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Abstract: The use of retention time is often critical for the identification of compounds in metabolomic
and lipidomic studies. Standards are frequently unavailable for the retention time measurement of
many metabolites, thus the ability to predict retention time for these compounds is highly valuable.
A number of studies have applied machine learning to predict retention times, but applying a
published machine learning model to different lab conditions is difficult. This is due to variation
between chromatographic equipment, methods, and columns used for analysis. Recreating a machine
learning model is likewise difficult without a dedicated bioinformatician. Herein we present QSRR
Automator, a software package to automate retention time prediction model creation and demonstrate
its utility by testing data from multiple chromatography columns from previous publications and
in-house work. Analysis of these data sets shows similar accuracy to published models, demonstrating
the software’s utility in metabolomic and lipidomic studies.
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1. Introduction

Mass spectrometry (MS) is commonly used for metabolite and lipid profiling. MS allows the
measurement of mass to charge rations (m/z) of hundreds of compounds in a single analysis. While
incredibly useful, determining the identity of a compound only by its m/z can be difficult. The same m/z
can belong to isobaric and isomeric compounds in the same organism [1–4] or can be artifacts caused
by the MS [5]. The traditional response to this problem is to fragment the compounds of interest using
collision induced dissociation (CID) and examine the fragment m/z values (MS/MS fragmentation).
While effective in a number of cases many metabolites have similar fragments. Metabolite MS/MS
libraries and fragment prediction software are not yet sufficient to identify all compounds solely
by fragmentation [1,2,6,7]. To ensure the proper identification of compounds, observed orthogonal
measurements are needed.

A common orthogonal method of compound identification is chromatographic retention
time [1,4,6,8,9]. Retention time is determined by chemical interactions with the chromatographic
column and the eluents used. Using this property, possible compound identities can be narrowed down
in a reproducible and chemically relevant way. However, the difference between liquid chromatography
(LC) systems, columns, eluents, and gradients can cause large differences between the retention time of
the same compound under different conditions. This is especially true when performed by different
labs, even when using the same type of LC system and chromatography column [3]. There are two
main approaches to correct for this variation. One is to compare the same compound in different
conditions to create a model to predict how the compound will perform in any given condition. This is
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done very well by the PredRet software [3]. The main limitation of this approach is the requirement to
have measured the same compound in many different conditions [3]. New compounds, rarely seen
compounds, or unusual columns or conditions are difficult or impossible to predict.

The other approach is Quantitative Structure Retention Relationships (QSRR) [10]. In QSRR
many chemical standards (at least 50–100, though more are better if possible) are analyzed on a
particular LC-MS method. The chemical features of the standards are used to create a model to predict
retention times of new compounds with similar features. This has the advantage of theoretically
allowing prediction of any compound so long as its structure is known. Several papers have been
published demonstrating the validity of using QSRR in metabolomics and lipidomics studies using
various columns and conditions [1,2,6–8]. They demonstrate that QSRR techniques work for predicting
retention time of various compounds. However, QSRR models are specific to the column, eluents,
and LC method used, so the QSRR model must be recreated using standard lipids or metabolites
for every set of LC conditions required. This is problematic for some laboratories, such as core
laboratories, which have multiple methods, columns, and instruments with many compounds to
identify. In addition, not all laboratories have a bioinformatics specialist who can be dedicated to
making new QSRR models for each different experimental condition. An automated system to assist is
needed in such situations.

Here we present QSRR Automator, a user-friendly program that creates QSRR models for
lipidomics and metabolomics which can be used by investigators with minimal training in
bioinformatics (Figure 1). The software has been tested on LC-MS data collected from multiple
experiments using multiple column types and eluents. While some of the benefits of expert model
creation are lost, the ability to create multiple QSRR models quickly outweighs this disadvantage for a
lab needing multiple models.
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Figure 1. QSRR Automator (A). User interface for QSRR Automator. (B). Example model output of
QSRR Automator using data from Aicheler et al. [1].

2. Results

2.1. Comparison to Previously Published Data

To ensure QSRR Automator was functioning appropriately, we collected data from multiple
papers that had generated data from multiple types of compounds on different columns (details and
references listed in Table 1). Most of the data sets were from metabolomics experiments that employed
Hydrophilic Interaction Liquid Chromatography (HILIC) columns. Due to the more reproducible
nature of Reverse Phase (RP) chromatography that is employed in many lipidomics studies, the creation
of a QSRR model for this was a less difficult problem and required less testing [11,12]. All three models



Metabolites 2020, 10, 237 3 of 15

that QSRR Automator can use are represented in the published papers: Support Vector Machines for
Regression (SVR) with a Radial Basis Function (rbf) kernel, Multiple Linear Regression (MLR) and
Random Forest (RF).

Table 1. Comparison to published data-sets. This table provides details on the various data-sets used
and how the QSRR Automator models compare. Data-Set provides an abbreviated name, -omics
type is whether the compounds are from a lipidomics or metabolomics study, Column is whether a
reverse phase (RP) or Hydrophilic Interaction Chromatography (HILIC). Published Model and QSRR
Automator Model is the machine learning model used in each analysis, and Published # of Features
and QSRR Automator # of Features are how many molecular descriptors were used in the appropriate
final model.

Data-Set -omics Type Column Published
Model

Published #
of Features

QSRR
Automator

Model

QSSR
Automator #
of Features

RP_Lipid [1] Lipidomics RP SVR 12 SVR 11–31

RP_Met [7] Metabolomics RP MLR 3 RF or SVR 11–246

HILIC_MLR1 [7] Metabolomics HILIC MLR 3 SVR 21–146

HILIC_MLR2 [2] Metabolomics HILIC MLR 6 SVR 14–44

HILIC_RF [6] Metabolomics HILIC RF 4 RF or SVR 14–294

2.1.1. Direct Comparison of QSRR Automator to Published Data-Sets

To test how QSRR Automator performed on various data sets, the full data sets used in the creation
of the published models were used to create QSRR Automator models. Because feature selection and
model selection are affected by random data splits, five models were created for each dataset to ensure
results were consistent. A comparison of the models presented in the published data and those created
by QSRR Automator is presented in Table 1.

2.1.2. Use of Published Test and Training Data-Sets

One danger of machine learning is overfitting the model to the training data, limiting the ability
to apply the model to new data. The ideal way to determine if a model will predict future data well
is to split data into a training and test set, with the training set being used to train the model and
the test being “new” data on which performance can be evaluated. The cross-validations in QSRR
Automator and the published data [1,2,6,7] are designed to prevent overfitting, but the possibility still
exists. Since cross-validation functions report the average performance of each comparison rather
than reporting all data, it makes individual training test comparisons between the published data-sets
difficult to conduct. However, data-sets RP_Lipid, RP_Met, HILIC_MLR1 and HILIC_MLR2 provided
a training and test set for their final models. This provides an excellent opportunity to compare QSRR
Automator on a truly unseen testing sets and compare the results to published data.

Since random chance plays a role in feature and model selection in QSRR Automator and there is
no human supervision of these processes, QSRR Automator was performed five times. The average of
the QSRR Automator predictions and the measured standard values were compared to the difference
between the published prediction and the true values. The results are shown in Figure 2.
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Figure 2. Comparison of QSRR Automator’s Predictions vs. Published. Predictions on published test
sets. Unity lines show perfect predictions; Published Data are represented as are individual replicates
(rep1-rep5). HILIC_MLR2 is represented with the arithmetic mean to aid readability. A perfect
predictive model would put all points on the central unity line. This uses the RP_Lipidomics (A),
RP_Metabolomics (B) HILIC_MLR1 (C), and HILIC_MLR2 datasets. HILIC_MLR2 used a mix of
Standards (D) and an extract from Trypanosome Brucei (E). Details on these datasets are in Table 1.

Models in Figure 2 and their best fit equations in Table 2 show how QSRR Automator predictions
compare to predictions made in various published studies. They were further analyzed in Tables S1
and S2. How well QSRR Automater does depends on the dataset being used, which may depend on
the molecular features and compounds being used. Slopes are similar though r2 and intercept are
where the worst errors are, both of which are likely influenced by more error in several points or a few
large outliers. This suggests that while a dedicated bioinformatician can better shape the model to
reduce the error, QSRR Automator produces similar results overall.
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Table 2. Best fit least squares lines to the data in Figure 2. In an ideal fit y = x and r2 = 1. Rp_lipid
does not have an equation for one value that is provided in the paper (though they did many tests for
various reasons). Data-set names are from Table 1.

Data-Set Published Best Fit
Equation Published r2 QSRR Automater

Best Fit Line QSRR Automater r2

RP_Lipid n/a 0.989 y = 0.9778x + 0.1736 0.9942
RP_Met y = 0.8929x + 1.4018 0.7685 y = 0.8466x + 1.824 0.7935

HILIC_MLR1 y = 0.5825x + 1.1667 0.65 y = 0.5789x + 0.8424 0.5911
HILIC_MLR2 y = 0.8812x + 0.8575 0.8375 y = 0.7909x + 2.0814 0.7385

HILIC_RF y = 0.9523x + 0.3217 0.8596 y = 0.7729x + 2.8072 0.6667

HILIC_MLR2 contains 2150 compounds with only 600 (standards) or 670 (brucei) compounds
deemed potentially valid by the authors due to their filtering criteria [2]. The primary filter was
dropping any prediction with an error greater than 35%. When predicting all 2150 compounds with
QSRR Automator and applying the same filtering method, 650 compounds were deemed valid for
both data sets (Table S1). As this is similar to the published values we can conclude QSRR Automator
predicts equally well to the published method.

Finally, we compared the values predicted in the papers to those predicted by QSRR Automator
using t-tests. We performed a paired t-test on the predictions of RP_Lipidomics, RP_Metabolomics,
and HILIC_MLR1 on the assumption that the models should be predicting the same value as the true
retention time, with all compounds being the same. We also compared each data set’s prediction to
the measured values using t-tests again using paired t-tests on the assumption the same prediction
should be the same and all compounds were identical. HILIC_MLR2 used normal t-tests since the data
were not paired due to needing to recalculate which compounds to include. There is no evidence of
statistical significance in any of the tests save for those involving HILIC_MLR2. T-tests are affected
by the number of values (which is quite high in HILIC_MLR2) and there is a significant difference
between published HILIC_MLR2 predictions and its measured data, so this likely does not indicate
one model is superior to the other. Results are shown in Table S2.

2.2. Tests on In-House Data

2.2.1. Lipidomics Data

Red blood cells were used for an in-house test of the capability of QSRR Automator for lipidomic
retention time prediction. Lipids identified with their retention times are presented in Table S3. Samples
were split into a training and test split and a model created. Five training/test splits were used each
with three replicates to ensure that this analysis was truly representative of the performance of QSRR
Automator. The prediction performance on the testing set is shown in Figure 3 with more data on
the individual models present in Table S4. As can be seen in Figure 3, the error is clustered around
zero with most of the error well within a minute. Outliers vary between the five test/training splits
(Figure 3A) which indicates that the error is the result of random noise within the different training
sets rather than a bias in the prediction software itself. As with the published analysis, more features
were selected (selected features listed in Supplemental Table S5) though the majority of features are
present only in some models with a smaller core of features used in all models.
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presented with error divided by each test/training split (A) and the error of all compounds across
all groupings (B) With all compounds (B) the y-axis represents the number of compounds at each
error value.

2.2.2. Metabolomics Data

To confirm if QSRR Automator worked on the complicated data often found within an untargeted
metabolomics analysis, we simplified the development by using a standard mix of 400 compounds.
We used this standard mix on five different chemistries of HILIC column to test predictability of the
results of each column chemistry. After filtering as described in the Methods Section, each column
resulted in 230–260 identified compounds available for testing which are listed in Table S6. Samples
were split into a training and test split and models were created. Five training/test splits were used
each with 3 replicates to ensure that this analysis was truly representative of the performance of QSRR
Automator. The prediction performance on the testing set is shown in Figure 4 with more data on the
individual models present in Table S7.
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(D). iHILIC column, (E). PHILIC column.
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As can be seen in Figure 4, 68–84% of predictions are within one minute of their true value,
depending on column type, and 85–96% of all points are within two minutes, again depending on
column type. With chromatography runs of this length this should be sufficient to add confidence to
identifications based on exact mass. As with the lipids, error is evenly distributed around zero in the
histograms and bias in individual training/test splits is limited to the individual split. Therefore, bias is
based on training set used, not a software bias.

Further differences between column types can be observed based on the models. The most obvious
comparison between models, aside from predictive ability on the test set, is the molecular features
that are used for prediction. If a feature is used consistently in all models for a given column, it is
likely critical to predicting retention times on that column. Conversely, if a molecular feature is used in
only one or two of the fifteen models for a given column, it is likely a quirk of the random number
seeds used in model generation or the differences between the training sets used. This comparison
is performed in Table S8. Within all models generated for a given column, there is a subset of 10–20
molecular features that are present in most or all of the models, with many more features being present
in a smaller number of models. An example of one of these critical features is SLogP, which is present
for every model for every column. SLogP represents the octanol partition co-efficient. This is a measure
of hydrophobicity, which is to be expected in polar columns such as HILIC. While the rest of the
critical 10–20 features vary from column to column, most of these features are related to polarity or
which functional groups are present, which is again expected and should be slightly different based
on column chemistry and different training sets. While the number of features is consistently large,
it seems this is mostly a quirk of random chance, with a core of critical and relevant features still being
used. Finally, in Table S7, the SVR model is most often preferred though occasionally Random Forest
models are chosen. This shows the complexity of predicting HILIC since the simpler LR model was
never chosen.

Overfitting is a concern in fitting machine learning models. Using too many features in the model
can result in excellent fitting of the training set, at the cost of worse predictions on any new data.
Since we are using established algorithms and cross-validations, feature selection should be robust to
problems. However, it is still a concern especially with the number and variation of features observed.
HILIC chromatography was used to test this due to its poorer prediction performance in general so
differences in performance are easier to observe. To analyze this possibility, we created models using
QSRR Automator on the same test/training splits as the unrestricted model selection, and forcing the
final model to use only a particular number of features. The results on the appropriate test sets were
compared, with a summary of results in Table S9. A comparison of the results shows that, on average,
the unrestricted selection of features has less average prediction error than restricting the number of
features. While this will reduce conclusions drawn about chemical interactions with the column from
the most predictive features, the resulting models will accurately predict retention time. Further we
have examined the features used in Table S8. While there are many features used when considering
all 15 models created for each column condition, however very few features are used in each model.
There are only 4–15 features used in all models for their column. While there are more features that
occur in all but one or two replicates, the vast majority of features are used in only one or two replicates.
This indicates there are a core group of features consistently chosen that are truly necessary, while the
rest are quirks of feature selection. In combination with the lack of prediction improvement on unseen
data when limiting numbers of features it is unlikely to harm the user’s predictions to a large degree
unless using vastly different compounds from the training set.

Not all labs have access to a mix of 180–200 standards they can confidently identify to use on
machine learning calibration. To show how QSRR Automator performs on more limited training
sets. Figure 5 shows the results of predicting compounds with training sets of size 60 compounds,
120 compounds, and 180 compounds from the HILIC-Z column as an example. Splits, replicates and
randomization were performed as for Figure 4. There are more predictions in the smaller training
sets due to the compounds not used for the training sets being moved to the test sets. As can be seen,
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there is more spread to the error when fewer compounds in the training sets, but the predictions are
still clustered around 0 min and the rough shape of the histogram is similar.
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2.2.3. Comparison of QSRR Automator Models on HILIC Columns

With the different results shown in Figure 4, it is reasonable to attempt to determine which HILIC
column is most easily modeled by QSRR Automator. An examination of Figure 4B quickly reveals that
the BEH-Amide column as the lowest spread in absolute prediction error. However, BEH Amide is the
column with the shortest gradient, which allows less time for errors. An analysis of error alone also
does not account for things such as the average number of features the models use, with fewer features
generally being a protection against overfitting. Relevant error metrics are listed in Table 3.

Table 3. Error metrics for QSRR Automator models from different HILIC columns. Elution time range
is given as retention time of first observed compound–retention time of final observed compound.

BEH Amide cHILIC HILIC-z iHILIC pHILIC

Median Prediction Error 0.009 0.044 −0.022 0.029 −0.025
Median Prediction % Error 0.18% 0.49% 0.59% −0.28% −0.29%

Average # of features per model 72.4 58 19 59.73 58.73
Elution time range (min) 1.1–8.8 2.0–15 1.8–12 1.6–13 1.5–18

As can be seen in Table 3, the prediction error centers around 0. BEH Amide have the best accuracy,
while the HILIC-z column generally produces models with the fewest features, and so should be the
most robust to overfitting.

3. Discussion

It is important to acknowledge the limitations of QSRR Automator observed while collecting these
results. Like any statistical model, extrapolating beyond the retention times observed in the training
set may lead to inaccurate results. Furthermore, though the training set contained a wide variety of
chemically diverse compounds, compounds that are different from the training set in structure will
likely not be predicted accurately. Finally, the more complex the compounds the larger the training
set must be to accommodate the differences. Lipids give better predictions than metabolites with a
similar sized training set because lipids typically share a common backbone, similar head groups
and fatty acid building blocks, as opposed to the wide variety of sizes and functional groups found
among metabolites.

Even with these limitations, the prediction does place the majority of predictions within one
minute of their true value (approximately 6% of the run time), with almost all predictions within
2 min (approximately 11–22% depending on the column). In all tests QSRR Automator performs
comparably to published methods. While inferior to a dedicated bioinformatician, it will create and
store many models in a fast and user-friendly manner. Similarly, tests on in-house data performed well.
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Predictions are within one or two minutes depending on training set and column. While insufficient to
separate compounds that very nearly co-elute, such as leucine and isoleucine, it is sufficient to improve
confidence in exact mass identifications and differentiate between clearly separated compounds of
the same mass. QSRR Automator can aid investigators with the retention time prediction of multiple
columns and conditions.

It is difficult to fully compare different chromatography columns to each other due to the widely
varying compounds used or observed and the different HPLC set-ups required. However, a few
conclusions can be reached. In both the published and in-house results lipidomics prediction is superior
to metabolomics in the amount of error present in the predictions on the test set. When comparing
in-house metabolomics data, we observed that the BEH Amide column had the least error in prediction
but required the most features for its models, while the HILIC-z column generally required the fewest
features, so is likely most robust to overfitting. Which column is better for a given application will
depend on the compounds being considered. For example, it may be desirable to choose a column
where target compounds are known or predicted to have widely spaced elution times, regardless of
the prediction error the models for such a column generally contain.

Future directions for this work include attempting to limit the number of features generated by
the models. Moreover, testing compounds run at the beginning and end of a column’s life to determine
how a model generated at the start of a column’s life predicts compound behavior at the end of the
column’s life.

4. Materials and Methods

4.1. QSRR Automator Software

4.1.1. Software Used in the Creation of QSRR Automator

QSRR Automator was created using the Python programming language. Molecular descriptors
were determined by using the Mordred software package [13] which uses the rdkit package [14].
Machine learning operations were performed using the sci-kit learn package [15].

4.1.2. QSRR Automator Workflow

The general workflow is given in Figure 6. The user provides training data which consist of a
name for each compound, the structure in the form of a Simplified Molecular Input Line Entry System
(SMILES) text string [16] and a retention time. A template can be generated by QSRR Automator to
make the input file easier to create. The user can provide chemical descriptors or they will be calculated
from the SMILES using the Mordred software package [13]. These descriptors are broadly structural or
electrical in nature. Structural features include amounts of various functional groups, amount and size
of ring systems, elemental composition, and the number of sp3 hyridized carbons vs. The number of sp
hybridized carbons. Electrical features involve special orbital effects such as aromaticity, and multiple
calculations of electronegativity. All descriptors are rather basic calculations, unlike more complex
fingerprint combination of features that other calculators sometimes employ. Mordred will calculate
approximately 1600 features. Following the example of other QSRR models for lipidomics and
metabolomics [2,6] the descriptors are filtered. Descriptors with too many duplicate values (default
90% of compounds have the same value), too many missing values (default 75% of samples missing a
descriptor) or high correlation to related descriptors (default r = 0.9 or more) are removed. After these
filters, approximately 400 features remained for metabolite data sets, and approximately 300 features
remained for the lipid data set.
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Figure 6. QSRR Automator workflow. Gray cells are steps where the user has the option to force a
specific choice, such as by providing descriptors or adjusting settings. (A). Generating a model. Data are
requested from the user, descriptors are assigned and filtered. Data are randomized. A machine
learning model is chosen and tested with a cross-validation. All data are used for the final model.
(B) Using a previously generated model as in Panel (A) retention time for new data can be predicted.
Data are provided, descriptors provided if necessary and retention times are predicted by the model
in use.

After collecting all valid descriptors, the data order is randomized. The machine learning methods
of Linear Regression (LR), Random Forest, and Support Vector Regression (SVR) which have been
used in previously published QSRR models [1,2,6,7] are available in QSRR Automator. If the user did
not specify a method, all will be attempted and the best selected. The chosen model may be different
for the same information run multiple times due to random data splitting, but all resulting models are
of similar in predictive ability.

A data scaling step, a feature selection step if relevant, and the machine learning step were placed
into a scikit-learn pipeline. This pipeline is then fed into a cross-validation (5-fold for all analyses in this
paper). The pipeline will be performed on the training set of the cross-validation and then the resulting
model will be used on the on the cross-validation fold’s test set. Performance is evaluated on absolute
time error and the r2 of the resulting model on that fold of the cross-validation’s test set. Feature
selection is a performed by a recursive feature elimination cross validation using a random forest
regressor. If the user has specified that QSRR Automator should choose the model or if the user chosen
model is SVR, a grid search cross validation is performed. If SVR is considered, the hyperparameters
being tuned are C and gamma. If the model is being chosen as well, hyperparameters include which
model to use (LR, RF, or SVR) as well as SVR’s gamma and C values. The average and median r2 of
this step along with the mean absolute error will be reported to the user so they can evaluate if this
method will likely work well on their data.

After various cross-validations are completed all of the data will be used to create a final model.
This will still use the same scikit-learn pipeline as the initial step, without the external cross-validation
(the cross-validations for feature selection and model selection are still present if the settings require
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them). How accurately the final model will predict new retention times can be roughly estimated by
the values from the cross-validations so the final model can use all of the initial data. The mean and
median or r2 are provided for the cross validations, as well as the mean absolute time error of the
prediction and its standard deviation for the cross-validation. The final graph provided shows the
model made using all the data (with its final r2 and absolute error) is also presented (Figure 1B). If the
user accepts the model, it will be saved for later use. The user may also adjust settings and attempt to
build the model with different random numbers if desired.

For predicting unknown retention times, the user must provide a template file with compound
names and SMILES. If no descriptors are present in the template file, QSRR Automator will again
attempt to create them. The currently loaded model will be used to predict the retention times based
on the descriptors and will write them to an output file.

4.2. Comparison to Previously Published Data

Data from previously published lipidomics or metabolomics QSRR models were collected [1,2,6,7].
Basic details on these data-sets are provided in Table 1.

By default, QSRR Automator was set to run a 5-fold cross-validation and a 5-fold internal grid
search cross validation. Allowed to compare random forest (RF), linear regression (LR), and Support
Vector Machines for Regression (SVR). RF had 500 trees. SVR used the Radial Basis Function (rbf)
kernel and was allowed to use C and gamma values between 0.001 and 1000. Feature selection was
done using RF with 500 trees.

QSRR Automator was compared to the test set used for final validation of the published method
for the data sets where such were supplied [1,2,7]. A direct comparison worked in two cases. In the
paper by Creek et al. [2] data was heavily filtered after prediction. In many cases QSRR Automator
chose a different one of a number of duplicates or gave a “good” prediction according to the filters for a
metabolite discarded by the published model. To ensure the comparisons were fair, QSRR Automator
was used on all potential peaks (any missing or uninterpretable SMILES were found using the pubchem
database [17]) and the results were filtered according to the criteria of Creek et al. [2].

4.3. Tests on in-House Data

4.3.1. Lipid Extraction

Red blood cells were extracted using a modified Matyash procedure [18]. All solutions used
were pre-chilled on ice prior to extraction. Red blood cell aliquots (50 µL) were transferred to
13 × 100 glass vials, then extracted using a solution of 225 µL MeOH which contained internal
standards (Avanti SPLASH LipidoMix at 10 µL per sample) and 750 µL MTBE (methyl tert-butyl ether).
The samples were sonicated for 2 min followed by a rest on ice for 1 h with occasional vortexing.
An addition of 188 µL dd-H2O was made to induce phase separation. After centrifugation at 3000 g
for 5 min at 4 ◦C, the upper phases are collected and evaporated to dryness under a gentle nitrogen
stream at room temperature. Lipid samples were reconstituted in 250 µL IPA (isopropyl alcohol) and
transferred to an LC-MS vial with insert for analysis. Concurrently, a process blank sample and pooled
quality control (QC) sample is prepared by taking equal volumes (~50 µL) from each sample after
final resuspension.

Lipid extracts were separated on a Waters Acquity UPLC CSH C18 1.7 µm 2.1 × 100 mm column
maintained at 65 ◦C connected to an Agilent HiP 1290 Sampler, Agilent 1290 Infinity pump, equipped
with an Agilent 1290 Flex Cube and Agilent 6530 Accurate Mass Q-ToF dual AJS-ESI mass spectrometer.
For positive mode analysis, the source gas temperature was set to 225 ◦C, with a drying gas flow of
11 L/min, nebulizer pressure of 40 psig, sheath gas temp of 350 ◦C and sheath gas flow of 11 L/min.
VCap voltage was set at 3500 V, nozzle voltage 1000 V, fragmentor at 110 V, skimmer at 85 V and
octopole RF peak at 750 V. For negative mode analysis, the source gas temperature was set to 300 ◦C,
with a drying gas flow of 11 L/min, a nebulizer pressure of 30 psig, sheath gas temp of 350 ◦C and
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sheath gas flow 11 L/min. VCap voltage was set at 3500 V, nozzle voltage 2000 V, fragmentor at 100 V,
skimmer at 65 V and octopole RF peak at 750 V. Samples were run in a randomized order in both
positive and negative ionization modes in separate experiments acquiring with the scan range m/z
100–1700. Mobile phase A consisted of ACN:H2O (60:40 v/v) in 10 mM ammonium formate and 0.1%
formic acid, and mobile phase B consists of IPA:ACN:H2O (90:9:1 v/v) in 10 mM ammonium formate
and 0.1% formic acid. The chromatography gradient for both ionization modes started at 15% mobile
phase B then increased to 30% B over 2.4 min, then increased to 48% B from 2.4–3.0 min, then increased
to 82% B from 3–13.2 min, then increased to 99% B from 13.2–13.8 min where it was held until 16.7 min
and then returned to the initial condition and equilibrated for 5 min. Flow was 0.4 mL/min throughout,
injection volume was 3 µL for positive and 10 µL negative mode. Tandem mass spectrometry is
conducted using the same LC gradient at collision energy of 25 V.

Results from LC-MS experiments were collected using Agilent Mass Hunter (MH) Workstation and
analyzed using the software packages MH Qual, MH Quant, and Lipid Annotator (Agilent Technologies,
Inc., Santa Clara, CA, USA). Results from the positive and negative ionization modes from Lipid
Annotator were merged then split based on the class of lipid identified. Lipid targets are normalized
based on the ratio to the internal standards and parsed based on the following criteria: lipids with
relative standard deviations (RSD) less than 30% in QC samples and with background AUC counts in
process blanks less than 30% of QC are used for data analysis.

SMILES were collected from PubChem [17] and LipidMaps [19]. Due to the potential ambiguity
of lipid identification (locations of double bonds and occasionally tail lengths) the most biologically
relevant lipids were selected. If this caused error in modeling or prediction they were minimal based
on the results. Lipids were excluded if they were the only member of a lipid class that was vastly
different from the other lipid classes or if the double bond locations had no consensus in PubChem or
LipidMaps and would thus be required to be placed at random.

Training and test sets were made using the following method. All data was randomized using
Microsoft Excel (2016). The first 75% of the randomized data was designated as the training set and
the remaining 25% was designated as the test set. Each training set was used to generate 3 models
using QSRR Automator, using 5-fold cross-validation and a 5-fold internal grid search cross validation.
QSRR Automator selected the machine learning algorithm used to create its prediction model from the
following: random forest (RF), linear regression (LR), and Support Vector Machines for Regression
(SVR). Whichever algorithm performed best in the grid search cross validation was used for that model.
RF used 500 decision trees for both feature selection and the final algorithm. SVR used the rbf kernel
and was allowed to use C and gamma values between 0.001 and 1000. Test set values were predicted
for each of the 3 models generated. Overall, 5 test/training set splits were created for the data from
each column.

When comparing predicted retention times to observed retention times, any compounds in the
test set with an observed retention time later than the latest observed retention time in the training
set or before the earliest observed retention time in the training set were discarded. Extrapolating
beyond the bounds of the training set can easily lead to inaccurate predictions. While extrapolation
did not cause inaccurate predictions in the lipidomics data, they were few extrapolated compounds
and removing them allowed consistency with the metabolomics section below for which extrapolation
caused large prediction inaccuracies. There were two compounds for which this occurred, one in split
3, and one in split 4.

4.3.2. Metabolomics Data

A sample consisting of over 400 standards was analyzed by mass spectrometry. An Agilent
6545 UPLC-Q-ToF (Agilent Technologies, Inc.) run in both positive and negative modes was used
for analysis. Separation was achieved using a Sequant ZIC-pHILIC, ZIC-cHILIC (Millipore Sigma,
Burlington, MA, USA), iHILIC-fusion (HILICON, Umeå, Sweden), HILIC-z (Agilent Technologies,
Inc.), and BEH amide (Waters Corportation, Milford, MA, USA). A Krudkatcher, for HPLC columns,
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or Krudkatcher Ultra (Phenomenex, Torrence, CA, USA), for UPLC columns, was used as a pre-column.
The column compartment was heated 40 ◦C. An amount of 1 µL of each standard mix was injected
per run. For the ZIC-pHILIC, ZIC-cHILIC, iHILIC-fusion, and HILIC-z An initial concentration of 95%
ACN with 5% ddH2O (buffer B) and 1% 50 mM ammonium carbonate, for ZIC-pHILIC and HILIC-z,
or 50 mM ammonium formate, for all other columns, in ddH2O (buffer A) was held for 1 min at a
flow rate of 0.15 mL/min. B was decreased to 20% over 17 min and held for 2 min. B was returned to
starting conditions over 0.1 min, and the system was allowed to re-equilibrate for 10 min between runs.
For the BEH amide an initial concentration of 95% ACN with 5% ddH2O (buffer B) and 1% 50 mM
ammonium carbonate in ddH2O (buffer A) was held for 1 min at a flow rate of 0.3 mL/min. B was
decreased to 20% over 9 min and held for 2 min. B was returned to starting conditions over 0.1 min,
and the system was allowed to re-equilibrate for 10 min between runs. For MS analysis, the source
gas temperature was set to 250 ◦C, with a drying gas flow of 12 L/min, nebulizer pressure of 35 psig,
sheath gas temp of 325 ◦C and sheath gas flow of 11 L/min. VCap voltage was set at 3500 V, nozzle
voltage 0 V, fragmentor at 100 V, skimmer at 65 V and octopole RF peak at 750 V.

Compounds were identified by comparison of MS/MS fragmentation results to the METLIN
database, the Human Metabolome Database (HMDB), or predicted lipid fragmentation from
LipidMaps [19–21]. For compounds without MS/MS fragmentation, the m/z value was required
to correspond to a unique peak in the correct pool. If such a peak was not observed or there
were multiple peaks for that m/z value in the appropriate pool, the compound was dropped from
consideration. Do note that this resulted in different compounds being observed in different columns.
Observed retention time standard deviation (for compounds observed in multiple replicates) was
0.005–0.2 for most compounds. Compounds with phosphates spread across a wide time area in HILIC
columns and so could have standard deviations ranging from 0.4–1 min.

Compounds were further trimmed by several metrics. If multiple compounds were chiral versions
of each other, all but one was removed. Moreover, compounds with a single defining feature not
well represented in other compounds, such as E, Z double bond isomers and long chain fatty acids,
were removed due to poor ability of any machine learning model to predict features poorly represented
in the training set. Compounds used for further analysis and their retention times are presented in
Table S3. This resulted in about 240–260 compounds per column.

Training and test sets were made using the following method. All data was randomized using
Microsoft Excel (2016). The first 75% (180–200 compounds) of the randomized data was designated as
the training set and the remaining 25% (60–70 compounds) was designated as the test set. Each training
set was used to generate 3 models using QSRR Automator, using 5-fold cross-validation and a 5-fold
internal grid search cross validation. QSRR Automator selected the machine learning algorithm used to
create its prediction model from the following: random forest (RF), linear regression (LR), and Support
Vector Machines for Regression (SVR). Whichever algorithm performed best in the grid search cross
validation was used for that model. RF used 500 decision trees for both feature selection and the final
algorithm. SVR used the rbf kernel and was allowed to use C and gamma values between 0.001 and
1000. Feature selection was done using RF with 500 trees. Test set values were predicted for each of the
3 models generated. In total, 5 test/training set splits were created for the data from each column.

When comparing predicted retention times to observed retention times, any compounds in the
test set with an observed retention time later than the latest observed retention time in the training
set or before the earliest observed retention time in the training set were discarded. Extrapolating
beyond the bounds of the training set can easily lead to inaccurate predictions. For metabolomics,
extrapolated compounds were consistently problematic regardless of how well the same compound
could be predicted using training sets with a wider retention time range. Any large error in prediction
as determined by large absolute error or high Cook’s D value were re-examined. If problems were
found, such as user error, a large peak masking the correct peak, or expert knowledge confirming the
peak was observed at a retention time far removed from where it should be, the peak was corrected
or removed as appropriate. The analysis was re-done from creating the test/training splits. All other



Metabolites 2020, 10, 237 14 of 15

methods were identical. For compounds removed for extrapolation or other errors, 4 compounds were
removed from BEH-Amide, 4 compounds were removed from CHILIC, 5 compounds were removed
from HILIC-Z, 5 compounds were removed from iHILIC, 3 compounds were removed from PHILIC.

For Figure 5, HILIC-Z 5 splits were created with 60 or 120 features and the rest of the compounds
were predicted as with methods described above.

4.3.3. Limited Feature Analysis

QSRR Automator created models with 6, 9 and 12 features on the test/training splits and settings
form the metabolomics analysis. Results of predictions on the appropriate test sets on these models
was compared to the predictions from the models created using larger numbers of features.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/6/237/s1,
Table S1: Filtering comparison of HILIC_MLR2 data used in Figure 2, Table S2: p-values of published predictions
and QSRR Automator predictions compared to observed data, Table S3: Observed in-house lipids retention times,
Table S4: Details of QSRR Automator models created for in-house lipid data prediction, Table S5: How often
molecular features were used in in-house lipid prediction models, Table S6: Observed in-house metabolite
retention times, Table S7: Details of QSRR Automator models created for in-house metabolite data prediction,
Table S8: How often molecular features were used in in-house metabolite prediction models, Table S9: Comparison
of predictive ability in limited feature selection vs. unrestricted feature selection on in-house metabolite data.
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