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Abstract: Soybean (Glycine max; SB) leaf (SL) is an abundant non-conventional edible resource
that possesses value-adding bioactive compounds. We predicted the attributes of SB based on
the metabolomes of an SL using targeted metabolomics. The SB was planted in two cities, and
SLs were regularly obtained from the SB plant. Nine flavonol glycosides were purified from SLs,
and a validated simultaneous quantification method was used to establish rapid separation by
ultrahigh-performance liquid chromatography-mass detection. Changes in 31 targeted compounds
were monitored, and the compounds were discriminated by various supervised machine learning
(ML) models. Isoflavones, quercetin derivatives, and flavonol derivatives were discriminators
for cultivation days, varieties, and cultivation sites, respectively, using the combined criteria of
supervised ML models. The neural model exhibited higher prediction power of the factors with high
fitness and low misclassification rates while other models showed lower. We propose that a set of
phytochemicals of SL is a useful predictor for discriminating characteristics of edible plants.

Keywords: chemometrics; flavonoid; machine learning; multivariate analysis; non-conventional
edible plants; soybean leaf; targeted metabolomics

1. Introduction

Soybean (SB; Glycine max (L.) Merrill) is one of the most widely cultivated edible
plants in the world for human and animal nutrition; it is rich in plant-based proteins and
oils [1]. SB plant is a dicotyledonous annual plant that is characterized in two distinct
stages; vegetative (V1–Vn) and reproductive (R1–R8) stages. The appearance of SB seeds
is similar among varieties except for coat color, while the chemical compositions of them
are different across varieties and environmental factors [2]. Phytochemically, SB seeds
primarily contain isoflavones, such as daidzin and genistin, which accumulate during seed
maturation via an endogenous metabolic pathway when isoflavone synthase is expressed
in SB plant tissues during development [2,3]. In addition, isoflavones, flavonols, flavones,
and glycosides are present in soybean leaves (SLs) in the form of aglycones and glycosides
of apigenin, kaempferol, and quercetin (Figure 1) [4,5]. Intrinsic and extrinsic factors
such as the variety, latitude of the plantation site, fertilization, and climate cause different
metabolic responses in SLs because of many polyphenol synthetases in the metabolic
pathway [6]; however, there is limited information on the correlation between SB variety
and phenolic composition of the SL [7]. Moreover, it is difficult to distinguish mature SB
plant characteristics by the appearance of the beans and the leaves in the early stages of the
SB plant [2]. Therefore, it is worthwhile to predict or discriminate SB plant characteristics
during the cultivation period, including earlier stages, using chemometric information
of SLs.
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Figure 1. Representative phenolic compounds presented in soybean (SB) leaves. Hereafter, chemical names of three acetate-
and three malonate isoflavones were used as acetyl- and malonyl isoflavone, respectively, for convenience. Chemical
symbols in the table: O-Gs, O-glycosides include mono-, di-, tri-glycosides; O-Glc, 1-dehydro-glucose; O-Glc-Ac, acetyl
1-dehydro-glucose; and O-Glc-Ma, malonyl 1-dehydro-glucose.

Given the importance of SB as a prominent food source, metabolomic approaches
for the leaf have delivered discriminable capacities to an SB plant breeder and developer,
such as geographical dependency [8], genotype variability [9], and various environmental
responses [10–12]. Furthermore, predictive tools are relatively new and highly demanding
in the area of plant metabolomics. To date, no universal method is available to identify
predictive metabolic responses; accordingly, targeted metabolomics is preferred to establish
a predictive model even with a smaller number of markers [12].

Nontargeted metabolomic analysis of food phenolics in plants can provide abundant
information using advanced analytical instruments [13,14]. However, it requires prereq-
uisites and conditions, such as quality control/quality assurance (QC/QA) samples and
expensive hardware and software. Although over 100 compounds in SB samples have been
identified using high-resolution instruments, the content of each compound may not be
quantified without authentic standard compounds [15]. Many studies have focused on SB
isoflavonoids; however, the targets of these analyses have been limited because conjugated
isoflavones were predominant [1,16–18]. To investigate targeted metabolomic changes in
SB plants during growth, diverse chemicals should be considered [19]. To date, no study
has investigated the correlation between the phenolic composition of SL and the phenotype
of SB.

It is essential to analyse complex and large data sets of metabolomic subjects; ac-
cordingly, various statistical tools have been developed and have continuously improved
abilities regarding data analysis. Among many multivariate analyses, principal component
analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) have
been commonly used in the area of metabolomics. Recently, publications using other
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potential machine learning (ML) tools, which possess diverse algorithms and performances
compared with the aforementioned tools, have substantially increased; however, little
literature has been reported for comparative work in the area of plant and agricultural
science [20].

Here, we hypothesized that the secondary metabolites of SL can discriminate the dif-
ference between the phenotype and cultivation information of SB plants. We prepared nine
purified flavonol glycosides from SLs and determined the content of 31 compounds in SL
of SB plant varieties using ultrahigh-performance liquid chromatography (UPLC) system
coupled with electrospray ionization (ESI) single quadrupole mass spectrometer (MS). A
rapid simultaneous separation (<7 min) method validation was established, and various
supervised ML models were applied to differentiate the key compounds by cultivation day,
planting site, and variety. Further, we compared and determined the prediction power for
discriminating these differences by ML models.

2. Results and Discussion
2.1. Identification of Purified Flavonol Glycosides

We observed distinctive peak profiles for the SLs across varieties. Accordingly, two or
three flavonol glycosides were majorly presented with different retention times (RTs) in
the separation chromatography for each SL. Nine flavonol glycosides were separated and
purified by preparative HPLC, based on the peak collection (Figure S1; Supplementary
Materials). The separated peaks were tentatively identified as quercetin or kaempferol gly-
cosides. The flavonol glycosides were identified as quercetin 3-O-triglycosides of Cheng-ja
no.3 soybean variety (CJ), kaempferol 3-O-triglycosides of Dae-won soybean variety (DW),
quercetin 3-O-diglycosides of Nok-poong soybean variety (NP), and kaempferol 3-O-di and
triglycosides of Woo-ram soybean variety (WR) (Table 1 and Figures S2–S5). The values of
the molecular mass of the precursors and fragments were identical to those of previous stud-
ies [4,21,22], and no further structural analysis (nuclear magnetic resonance) was performed.
Kaempferol and quercetin glycosides were the dominant phenolics in yellow bean varieties
(DW and WR) and colored bean varieties (CJ and NP), respectively. The acceptable molecu-
lar structures of the nine flavonol glycoside can be suggested according to the references as
follow; CJ1, quercetin 3-O-β-D-glucopyranosyl(1→2)-O-[α-L-rhamnopyranosyl(1→6)]-β-
D-galactopyranoside; CJ2, quercetin 3-O-β-D-glucopyranosyl(1→2)-O-[α-L-rhamnopyranosyl
(1→6)]-β-D-glucopyranoside; DW1, kaempferol 3-O-β-D-glucopyranosyl(1→2)-O-[α-L-
rhamnopyranosyl(1→6)]-β-D-galactopyranoside; DW2, kaempferol-3-O-β-D-glucopyranosyl
(1→2)-O-[α-L-rhamnopyranosyl(1→6)]-β-D-glucopyranoside; NP1, quercetin 3-O-β-D-
glucopyranosyl(1→2)-β-D-galactopyranoside; NP2, quercetin 3-O-β-D-glucopyranosyl(1→2)-
β-D-glucopyranoside; WR1, kaempferol 3-O-α-L-rhamnopyranosyl(1→2)-O-[α-L-rhamnopyranosyl
(1→6)]-β-D-galactopyranoside; WR2, kaempferol 3-O-α-L-rhamnopyranosyl(1→6)-β-D-
galactopyranoside; and WR3, kaempferol-3-O-α-L-rhamnopyranosyl(1→6)-β-D-glucopyranoside.

The spectral purities of the purified flavonol glycosides were calculated in the range
of 64–99% by impurity subtraction based on the peak areas in the Max-ultraviolet (UV)
chromatogram (210–800 nm) using a photodiode array (PDA) detector (Figures S6–S14).
If an impurity in the purified compounds could be separated in a UV chromatogram,
the area % of impurity was subtracted from the purity of the compound. If an impurity
could not be separated in UV but could be detected using an MS, the quantified values of
the impurities were considered. The modified purities for quantification were calculated
using a combined solution of 31 compounds (Table S1). It was inevitable to retain certain
impurities because of the chemical characteristics, which were difficult to separate using
a C18 column. A more precise separation will be considered, such as chiral chemistry, in
the future. We considered this premise meaningful for executing a targeted metabolomic
approach with appropriate chemical diversity of SLs.
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Table 1. Mass spectral data of purified flavonol glycosides from various soybean leaves.

Compound † Positive Negative Tentative Identification

MS1 a Error ppm MS2 b MS1 a Error ppm MS2 b Formula, (M)

CJ1 773.2120 −0.2 303.0489,
465.1016,
611.1591,
627.1523

771.2016 −0.1 301.0372 C33H40O21 quercetin 3-O-tri-glycoside A

CJ2 773.2133 0.1 303.0497,
465.1022,
611.1601,
627.1552

771.2041 0.5 301.0374 C33H40O21 quercetin 3-O-tri-glycoside B

DW1 757.2162 −0.4 287.0542,
449.1076,
595.1634
611.1558

755.2048 −0.3 285.0400 C33H40O20 kaempferol 3-O-tri-glycoside A

DW2 757.2173 0.1 287.0539,
449.1071,
595.1638
611.1597

755.2040 −0.5 285.0408 C33H40O20 kaempferol 3-O-tri-glycoside B

NP1 627.1535 0.3 303.0494,
465.1018

625.1466 −0.4 301.0372 C27H30O17 quercetin 3-O-di-glycoside A

NP2 627.1539 −0.6 303.0489,
465.1012

625.1473 −0.1 301.0365 C27H30O17 quercetin 3-O-di-glycoside B

WR1 741.2218 −0.4 287.0541,
449.1070,
595.1646

739.2132 0.0 285.0331 C33H40O19 kaempferol 3-O-tri-glycoside C

WR2 595.1634 −0.1 287.0553,
449.1067

593.1540 0.2 285.0414 C27H30O15 kaempferol 3-O-di-glycoside A

WR3 595.1628 −0.3 287.0549,
449.1060

593.1545 0.2 285.0416 C27H30O15 kaempferol 3-O-di-glycoside B

† Compounds from CJ, Cheng-ja; DW, Dae-won soybean variety; NP, Nok-poong; and WR, Woo-ram varieties. a Molecular mass of
precursors. b Molecular mass of molecular fragments (Refer to the details in Figures S2–S5).

2.2. Separation Method Validation

The 31 compounds were separated within a run time of 7 min using UPLC-MS and C18
columns. Separation strategies were organized into three parts: hydrophilic (peak nos. 1–9),
mesohydrophilic (peak nos. 10–21), and hydrophobic parts (peak nos. 22–31) (Figure S15).
Owing to mutual interaction under changing elution conditions, a peak overlap occurred
between apigenin (28) and genistein (27), which have the same molecular weight. Except
for these two, all peaks were separated with a proper resolution during mass detection.
(Figure S15). Mass detection was conducted within a limited RT window of acquisition time
to enhance sensitivity by improving interscan capacity during simultaneous acquisition
and yielding a valid number of quantification points for one peak [23,24]. The symmetry
factors of the 31 compounds ranged from 0.9 to 1.20 for mass detection (data not shown).

Linearity, limit of detection (LOD), limit of quantification (LOQ), precision, and
trueness expressed as a percentage (%) relative to the standard deviation (RSD) were deter-
mined by UPLC–MS. The validation results are listed in Table 2. The RT of the compounds
exhibited an excellent SD, regardless of the elution zones. Seven-point calibration curves
were plotted over a 100-fold concentration range, and the linearities were excellent for
mass detection (R > 0.995). The LOD and LOQ ranged from 0.4 to 93 µg/L and 1.3 to
308 µg/L, respectively (Table 2). The sensitivity ranged from 0.001 to 0.323 pmol/injection
for mass detection (data not shown in Table 2). The sensitivity of mass detection was
10-fold that of the previous study [24]. The LODs of mass detection were lower (1–10-fold)
than those reported for the determination of isoflavones using UPLC instrumentation [25].
The accuracy of recovery of the spiked compounds was within ±8% for mass detection,
indicating suitable reliability. Intra- and interday precisions ranged from 1.3% to 8.3%
RSD and 0.7% to 9.0% RSD (Table 2). These precisions were similar to those reported for
UPLC-MS/MS instrumentation [26]. Despite the limitations of mass detection, compared
to MS/MS instrumentation, our validation results indicate that the separation method is
reliable for metabolomic analyses.
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Table 2. Method validation of mass detection for 31 compounds presented in soybean leaf.

No. a CL b Compound RT c (min) LOD d (µg/L) LOQ e (µg/L) Linearity
(R f)

Accuracy (Recovery
% ± SEM) g

Precision (RSD; %) h

Intraday i Interday j

1 FL quercetin 3-O-tri-glycoside A 1.04 ± 0.002 8.21 ± 0.71 27.35 ± 2.35 0.9997 102.14 ± 1.24 3.84 3.17
2 FL quercetin 3-O-tri-glycoside B 1.09 ± 0.001 1.23 ± 0.23 4.11 ± 0.77 0.9971 95.70 ± 2.66 8.32 5.35
3 FL quercetin 3-O-di-glycoside A 1.34 ± 0.002 5.48 ± 0.57 18.26 ± 1.89 0.9998 93.96 ± 1.59 5.35 4.83
4 FL quercetin 3-O-di-glycoside B 1.40 ± 0.002 8.12 ± 1.58 27.07 ± 5.27 0.9995 100.92 ± 1.52 4.76 2.89
5 IS daidzin 1.45 ± 0.002 4.98 ± 0.32 16.61 ± 1.07 0.9991 108.81 ± 0.45 1.31 3.53
6 FL kaempferol 3-O-tri-glycoside A 1.48 ± 0.002 38.09 ± 1.64 126.97 ± 5.46 0.9997 105.62 ± 0.62 1.87 6.50
7 FL kaempferol 3-O-tri-glycoside B 1.62 ± 0.002 57.03 ± 2.53 190.10 ± 8.44 0.9991 102.07 ± 2.61 8.09 8.97
8 IS glycitin 1.67 ± 0.002 17.53 ± 1.41 58.43 ± 4.71 0.9992 104.96 ± 1.40 4.23 3.44
9 FL kaempferol 3-O-tri-glycoside C 2.01 ± 0.002 8.26 ± 0.97 27.55 ± 3.25 0.9996 103.88 ± 1.07 3.26 2.50
10 FL rutin 2.45 ± 0.001 5.81 ± 0.40 19.38 ± 1.33 0.9998 101.57 ± 1.00 3.11 3.35
11 FL isoquercitrin 2.61 ± 0.001 3.58 ± 0.16 11.94 ± 0.52 0.9997 104.43 ± 0.81 2.45 3.43
12 IS genistin 2.70 ± 0.000 14.76 ± 0.81 49.19 ± 2.71 0.9995 102.51 ± 1.03 3.18 2.97
13 FL kaempferol 3-O-di-glycoside A 2.72 ± 0.000 2.64 ± 0.13 8.80 ± 0.45 0.9997 100.51 ± 1.12 3.51 1.49
14 FL kaempferol 3-O-di-glycoside B 2.91 ± 0.000 7.09 ± 0.10 23.65 ± 0.33 0.9992 96.73 ± 1.07 3.48 4.42
15 IS malonyl daidzin 2.92 ± 0.000 13.12 ± 0.80 43.72 ± 2.66 0.9997 102.90 ± 1.25 3.85 3.70
16 IS malonyl glycitin 2.98 ± 0.000 5.55 ± 0.52 18.49 ± 1.72 0.9998 100.27 ± 1.18 3.71 4.65
17 FL astragalin 3.03 ± 0.000 1.57 ± 0.36 5.23 ± 1.21 0.9995 103.24 ± 0.61 1.86 3.62
18 FE apigenin 7-O-glucoside 3.15 ± 0.000 0.38 ± 0.07 1.27 ± 0.23 0.9981 106.70 ± 1.36 4.04 2.38
19 IS acetyl daidzin 3.29 ± 0.000 5.45 ± 0.25 18.16 ± 0.84 0.9993 101.76 ± 0.86 2.68 2.45
20 IS acetyl glycitin 3.38 ± 0.000 2.46 ± 0.03 8.20 ± 0.09 0.9997 102.34 ± 0.51 1.56 2.15
21 IS malonyl genistin 3.45 ± 0.000 8.52 ± 0.03 28.39 ± 0.09 1.0000 99.12 ± 0.44 1.40 2.14
22 IS daidzein 3.79 ± 0.000 7.87 ± 0.15 26.22 ± 0.50 0.9995 100.31 ± 0.94 2.98 2.61
23 IS acetyl genistin 3.97 ± 0.000 12.03 ± 0.18 40.10 ± 0.61 0.9995 100.90 ± 0.95 2.99 2.76
24 IS glycitein 4.01 ± 0.000 18.12 ± 0.35 60.40 ± 1.18 0.9995 100.45 ± 0.71 2.24 1.52
25 FE luteolin 4.19 ± 0.001 7.76 ± 0.22 25.88 ± 0.75 0.9998 101.01 ± 0.81 2.53 2.27
26 FL quercetin 4.21 ± 0.000 9.94 ± 0.38 33.14 ± 1.26 0.9995 101.08 ± 0.67 2.09 2.30
27 IS genistein 5.40 ± 0.001 45.18 ± 2.02 150.59 ± 6.73 0.9998 100.92 ± 0.43 1.35 0.70
28 FE apigenin 5.52 ± 0.001 15.20 ± 0.87 50.65 ± 2.90 0.9958 101.30 ± 1.21 3.79 3.90
29 CM coumestrol 5.58 ± 0.000 2.16 ± 0.19 7.19 ± 0.63 0.9965 105.20 ± 0.60 1.80 2.24
30 FL kaempferol 5.65 ± 0.000 92.49 ± 10.43 308.29 ± 34.78 0.9992 104.37 ± 0.68 2.05 3.73
31 FL isorhamnetin 5.71 ± 0.000 35.14 ± 3.14 117.12 ± 10.47 0.9990 108.85 ± 1.19 3.45 5.41

a Numbered in the order of retention time (RT). b Class: CM, coumestan; FE, flavone; FL, flavonol; and IS, isoflavone. c Retention time (RT) was presented the mean ± standard error of the means (n = 10). d Limit
of detection. e Limit of quantification. f Correlation coefficient. g Trueness includes an accuracy term (n = 6), with 95% confidence interval. h RSD: relative standard deviation. i Intraday variation of analysis
(n = 6). j Interday variation of analysis (n = 6 × 3 days).
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2.3. Changes in 31 Compounds in SLs

Three SB plants were grown in the field for over 120 days with similar growth patterns
(Figure 2A1,A2). The dry weights of the SLs exponentially increased until the 90th day
of growth, while those of the stems drastically increased after the 90th day of growth.
Sixty samples of the SLs of two varieties in Pa-ju city (PJ) and one in Yeon-chen city (YC)
were analyzed by UPLC–MS. The phenolic contents of the three SLs were compared across
the cultivation periods (Figures S2 and S3). The isoflavone content doubled in 90 days
of growth, compared with that of 30 days, while the flavonol content (approximately
2 mg/g) was two to three-fold higher across cultivation periods. Coumestrol was detected
after 90 days and increased four-fold after 120 days; however, no significant changes were
observed for the flavone content (Figure 2B1). Except for coumestrol, the contents of the
other three compound classes in the SL of DW were lower than those in the two CJ (PJ and
YC) (Figure 2B1). The isoflavone content slightly decreased after 90 days in the three SLs,
while other polyphenol content steadily increased in the dry matter per leaf and per plant
(Figure 2B1,B2). The maximum yield of the four classes of phenolics in the 90–120 day
range was estimated as follows: coumestrol, 0.1–0.8 mg/plant; flavones, 0.2–0.7 mg/plant;
flavonols, 21–57 mg/plant; and isoflavones, 7–28 mg/plant (Figure 2B2 and Table S2).

Figure 2. SB plant growth and changes of phenolics. The weight changes of (A1) leaf and (A2) stem
and content of phenolic classes changes per (B1) dry weight of leaf and (B2) plant by cultivation
period. Legends in figure: CJ, Cheng-ja no.3 variety; DW, Dae-won variety; PJ, Pa-ju city; YC,
Yeon-chen city; CM, coumestan; FE, flavones; FL, flavonols; and IS, isoflavones. Lower case letters
indicate statistical difference among the samples in the same cultivation period using comparisons of
each pair by Student’s t-test (p < 0.05).
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The changes in the 31 compounds across the cultivation period are shown in Figure 3
and Table S3. Malonyl daidzin and malonyl genistin were dominant (approximately 60%)
among the 12 isoflavones, while glycitein and its conjugates were the least abundant.
Isoflavones largely increased across the cultivation period; however, malonyl isoflavones
decreased, and isoflavone aglycones increased after 120 days. This might be due to changes
in the biosynthesis flux in the mature SB plant [2]. The SL of DW possessed a small amount
of each isoflavone compared to that of the SL of CJ (Figure 3A1). Kaempferol triglyco-
sides constituted a major portion of the kaempferol derivatives. Kaempferol derivatives
including aglycone, mono, di, and triglycosides were commonly detected in three SLs,
while luteolin was observed in only the SL of CJ in trace amounts (approximately 20 µg/g
dry weight) (Figure 3A2). Remarkably, quercetin derivatives were present in the SL of CJ,
which is considered a distinctive characteristic of the black-coat SB [22]. Only neglectable
amounts of quercetin triglycosides were observed in the SL of DW, and considerable
amounts of quercetin di and triglycosides were present in SL of CJ and increased across the
cultivation period (Figure 3A3). Coumestrol was detected after 90 and 120 days, which is a
well-known phenomenon that occurs because of endogenous tolerance against stress in
a mature SB plant [27,28]. The maximum yield of the remarkable individual compounds
within 90–120 days were estimated as follows: daidzin, 3 mg/plant; genistin, 3 mg/plant;
kaempferol 3-O-di-glycoside A, 5 mg/plant; kaempferol 3-O-tri-glycoside A, 17 mg/plant;
kaempferol 3-O-tri-glycoside C, 14 mg/plant; malonyl daidzin, 13 mg/plant; malonyl
genistein, 9 mg/plant; rutin, 9 mg/plant; quercetin 3-O-di-glycoside A, 15 mg/plant; and
quercetin 3-O-di-glycoside B, 14 mg/plant (Figure 3B and Table S4).

The changes in the SL flavonoids can be affected by environmental factors, such as
soil composition and climate. Flavonoid synthesis can be modulated through protective
functions, regulation of gene expression, and nutritional necessity of plants against en-
vironmental, abiotic/biotic, and nutritional stresses, respectively (e.g., UV radiation and
reactive oxygen species, activation and repression, and metal chelating, respectively) [29].
Therefore, a comparative study must be conducted with firmly controlled cultivation condi-
tions. Furthermore, agricultural products exhibit wide variation (20–40% RSD) in phenolic
composition, even if the conditions are well controlled [30]. Despite the difficulties of a
study that handles field-grown plants, secondary metabolites are indisputable markers
originating from inherent genetic traits [31]. Nontargeted metabolomics is a prominent
technology with sophisticated instrumental manipulations to understand the differences in
genetic diversity via secondary metabolites [15,32]. However, there are many barriers and
prerequisites for delicate advanced analyses. For example, expensive operation, consoli-
dated analysis process accompanying QC and QA samples, and considerable numbers of
manual peak identification [33]. While the latest advanced nontargeted analysis seems to
improve understanding for metabolome in a wide range, the targeted method could be a
practical approach to interpret and build a reproducible prediction model with moderate
numbers of metabolic markers accompanied by lesser time and resource requirements [12].
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Figure 3. Changes of individual compounds in the SB leaves by cultivation periods. Content per (A) dry weight of the leaves and (B) plant; (A1 and B1) isoflavones, (A2 and B2) flavones
and kaempferol glycosides, and (A3 and B3) coumestrol, isorhamnetin, and quercetin glycosides. Legends in figure: CJ, Cheng-ja no.3 variety; DW, Dae-won variety; PJ, Pa-ju city; and YC,
Yeon-chen city. Lower case letters indicate statistical difference among the samples in the same cultivation period using comparisons of each pair by Student’s t-test (p < 0.05).
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2.4. Supervised ML Model Predictions via Targeted Metabolomics

We obtained a reliable quantification summary using the aforementioned post data
processing, and an unsupervised PCA overview was obtained from an organized data
set regarding the differences in the targeted compounds for cultivation days, cities, and
varieties using SIMCA 17 (Umetrics, Umeå, Sweden). In the PCA plot (Figure S16), the first
and second principal components elucidated 34% and 19% of the variation, respectively.
The fitness of the established PCA model was 0.64 (R2) and 0.33 (Q2), and the score plot
exhibited non- or weak clustering by days and varieties. To discriminate the differences in
the targeted chemical compositions, supervised orthogonal partial least-squares (OPLS)
regression and OPLS-DA were used.

The OPLS regression model for discriminating the difference by cultivation days was
established, and the score plot indicated that metabolome differences can be explained
by days (left to right) (Figure 4A1). The values of R2X, R2Y, and Q2 of the OPLS regres-
sion model were 0.81, 0.78, and 0.64, respectively, indicating relatively suitable fitness
(Table S5) [34]. The established model was considered reliable according to the cross-
validation with a 100-permutation test. Green R2- and blue Q2-values to the left were lower
than the original points to the right, and the regression line of the Q2-points intersected the
vertical axis below zero (−0.708) (Figure 4A2). In the S-plot, p of x-axis and p (corr) of y-axis
represent a contribution (covariance) of the compounds to the variance of the observations
and correlation between samples and the reliability of the results. The metabolites within
our criteria of |p| ≥ 0.05 and |p(corr)| ≥ 0.5 in the S-plot were highlighted (Figure 4A3),
and the corresponding compounds were depicted in the same color in the variable impor-
tance projection (VIP) plot (Figure 4A4). The highlighted red dots in the S-plot indicate
the metabolites that increased during the cultivation days. Five isoflavones were listed as
important metabolites to discriminate the cultivation days (Table 3 and Table S6).

Table 3. Key phenolic compounds for cultivation period, varieties, and cultivation sites.

Class of Data Set a Compound b OPLS or OPLS-DA c BF or BT g

p d p (corr)
e VIP f G2 h Portion i

Day daidzein 0.345 0.636 1.51 5.00 0.14
genistein 0.203 0.512 LL j 4.82 0.13
glycitein 0.217 0.696 LL 7.96 0.22

malonyl glycitin 0.174 0.512 0.79 6.05 0.17
Variety apigenin 0.049 0.656 LL 581.90 0.27

luteolin −0.095 −0.556 LL 959.18 0.44
isoquercitrin −0.200 −0.661 0.92 LL LL

quercetin 3-O-di-glycoside A −0.500 −0.688 2.31 LL LL
quercetin 3-O-di-glycoside B −0.457 −0.705 2.07 LL LL

rutin −0.386 −0.703 1.77 LL LL
quercetin 3-O-tri-glycoside A LL LL 1.02 593.46 0.27

City astragalin 0.060 0.596 LL 17.81 LL
kaempferol 3-O-di-glycoside A 0.221 0.633 0.94 258.71 0.12

malonyl daidzin −0.290 −0.519 1.41 LL LL
quercetin 3-O-tri-glycoside A −0.340 −0.597 1.37 68.08 LL
quercetin 3-O-tri-glycoside B −0.448 −0.705 1.88 183.69 0.08

a Day, (30, 60, 90, and 120 days of cultivation period); variety, (CJ of PJ city, CJ of YC city, and DW of PJ city); and city, only CJ variety
was compared in the two cities. b Data were filtered, which satisfied at least two conditions among three. c OPLS, orthogonal partial
least-squares; and OPLS-DA, orthogonal partial least-squares discriminant analysis. d Modeled covariation. e Correlation coefficient.
f Variable importance projection. g BF, bootstrap forests; and BT, boosted tree. h Likelihood ratio chi-square. i The portion is among
the compounds that have G2 value according to the result of machine learning modeling. j LL: lower than the criteria (|p| ≥ 0.05,
|p(corr)| ≥ 0.5, VIP ≥ 0.8, and within sum of portion of G2 > 90%).

The OPLS-DA model for discriminating the difference by variety was formulated
and produced a score plot that was well clustered between the varieties (Figure 4B1). The
model showed relatively suitable fitness values (R2X, 0.60; R2Y, 0.80; and Q2, 0.73; Table S5)
and was considered valid based on the 100-permutation test (Figure 4B2; intersect of Q2,
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−0.386). Four key metabolites were screened based on our cut-off criteria using the S-plot
and VIP values (Table 3, Tables S6,S7). All the discriminative compounds were flavonol
glycosides that originated from the CJ variety (isoquercitrin, quercetin diglycosides, and
rutin) (Figure 4B3).

Figure 4. Multivariate analysis of SL metabolites. (A1) OPLS score plot with one y-variable (cultivation day), (A2) validation
of the OPLS model using 100-permutation test, (A3) S-plot of OPLS, and (A4) VIP plot, (B1 and C1) OPLS-DA score plots
for variety of SB plant and cultivation sites, (B2 and C2) validation of the models using 100-permutation, (B3 and C3) S-plot
of OPLS-DA, and (B4 and C4) VIP plots.

When a targeted metabolomic approach is conducted using a limited number of
subject compounds, there is inadequate information to discriminate the characteristics.
However, if statistically sufficient numbers of the compounds of interest are determined,
it is useful and applicable for estimating the compound content in certain agricultural
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products using ML methods [35]. The benefits of these targeted metabolomic analyses can
be expanded to establish a reliable predictive model for tracking an object to be considered.
The ML method is a prominent and unique tool for understanding scattered information,
even for small data sets [35]. We surmised that our data set of 60 samples for quantitative
results of 31 compounds was adequate for application following the ML prerequisite.

The organized data set used in the aforementioned OPLS and OPLS-DA was randomly
divided into three sub-data sets (training, validation, and test), and the predictions were
computed using neural (NU), bootstrap forest (BF), and boosted tree (BT) models using JMP
13 pro (SAS Institute Inc., Cary, NC, USA). The classes to be discriminated were varieties (CJ
and DW), days (30, 60, 90, and 120), and cities (PJ and YC). The models established using
NU exhibited suitable fitness (generalized R2 ranged from 0.94 to 0.99) in the three sub-data
sets with multiple layers of hidden computation (Table S5D). The fitness of the models
established using BF and BT differed by comparison classes. The BF model discriminated
multiple components of a class, while the BT model was effective on a two-component
class of the data set to be analyzed. Accordingly, the cultivation days were effectively
discriminated using the BF model, which was not applicable to the BT model. The classes
of variety and city showed lower fitness in the BF model (data not shown) compared to
that of BT. The BT model for the variety displayed excellent fitness (>0.99) for all three
sub-data sets (Figure 5 and Table S5D). The comparison of cities using the BT model was
not applicable to the test set because of inadequate effective data; therefore, the model
was established without it. The key compounds obtained using the BF and BT methods
are listed in Table S8 using the criteria (sum of contributing portion of G2 > 90% in the
order of the portion). None were obtained using NU because of the hidden node decision
feature. Compared to the OPLS and OPLS-DA outputs of the key compounds, the other
ML methods included slightly different compounds. However, we observed that there
were similarities in the compounds listed for the supervised ML methods; therefore, we
created combined criteria for the key compounds derived from the discriminative classes.

The key compounds screened using the combined criteria are listed in Table 3. Certain
isoflavones were discriminators for growth (days in Table 3), certain quercetin derivatives
and flavones for variety, and certain flavonol derivatives for cultivation sites. The model
established by ML of JMP pro can be exported as a coded function to be used without
statistical software (Supplementary Data II). We embedded the executable Python file with
six predictions derived from three ML methods of JMP pro (Script S1) and presented an
example result of the ML prediction for the test data set. A total of 1 or 2 of the 10 were
misclassified in the day class discrimination, and all predictions were the same as the
originals in the other class discriminations (Table S9). In addition, the OPLS-DA of SIMCA
can generate a misclassification rate with similar prediction power to ML of JMP pro;
however, we did not demonstrate using SIMCA because it can be obtained via the software.
The prediction power of NU appeared excellent across all the ML methods with high fitness
and low misclassification rates (Table S5D and Figure S17). The decision tree learning
method presented in our study may potentially be applicable to discriminate an influence
of agricultural factors using plant flavonoids of interest even with a small data set that is
segmented many classes of sub-factors.

NU model implements a fully connected multi-layer perceptron with one or two layers.
The main advantage of a neural network model is that it can efficiently model different re-
sponse surfaces. Given enough hidden nodes and layers, any surface can be approximated
to any accuracy. The main disadvantage of a neural network model is that the results are
not easily interpretable. BF model predicts a response value by averaging the predicted
response values across many decision trees. BT model embedded a boosting process of
which building a large, additive decision tree by fitting a sequence of smaller decision
trees. For categorical responses, only those with two response levels are supported by
BT [36]. Consequently, considerations must be taken for a relatively high overfitting risk,
sample numbers, and collinearity of data in the use of NU, BF (or BT), and OPLS methods,
respectively [20].
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Figure 5. Predictive modeling using machine learning. Reports of the boosted tree model for (A) the variety and (B) the
cultivate on-site discriminations.

3. Materials and Methods
3.1. Chemicals and Reagents

Apigenin, apigenin 7-O-glucoside, daidzein, daidzin, daidzin 6′′-O-acetate, daidzin
6′′-O-malonate, genistein, genistin, genistin 6′′-O-acetate, genistin 6′′-O-malonate, glycitein,
glycitin, glycitin 6′′-O-acetate, and glycitin 6′′-O-malonate were purchased from Fujifilm
Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Coumestrol, dimethyl sulfoxide
(DMSO), kaempferol, kaempferol 3-O-glucoside (astragalin), isoquercitrin, isorhamnetin,
luteolin, quercetin, and rutin were purchased from Sigma-Aldrich Co., LLC (St. Louis, MO,
USA). The purities of the authentic compounds are listed in Table S1. Two quercetin digly-
cosides, two quercetin triglycosides, two kaempferol diglycosides, and three kaempferol
triglycosides were purified from SLs. Mass-grade formic acid, acetonitrile, methanol, and
water were purchased from Thermo Fisher Scientific Inc. (Waltham, MA, USA). Other
chemicals used were of American Chemical Society grade or higher.

3.2. SB Seeding, Cultivation, and Leaf Sample Preparation

Two SB plant varieties, CJ and DW, for metabolomic analysis and two other varieties,
NP and WR, for purified flavonol glycosides, were provided by the National Institute of
Crop Science, Korea (CJ, DW, and WR) and Gyeonggi-do Agricultural Research & Exten-
sion Services, Korea (NP). CJ possesses a black coat and green cotyledon, and DW has
been widely cultivated for over 30 years with a creamy yellow coat and cotyledon. CJ was
cultivated in YC, Gyeonggi Province, Korea (37.923161◦ N, 126.726393◦ E). Simultaneously,
CJ and DW were cultivated in PJ, Gyeonggi Province, Republic of Korea (38.082867◦ N,
127.075570◦ E). Each variety was planted in the first week of June 2018 within a 330 square
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meters area. The seeding method followed the standards of the National Institute of Crop
Science [37]. The seeds were contacted in a fungicidal agent (mixed wettable powder of
benomyl (20%; w/w) and thiram (20%; w/w); at a 4 g/kg seed), and two seeds were sown in
a single spot with a density of 700 × 150 mm (field ridge × row). Bacterial inoculants were
not used. The methods of topdressing and cultivation followed an authentic manual with-
out pesticide treatment during growth. After planting, five whole plants were randomly
uprooted every 30, 60, 90, and 120 days of growth. The plucked samples were washed with
deionized water, and the leaves were collected without stems. The moisture of the leaves
was removed using a FreeZone™ freeze dryer (Labconco Corp., Kansas City, MO, USA).
The dried leaves were ground using a Tubemill™ (IKA®-Werke GmbH & Co. KG, Staufen,
Germany) at 25,000 rpm for 1 min, placed in aluminum-laminated polyethylene packaging,
and stored at −20 ◦C until use.

3.3. Preparation and Identification of Flavonol Glycosides from SLs

To secure flavonol glycosides from SLs, the aforementioned varieties were grown for
90 days. The uprooted SB plants were treated as previously described. Each SL powder
was soaked in 60% (v/v) aqueous methanol (50 mg/mL) for 15 h at 25 ◦C. The methanolic
extract solutions were centrifuged at 4000× g for 10 min, and the supernatants were filtered
through a 0.45 µm poly vinylidene fluoride (PVDF) syringe filter (Pall Inc., Port Washington,
NY, USA). The filtered solutions were injected (200–1000 µL per injection) in a preparative
HPLC column equipped with a 172-diode array detector, 321-binary pump, and GX-271
liquid handler (Gilson Inc., Middleton, WI, USA). Each flavonol glycoside was fractionated
for a single peak under programed elution conditions using a preparative separation
column (ZORBAX Eclipse XDB C18, 80 Å, 5 µm, 21.2 × 150 mm, Agilent Technologies Inc.
Santa Clara, CA, USA) at 30 ◦C with a Jasco CO-2060 column heater (Tokyo, Japan). The
collected fractions in repeated injections were combined, evaporated, and freeze-dried. The
details of the preparative elution programs and peak collection are shown in Figure S1.

The purified flavonol glycosides were identified using high-resolution mass spec-
trometry (HRMS). An UltiMate 3000 (Thermo Scientific Inc., Waltham, MA, USA) with
a Waters Cortecs C18 column (90 Å, 1.6 um, 2.1 × 100 mm, Milford, MA, USA) was
used for separation. The column temperature was set at 40 ◦C, and the flow rate was
0.5 mL/min. The mobile phase comprised 0.1% (v/v) formic acid in water (solvent A) and
0.1% (v/v) formic acid in acetonitrile (solvent B). A linear gradient was applied as follows:
86% A/14% B at 0 min, 86% A/14% B at 1.5 min, 74% A/26% B at 3 min, 74% A/26% B
at 5 min, 20% A/80% B at 5.5 min, 86% A/14% B at 6 min, and 86% A/14% B at 7 min.
The mass detection of precursors and fragments was performed using triple TOF 5600+
(AB Sciex LLC., Framingham, MA, USA) under the following conditions: ionization mode,
positive and negative; MS scan type, full scan, and information-dependent acquisition
(IDA) scanning; ionization source, ESI; MS scan range, 200–2000 mass-to-charge ratio (m/z);
MS/MS scan range, 30–2000 m/z; nebulizing gas pressure (ion source 1), 50 psi; heating
gas pressure (ion source 2), 50 psi; curtain gas pressure, 25 psi; desolvation temperature,
500 ◦C; ion spray voltage floating, 5.5 kV (positive) and 4.5 kV (negative); declustering
potential (DP), 60 (positive) and −60 (negative); collision energy (CE), 10 (positive) and
−10 (negative); collision energy, 35 ± 15 (positive) and −35 ± 15 (negative); collision
gas, N2.

The purity of the compounds was tentatively calculated by spectral purity check
using an ACQUITY PDA detector and Empower 3 software (Waters Corp.) [38,39]. Two
kaempferol diglycosides and one kaempferol triglycoside, two kaempferol triglycosides,
two quercetin diglycosides, and two quercetin triglycosides were separated from WR, DW,
CJ, and NP, respectively.

3.4. Analytical Conditions for the Quantification of the 31 Compounds

An ACQUITY UPLC (Waters Corp.) equipped with a binary pump and the Cortecs
C18 column was used for the separation. The column temperature was 30 ◦C, and the
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injection volume was 1 µL. Other separation conditions were as previously described. The
eluent was passed through the ACQUITY PDA detector and an ACQUITY QDa™ MS.

The MS was optimally tuned in the range of critical parameters: capillary voltage
(0.4–0.8 Kv) and cone voltage (5–30 V). Mass detection was performed using the following
parameters: capillary voltage, 0.8 kV; probe temperature, 600 ◦C; ESI source temperature,
120 ◦C; and desolvation nitrogen gas pressure, 90 psi. Cone voltages were allocated for
the chemicals: isoflavones, 5 V and others, 15 V. A single ion recording was performed
in positive mode for isoflavones and negative mode for others. The mass data of the
compounds analyzed were acquired (5 points/s) within a time window of ±8.70–24.3 s
based on the RT of the compounds (Table S1). All data were collected and processed using
Empower 3 (Waters Corp.).

3.5. Stock Solutions and SL Sample Preparations

Fresh stock solutions containing 31 compounds (12 isoflavones, 1 coumestrol, 9 flavonoid
reagents, and 9 purified flavonol glycosides) were prepared by mixing 2000 mg/L of each
compound in DMSO. Working solutions were prepared by diluting the stock solutions
with similar initial elution solutions (0.1% (v/v) formic acid in 20% aqueous acetonitrile).

Ground SL (10 mg) was added to 60% (v/v) aqueous methanol (5 mL) and sonicated
for 20 min. The supernatant obtained by centrifugation at 4000× g for 10 min was filtered
through a 0.2 µm regenerated cellulose Claristep® syringeless filter (Sartorius, Göttingen,
Germany). Thereafter, it was properly diluted with 0.1% formic acid in 20% acetonitrile in
the range of 100–200 mg/L for quantitative analysis.

3.6. Separation Method Validation

A mixed solution of 31 standard compounds (0.1 mg/L) was injected into the system
10 times to calculate the LOD, LOQ, and system suitability. The validation of the UPLC–MS
methods was performed with the acquisition of the same injection regarding intraday
precision, interday precision, linearity, LOD, LOQ, and accuracy. The overall method
validation rules described in “Eurachem Guide: The Fitness for Purpose of Analytical
Methods, 2nd Edition 2014” were followed [40]. The quadratic quantification curves of the
31 compounds were prepared by the injection of 7-point mixed standard solutions within a
concentration range of 0.2–20.0 mg/L.

The quantification data for the samples were expressed as the means ± standard
errors of the mean based on the five samples. One-way analysis of variance was performed
using comparisons of each pair by Student’s t-test with the p < 0.05, using JMP 13 pro.

3.7. Metabolomic Discrimination Using ML Methods

The area under the peaks of the targeted 31 compounds presented in standards
and samples were obtained after a smoothing treatment of the original peak using the
mathematical mean method (level 15) by Empower 3 (Waters Corp.). Thereafter, the
processed results were exported to a .csv file, and the content of the compounds was
calculated using a coded algorithm similar to that in a previous study [41]. The algorithm
for quantifying and eliminating unnecessary or unmatched data was implemented using R
software 4.1.1 (The R Foundation, Vienna, Austria) and RStudio 1.4.1717 (RStudio, Boston,
MA, USA).

To perform OPLS and OPLS-DA, additional information of the analyzed samples was
added to the acquired data set of the cultivation days of 30, 60, 90, and 120 (regression
model) and varieties and cities (discriminant model). Zero values were entered for the
blank quantification data (undetected or under the LOQ). The organized data set was im-
plemented by SIMCA and was centering with pareto scale (Par), including OPLS regression
and OPLS-DA. The implemented data set was not classified into validation and test set due
to the lack of numbers of data for OPLS and OPLS-DA. The models were fitted using the
“Autofit” function of SIMCA and were then optimized by eliminating outliers that were
located far outside in the score plot and residual normal probability plot until the highest
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R2 and Q2 values of the fitted models were obtained. An S-plot and VIP were employed to
screen compounds that were responsible for the discrimination of the class to be compared.
The cut-off combined criteria were set as |p| ≥ 0.05 and |p(corr)| ≥ 0.5 for the S-plot
and VIP > 0.8 [33,42,43]. A cross-validation of the OPLS regression and OPLS-DA model
was performed using a 100-permutation test for the optimized data set performed using
SIMCA 17.

The organized data set prepared was imported to JMP 13 pro to select key compounds
for discrimination and to examine the corresponding prediction power using ML methods,
including NU, BF, and BT. The imported data set was randomly classified into training,
validation, and test sets in portions of 0.6, 0.2, and 0.2, respectively, using tools in the
software. Some parameters of these models were tested in discrete numbers to find an
optimal result. The following bold numbers indicate the optimal options among them.
Otherwise, default numbers in the option were chosen. The NU model was launched with
the following options: hidden layer structure, (TanH (1, 2, 3), number of models (1, 5, 10),
and learning rate (0.05, 0.1)) and fitting options, (penalty method, absolute, and number of
tours (1, 5, 10)). The BF model was launched with the following options: forest, (number of
trees in the forest (10, 50, 100), number of terms sampled per split (6), bootstrap sample rate
(10), minimum splits per tree (10), maximum splits per tree (2000), and minimum size split
(5)) and multiple fits, not checked. The BT model was launched with the following options:
number of layers (10, 20, 50); split per tree, 3; learning rate, (0.05, 0.1); overfit penalty,
0.0001; and minimum size split, 5. Statistics and misclassification rates were checked for
the prediction power of the three ML methods of JMP pro and listed for the compounds
with the highest contribution to the established model. The formulas of the prediction
models were exported to Python code and applied to the test data set for discriminating
certain attributes using PyCharm (JetBrains sro, Prague, Czech Republic) environment.

The key compounds for discriminating the classes (days, varieties, and cities) were
selected using the combined criteria of the four values from the ML methods. No concrete
rules for cut-off criteria had not been suggested [44,45]. We use the commonly used limit
for p and p(corr) [33] and for VIP [43] as follows. At least two conditions of the following
three have to be satisfied: (1) |p| ≥ 0.05 and |p(corr)| ≥ 0.5 for the S-plot of OPLS and
OPLS-DA, (2) VIP > 0.8 for the OPLS and OPLS-DA, and (3) sum of contributing portion
of G2 > 90% of ML methods. G2 is a fit statistic used for categorical responses instead of
the sum of squares used for continuous responses, where a nonzero G2 value indicates a
splitting possibility in the decision tree [46].

4. Conclusions

Various chemometric, ML, and targeted metabolomic analyses have been applied to
diverse food and agricultural products [19,35,47,48]. Recently, these methods have been
used to discover concrete correlations between antioxidants and their efficacies [41,49].
We presented changes in 31 targeted compounds and key compounds in SLs using ML
predictions across the variety, growth, and cultivation sites of the SB plant. Regarding pre-
dictability, NU is a suitable predictor or discriminator for various confusing matters, such
as product quality, origin distinction, and production yields. The SL is a useful agricultural
resource for the phytochemical use of value-adding bioactive compounds. In addition, the
phenolic compounds of SL exhibit health-promoting effects [50–52]. Further metabolomic
studies should be performed on diverse SLs and various cultivation environmental factors.
This approach provides valuable clues for discriminating more diverse characteristics of
food and agricultural products.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11120884/s1, Tables S1–S9, Figures S1–S17, and Script S1 showing detail are presented
in Supplementary Data I; method validation, quantifications, detailed information for the purified
flavonol glycosides, multivariate analysis, modeling reports of machine learning, and Python code
for predictions. Supplementary Data II for the executable Python codes for the predictions can be
found in doi:10.17632/4cxz6d7ymw.1.
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