the set: 2, 4, 6, 10, 20, 40, 80. To simplify the problem of assigning features to
metabolites, we assume a one-to-one correspondence between a feature and a metabolite (one
metabolite produces exactly one feature). A synthetic pathway is labelled by the number of
metabolites assigned to it (e.g. pathway twenty has 20 metabolites and therefore 20 features).
In addition, 100 background pathways containing only noise (showing no significant changes be-
tween the case and control groups) were generated. The number of metabolites in a background
pathway was randomly drawn with a uniform probability from 5 to 50, while the log intensity
value in the random pathway is drawn from a normal distribution with mean 0 and standard
deviation of 1. To simulate missing features, which often occurs in real data due to improper
parameters used in peak picking or other preprocessing steps in the pipeline (e.g. setting an
intensity filter threshold that is too low), features are also randomly removed from pathways
with a uniform probability of 0.2. The total number of pathways evaluated in the synthetic data
experiment is 107, composed of seven significantly changing pathways and 100 noisy pathways.
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Supplementary Section S4: Benchmark methods

The ORA method used for benchmarking is briefly summarised here: for each pathway, the
number of significantly changing metabolites (above a p-value threshold of 0.05) is counted. Hy-
pergeometric test is used to assess the probability of over-representation of significantly changing
metabolites in that pathway. This procedure is repeated for all pathways, and the Benjamini-
Hochberg correction is used to correct for multiple t-tests in the final results. For more details,
refer to [2].

For GSEA, the GSEApy python package (https://github.com/zqfang/GSEApy), which im-
plements the Gene-Set Enrichment Analysis algorithm in [5], was used. The steps in GSEA
include the calculation of an enrichment score (ES). This is achieved by ranking metabolites
according to the correlation of their feature intensity profiles to different experimental factors.
Subsequently, a permutation test is performed to estimate the significance of the observed ES to
the null hypothesis by randomly permuting factor labels, and correcting for multiple hypothesis
testing by computing the false discovery rate. Following the original GSEA paper [5], the recom-
mended number of 1000 permutations was used, as well as permuting the phenotype (sample)
labels rather than the gene labels during permutation test. To produce the initial ranking of
metabolites, we use the signal-to-noise ratio, which is also used by default in GSEA.
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Supplementary Table S5: Top 30 ranking pathways from the HAT
CSF dataset

Pathway Name AF TPF FC % S1/S2 S2/C S1/C
Pantothenate and CoA biosynthesis 11 25 44 0.0E+00 6.6E-26 9.7E-01
Cyanoamino acid metabolism 13 40 32.5 0.0E+00 2.8E-11 4.1E-02
Arginine and proline metabolism 23 79 29.11 0.0E+00 1.3E-09 6.8E-04
Purine metabolism 9 78 11.54 0.0E+00 2.4E-09 4.3E-01
Alcoholism 3 10 30 0.0E+00 2.6E-09 9.3E-02
Aminoacyl-tRNA biosynthesis 14 23 60.87 0.0E+00 5.5E-09 1.2E-03
Cocaine addiction 2 7 28.57 0.0E+00 5.8E-09 2.5E-01
Amphetamine addiction 2 9 22.22 0.0E+00 7.8E-09 2.6E-01
Amyotrophic lateral sclerosis (ALS) 2 10 20 0.0E+00 2.1E-08 2.6E-01
Protein digestion and absorption 14 42 33.33 0.0E+00 3.3E-08 3.1E-03
Mineral absorption 10 26 38.46 0.0E+00 2.0E-07 4.2E-02
ABC transporters 18 80 22.5 0.0E+00 2.3E-07 1.7E-02
Anticonvulsants 1 4 25 0.0E+00 2.8E-07 8.1E-01
Alanine, aspartate and glutamate metabolism 7 23 30.43 0.0E+00 4.1E-07 4.2E-01
African trypanosomiasis 1 7 14.29 0.0E+00 4.4E-07 8.3E-01
Novobiocin biosynthesis 2 25 8 0.0E+00 9.3E-07 7.5E-01
Cysteine and methionine metabolism 7 52 13.46 0.0E+00 1.3E-06 7.4E-01
Neuroactive ligand-receptor interaction 4 50 8 0.0E+00 1.5E-06 9.8E-01
Indole alkaloid biosynthesis 1 30 3.33 0.0E+00 2.0E-06 9.0E-01
Histidine metabolism 7 41 17.07 0.0E+00 5.2E-06 1.0E-03
Phenylalanine, tyrosine and tryptophan biosynthesis 9 30 30 0.0E+00 1.1E-05 5.4E-03
Phenylalanine metabolism 12 55 21.82 0.0E+00 1.9E-05 3.6E-02
beta-Alanine metabolism 7 31 22.58 0.0E+00 2.9E-05 2.4E-02
Ubiquinone and other terpenoid-quinone biosynthesis 6 56 10.71 0.0E+00 1.5E-04 1.1E-04
Glutathione metabolism 5 29 17.24 0.0E+00 4.3E-04 3.9E-02
Caprolactam degradation 7 19 36.84 2.5E-25 8.2E-01 1.6E-10
Glycine, serine and threonine metabolism 9 41 21.95 1.6E-22 8.4E-07 3.6E-01
Bacterial chemotaxis 1 5 20 1.5E-21 1.5E-05 9.9E-01
Sphingolipid metabolism 1 10 10 4.4E-21 2.4E-05 9.9E-01
Glyoxylate and dicarboxylate metabolism 8 48 16.67 4.8E-21 9.1E-06 7.1E-02

The top 30 best ranking pathways based on the PALS of the stage 1 (S1) compared to stage 2
(S2) in the cerebrospinal fluid (CSF) of patients with Human African Trypanosomiasis (HAT).
The annotated formula (AF) found in the dataset and belonging to a particular pathway is shown
along with the total formula expected in a pathway (TPF) and the percentage of the formula
coverage (FC %). In the analysis, comparisons were made for between S1 and S2 along with S2
and S1 compared to the control (C) samples. The total number of KEGG pathways returned
for this experiment was 162 and from these many of those involved in amino-acid metabolism
were found to be highly significant.
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Supplementary Table S6: Metabolites annotated in the KEGG
aminoacyl-tRNA biosynthesis pathway

Amino acid Stage2/Stage1 (intensity)
L-Arginine Significant decrease
L-Asparagine Significant increase
L-Aspartate Insignificant decrease
L-Glutamate Significant increase
L-Glutamine Insignificant decrease
L-Histidine Significant decrease
L-Isoleucine Insignificant decrease
L-Leucine Significant decrease
L-Lysine Significant decrease
L-Methionine Insignificant decrease
L-Phenylalanine Significant decrease
L-Proline Significant increase
L-Serine Significant decrease
L-Threonine Significant decrease
L-Tryptophan Significant decrease
L-Tyrosine Significant decrease
L-Valine Insignificant decrease

The metabolites annotated in the KEGG aminoacyl-tRNA biosynthesis pathway in the CSF of
HAT patients. Some metabolites show a significant increase or decrease, while others show an
insignificant decrease in intensities between stage 1 and stage 2. All of the metabolite features
were identified using in-house standards apart from L-Tyrosine that was identified through
fragmentation and L-Aspartate for which no identification (only annotation was) was obtained.

12



Supplementary Table S7: Precision and recall on real HAT data

Data Missing
Features Method Mean Prec. Mean Recall Mean F1

Plasma

0.2
ORA 0.83 0.71 0.74
GSEA 0.71 0.22 0.30
PALS 0.86 0.88 0.87

0.4
ORA 0.77 0.53 0.59
GSEA 0.55 0.18 0.24
PALS 0.77 0.76 0.76

0.6
ORA 0.77 0.32 0.42
GSEA 0.43 0.12 0.16
PALS 0.69 0.61 0.64

0.8
ORA 0.53 0.14 0.20
GSEA 0.20 0.06 0.08
PALS 0.61 0.42 0.48

CSF

0.2
ORA 0.95 0.87 0.91
GSEA 0.52 0.46 0.41
PALS 0.94 0.91 0.93

0.4
ORA 0.92 0.75 0.82
GSEA 0.52 0.37 0.34
PALS 0.91 0.83 0.86

0.6
ORA 0.90 0.60 0.71
GSEA 0.41 0.32 0.29
PALS 0.87 0.69 0.76

0.8
ORA 0.87 0.38 0.50
GSEA 0.27 0.17 0.16
PALS 0.81 0.49 0.60

Mean precision, recall and F1 score for the different methods under various missing features
proportion on the Plasma and CSF data. The highest values (and ties) for precision, recall and
F1 score for each experimental setting is highlighted in bold.
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Supplementary Section S8: Analysis of Differentially Expressed
Molecular Families and Mass2Motifs from the AGP Dataset

PALS was run on the following GNPS-FMBN [4] results from a previous analysis of a subset
from the American Gut Project (AGP) dataset [3] comparing volunteers who eat differential
amounts of plant-based food. The case group was selected to be those who eat more than 30
plant-based foods a week, while the control consists of those eating less than 10 plant-based
foods a week.

For analysis, the GNPS-FBMN data available from https://gnps.ucsd.edu/ProteoSAFe/status.
jsp?task=0a8432b5891a48d7ad8459ba4a89969f was used to extract MS1 peak table and group-
ing information. Sample metadata CSV is provided at https://github.com/glasgowcompbio/
PALS/raw/master/notebooks/test_data/AGP/AG_Plants_extremes_metadata_df.csv. Anal-
ysis was performed using PALS Viewer at https://pals.glasgowcompbio.org/app. The fol-
lowing Jupyter notebook can also be used to perform the same analysis: https://github.com/
glasgowcompbio/PALS/blob/master/notebooks/GNPS_analysis.ipynb.

In total, 35 significantly changing MFs containing 10 or more molecules were found to be DE
between case and control groups. We found a notable Molecular Family containing steroid-
related molecules of interest that is statistically significant (p-value ≤ 0.001). This is plotted
below, with the corresponding GNPS cluster id labelled green in the plot axes and also listed in
the following table.

Less than 10
More than 30

groups

11
33

7_
P4

_R
E1

1_
01

_4
84

.m
zM

L
27

84
0_

P1
_R

G
3_

01
_1

18
.m

zM
L

37
54

3_
P6

_R
G

2_
01

_6
95

.m
zM

L
38

09
3_

P5
_R

E5
_0

1_
60

6.
m

zM
L

38
14

6_
P2

_R
C

12
_0

1_
19

7.
m

zM
L

38
24

0_
P1

_R
F2

_0
1_

10
4.

m
zM

L
38

33
4_

P1
_R

F1
_0

1_
10

3.
m

zM
L

40
31

8_
P1

_R
E7

_0
1_

96
.m

zM
L

41
71

2_
P6

_R
H

2_
01

_6
98

.m
zM

L
42

68
9_

P5
_R

G
8_

01
_6

43
.m

zM
L

46
21

6_
P2

_R
H

7_
01

_2
72

.m
zM

L
16

50
1_

P2
_R

D
9_

01
_2

10
.m

zM
L

40
02

7_
P2

_R
C

7_
01

_1
92

.m
zM

L
46

08
4_

P2
_R

G
11

_0
1_

26
1.

m
zM

L
10

71
5_

P4
_R

A4
_0

1_
41

5.
m

zM
L

18
40

4_
P3

_R
F6

_0
1_

37
0.

m
zM

L
31

87
8_

P1
_R

H
3_

01
_1

31
.m

zM
L

32
76

4_
P3

_R
F1

2_
01

_3
77

.m
zM

L
33

47
3_

P1
_R

G
2_

01
_1

17
.m

zM
L

33
59

1_
P5

_R
F1

0_
01

_6
29

.m
zM

L
37

54
9_

P5
_R

D
11

_0
1_

59
8.

m
zM

L
38

09
9_

P1
_R

D
7_

01
_8

3.
m

zM
L

38
25

5_
P5

_R
B3

_0
1_

55
4.

m
zM

L
39

87
8_

P5
_R

C
8_

01
_5

78
.m

zM
L

40
31

5_
P1

_R
G

7_
01

_1
22

.m
zM

L
41

34
1_

P2
_R

E8
_0

1_
22

4.
m

zM
L

41
74

4_
P6

_R
E1

_0
1_

68
8.

m
zM

L
43

16
0_

P3
_R

E1
1_

01
_3

61
.m

zM
L

7136
10369
9612
1217
8428
1197
7091
10364
10654
9263
10375
9249
10650
10653
7892
1187
1189
3678
8496
10649
1216
3498
7085

pe
ak

_i
d

4

2

0

2

4

Steroid-related Molecular Family

14

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=0a8432b5891a48d7ad8459ba4a89969f
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=0a8432b5891a48d7ad8459ba4a89969f
https://github.com/glasgowcompbio/PALS/raw/master/notebooks/test_data/AGP/AG_Plants_extremes_metadata_df.csv
https://github.com/glasgowcompbio/PALS/raw/master/notebooks/test_data/AGP/AG_Plants_extremes_metadata_df.csv
https://pals.glasgowcompbio.org/app
https://github.com/glasgowcompbio/PALS/blob/master/notebooks/GNPS_analysis.ipynb
https://github.com/glasgowcompbio/PALS/blob/master/notebooks/GNPS_analysis.ipynb


id LibraryID m/z RT Intensity no_spectra
1187 357.2056 3.0498 0.0377 61
1189 385.2352 3.4066 0.0058 85
1197 343.2264 3.6391 0.0185 28
1216 367.2269 3.3133 0.0036 86
1217 339.1964 3.0423 0.0038 109
3498 769.4667 3.3526 0.001 174
3678 399.3253 5.7595 0.0008 159
7085 713.4052 3.0489 0.0031 176
7091 Spectral Match to Mestranol from NIST14 311.2008 3.054 0.0012 24
7136 343.2255 3.2039 0.0002 25
7892 385.2367 3.1743 0.0133 68
8428 adrenosterone 301.1801 2.7956 0.0034 98
8496 383.3314 8.3489 0.0076 196
9249 343.2264 3.7812 0.0033 25
9263 369.241 4.2581 0.0005 56
9612 371.2578 4.3831 0.0082 90
10364 Spectral Match to Boldione from NIST14 285.1853 3.1896 0.0009 52
10369 413.3041 5.2675 0.0006 16
10375 313.2165 3.7372 0.0004 28
10649 685.4481 3.7336 0.0011 124
10650 369.2419 4.1228 0.0019 30
10653 341.2097 3.6374 0.0002 19
10654 325.2157 3.6832 0.0004 17
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‘ Finally for MS2LDA analysis, the AGP results for the FBMN workflow was further ran
through the MS2LDA workflow on GNPS. This GNPS-MS2LDA result is available from https:
//gnps.ucsd.edu/ProteoSAFe/status.jsp?task=7c34badae00e43bc87b195a706cf1f43. The
MS1 peak table from the original FBMN result was used for this analysis, as well as the pro-
vided metadata CSV. A significantly changing ferulic-acid related motif (p-value ≤ 0.001) can
be found below.
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id LibraryID m/z RT Intensity no_spectra
1326 Spectral Match to Curcumin from NIST14 369.1335 4.0253 0.0322 145
3633 Spectral Match to Curcumin from NIST14 369.1336 3.1547 0.0024 97
7879 Spectral Match to 3-Hydroxy-

4-methoxycinnamic acid from NIST14
195.0655 2.475 0.002 192

8837 Spectral Match to 3-Hydroxy-
4-methoxycinnamic acid from NIST14

177.0538 4.0199 0.0005 127

8838 371.149 3.8366 0.0046 49
8907 MoNA:3697220 Feruloyltyramine 265.1549 0.889 0.0015 177
9019 NCGC00095321-06!(1E,4Z,6E)-5-hydroxy-1,7-

bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one
369.1332 4.275 0.0016 85

9024 (1R,3R,4S,5R)-1,3,4-trihydroxy-5-[(E)-3-(4-
hydroxyphenyl)prop-2-enoyl]oxycyclohexane-1-carboxylic acid

339.123 3.147 0.0005 103

9040 Spectral Match to Curcumin from NIST14 369.1331 3.877 0.0031 128
9048 Spectral Match to Curcumin from NIST14 369.1331 4.4907 0.0007 84
9056 NCGC00168971-02_C17H20O9_(1R,3R,4S,5R)-1,3,4-

Trihydroxy-5-{[(2E)-3-(4-hydroxy-3-methoxyphenyl)-
2-propenoyl]oxy}cyclohexanecarboxylic acid

369.1335 3.3287 0.0003 105

9309 177.0552 2.4861 0.0011 177
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Supplementary Section S9: Analysis of Differentially Expressed
Mass2Motifs from the Rhamnaceae Dataset

Using PALS Viewer, activity level analysis was run on the results of GNPS-MS2LDA workflow
from [1] containing 25 Mass2Motifs that had been manually characterized and their distribution
over the Rhamnaceae clades was examined.

The GNPS-MS2LDA data can be found from https://gnps.ucsd.edu/ProteoSAFe/status.
jsp?task=b33b2697e7924ee1920dba207ed57733. To perform this analysis, users also need to
upload the MS1 peak table (https://github.com/glasgowcompbio/PALS/raw/master/notebooks/
test_data/Rhamnaceae/171205_71extracts_MS1peaktable_MS2LDA_comma.csv, as well as the
metadata CSV describing which mzML files belong to which genera (https://github.com/
glasgowcompbio/PALS/raw/master/notebooks/test_data/Rhamnaceae/MetaData_Rhamnaceae.
csv).

We performed a comparison between the Rhamnus (control) and Ziziphus (case) genera. The
results, shown in the following table, revealed that Mass2Motifs annotated with flavonoid-related
substructures (i.e., rhamnocitrin, kaemfperol, flavonoid core framgent, and emodin) are all dif-
ferently expressed between the Rhamnus and Ziziphus genera. The results here are consistent
with the original study in [1],

18

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b33b2697e7924ee1920dba207ed57733
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b33b2697e7924ee1920dba207ed57733
https://github.com/glasgowcompbio/PALS/raw/master/notebooks/test_data/Rhamnaceae/171205_71extracts_MS1peaktable_MS2LDA_comma.csv
https://github.com/glasgowcompbio/PALS/raw/master/notebooks/test_data/Rhamnaceae/171205_71extracts_MS1peaktable_MS2LDA_comma.csv
https://github.com/glasgowcompbio/PALS/raw/master/notebooks/test_data/Rhamnaceae/MetaData_Rhamnaceae.csv
https://github.com/glasgowcompbio/PALS/raw/master/notebooks/test_data/Rhamnaceae/MetaData_Rhamnaceae.csv
https://github.com/glasgowcompbio/PALS/raw/master/notebooks/test_data/Rhamnaceae/MetaData_Rhamnaceae.csv


Mass2Motif p-value No. of members
rhamn_motif_130.m2m [Kaempferol] 0.000000E+00 68
rhamn_motif_121.m2m [CHOOH loss - indicative for
underivatized carboxylic acid group]

0.000000E+00 29

rhamn_motif_140.m2m [Flavonoid core fragments (m/z 151)] 0.000000E+00 25
motif_81 0.000000E+00 24
rhamn_motif_141.m2m [Emodin related Motif] 0.000000E+00 21
motif_50 0.000000E+00 12
rhamn_motif_163.m2m [Glycosyl moiety] 4.326859E-66 66
rhamn_motif_40.m2m [Emodin related Motif] 8.907510E-65 18
rhamn_motif_164.m2m [rhamnocitrin-related] 1.215099E-19 17
motif_98 3.335502E-17 11
rhamn_motif_172.m2m [CO2 loss] 3.818233E-16 44
motif_103 3.091902E-13 20
motif_38 1.665557E-12 14
motif_127 9.432444E-12 13
motif_82 4.864967E-11 13
rhamn_motif_28.m2m [coumaric acid-related] 9.965255E-11 23
rhamn_motif_87.m2m [(epi)ceanothic acid-related] 1.021007E-09 27
rhamn_motif_51.m2m [Cyclopeptide alkaloids] 1.164000E-09 16
rhamn_motif_167.m2m [Flavonoid core fragment (m/z 152)] 1.577084E-09 33
rhamn_motif_120.m2m [Coumaric acid - H2O] 1.594465E-09 50
motif_88 1.607455E-09 14
rhamn_motif_179.m2m [Rhamnetin (=7-methylquercetin)] 8.683922E-09 19
motif_79 1.852689E-08 21
rhamn_motif_153.m2m [CO2 loss] 4.288013E-08 39
rhamn_motif_169.m2m [coumaric acid related] 5.868700E-08 11
rhamn_motif_108.m2m [CHOOH loss - indicative for
underivatized carboxylic acid group]

1.169172E-07 15

rhamn_motif_60.m2m [CO2/H2O loss] 1.387670E-07 26
motif_72 4.529178E-07 16
rhamn_motif_165.m2m [ceanothic acid A-ring CO2 loss] 1.318498E-06 24
rhamn_motif_33.m2m [Xyl or Ara moiety] 3.280194E-06 25
motif_84 6.478872E-06 11
motif_125 1.197932E-05 12
motif_44 1.593861E-05 83
rhamn_motif_48.m2m [Cyclopeptide alkaloids] 2.034794E-05 12
rhamn_motif_148.m2m [Cyclopeptide alkaloids] 2.206457E-05 25
motif_107 6.337228E-05 11
rhamn_motif_117.m2m [protocatechuoyl-related] 9.157846E-05 19
motif_92 1.285183E-04 31
motif_74 1.361637E-04 17
rhamn_motif_191.m2m [vanilloyl-related] 2.172679E-04 25
motif_75 2.500638E-04 32
rhamn_motif_34.m2m [Sugar (Glc) Loss] 2.780931E-04 29
motif_106 4.134637E-03 13
motif_120 4.561325E-03 14
rhamn_motif_64.m2m [Norrubrofusarin-related] 5.617434E-03 13
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