Supplementary Materials for "Mouse Age Matters: How Age Affects the Murine Plasma Metabolome"

Patrick Pann¹, Martin Hrabě de Angelis^{2,3,4}, Cornelia Prehn¹ and Jerzy Adamski^{1,3,4,5,*}

- ¹ Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; patrick.pann@helmholtzmuenchen.de (P.P.); prehn@helmholtz-muenchen.de (C.P.)
- ² German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; hrabe@helmholtz-muenchen.de
- ³ German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- ⁴ Chair of Experimental Genetics, School of Life Science, Weihenstephan, Technische Universität München, 85354 Freising, Germany
- ⁵ Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- * Correspondence: adamski@helmholtz-muenchen.de

Supplementary Figures

Supplementary Figure S1. Age-dependent changes of C5-carnitine levels in female and male mice. Changes were tested for significance using Wilcoxon rank sum tests. P-values were corrected for multiple testing using the Benjamini & Hochberg procedure and are given in brackets. * $p \le 0.05$, ** $p \le 0.01$.

Supplementary Figure S2. Body weight development of different mouse strains. Animal body weight was measured at mean ages of 6, 10, 14, and 20 weeks directly before blood sampling. The exact age at sampling is given for each sex and strain as mean age in days. Data points for female and male mice are open circles and black triangles, respectively. Significance in body weight changes from 6 to 10,

10 to 14, and 14 to 20 weeks of age was calculated using Student's *t*-tests. P-values were corrected for multiple testing using the Benjamini & Hochberg procedure and are represented by * for females and # for males. */# $p \le 0.05$, **/## $p \le 0.01$. Data are expressed as mean ± SD.

Supplementary Tables

Supplementary Table S1. Selected PCA loading scores for age-dependent metabolomic changes in female mice. Metabolites with a correlation bigger than 0.85 with principle components 1, 2, or 3 for each individual mouse strain were selected. Loading scores with a correlation bigger than 0.85 are written in bold. Loading scores of metabolites selected for further analyses (see Figure 1B) are written in italics.

		129S1			B6J			B6NTac	:		C3Fe	
Metabolite	PC1	PC2	PC3	PC1	PC2	PC3	PC1	PC2	PC3	PC1	PC2	PC3
lysoPC a C20:4	069	061	.097	012	.018	214	094	.102	056	002	.022	253
PC aa C30:0	060	.071	073	075	.079	012	138	009	.029	030	.089	128
PC aa C32:1	010	060	227	049	.154	.144	072	015	.193	.151	.001	.018
PC aa C34:1	053	119	185	084	.127	.125	069	.002	.195	.140	.037	004
PC aa C34:4	092	090	.003	086	.155	.034	133	042	.042	.120	014	122
PC aa C36:1	045	121	177	126	.071	.041	075	.061	.154	.145	.028	023
PC aa C36:2	043	117	019	134	034	.054	084	.038	.113	.144	.007	058
PC aa C36:3	055	028	213	120	.018	.125	079	.021	.196	.150	005	046
PC aa C36:4	102	098	.046	114	.086	065	132	021	003	.103	019	189
PC aa C36:5	050	108	195	077	.158	.089	077	024	.183	.142	002	063
PC aa C38:0	138	.057	.058	132	052	045	123	006	099	012	.090	140
PC aa C38:3	085	125	130	096	.149	033	061	.060	.136	.139	.027	046
PC aa C38:5	119	043	109	061	.137	084	122	.004	.036	.144	014	095
PC aa C40:4	126	043	044	121	.101	.011	116	031	.045	.150	.035	030
PC aa C42:2	101	.074	015	134	011	.102	127	081	.038	.050	.143	.138
PC aa C42:4	130	.012	.053	133	.020	.012	128	069	027	.003	.150	034
PC aa C42:5	131	.032	.016	125	.081	.009	133	050	036	.071	.131	047
PC aa C42:6	114	080	069	066	.153	.087	113	093	.062	.145	011	085
PC ae C38:0	138	031	038	085	.157	.009	129	052	.017	.110	.034	097
PC ae C38:2	032	.165	.015	119	036	.117	116	004	.085	.151	.019	.023
PC ae C38:3	093	.127	103	125	041	.106	120	.014	.108	.141	.075	.059
PC ae C38:5	120	050	.024	135	.001	050	128	.049	038	.009	.089	159
PC ae C38:6	120	048	.087	139	013	037	109	.049	096	105	.107	104
PC ae C40:0	135	034	055	068	.037	092	107	015	030	.131	042	128
PC ae C40:1	134	.044	018	085	.123	097	109	.035	069	.082	.024	219
PC ae C40:2	128	.015	057	140	.004	.028	126	020	.079	.042	.156	.096
PC ae C40:3	118	.117	056	138	020	.050	137	.006	.042	.095	.120	.110
PC ae C40:4	097	.108	.121	133	040	045	134	.003	073	.107	.051	065
PC ae C40:5	141	.043	.002	133	012	057	140	.006	063	.114	.107	029
PC ae C42:1	133	.044	.026	106	.028	105	133	076	034	.050	.035	134
PC ae C42:2	108	.031	138	125	.087	.035	136	026	.056	.136	.075	.038
PC ae C42:3	133	.020	045	125	.073	055	142	029	007	.131	.060	064
SM C18:1	119	058	.061	041	031	217	047	.147	103	125	.099	062

Supplementary Table S2. Selected PCA loading scores for age-dependent metabolomic changes in male mice. Metabolites with a correlation bigger than 0.85 with principle components 1, 2, or 3 for each individual mouse strain were selected. Loading scores with a correlation bigger than 0.85 are written in bold. Loading scores of metabolites selected for further analyses (see Figure 1B) are written in italics.

	129S1			B6J				B6NTac	2	C3Fe		
Metabolite	PC1	PC2	PC3	PC1	PC2	PC3	PC1	PC2	PC3	PC1	PC2	PC3
C14	077	.118	045	029	160	.057	051	105	.195	054	.127	.003
C16	090	.123	106	021	172	.003	042	134	.182	085	.125	.062
C18:1	083	.109	143	012	174	.017	043	141	.128	059	.076	.152
C18:2	080	.100	140	035	166	014	042	148	.155	094	.089	.074
lysoPC a C16:0	.082	.072	.105	098	.001	.094	129	002	.062	028	.148	.031
lysoPC a C20:4	047	.165	022	.010	164	.102	089	145	.029	002	.040	.216
Orn	.070	001	.201	005	.165	.017	040	.113	026	.095	.038	145
PC aa C32:1	.043	.161	.075	124	.019	164	046	.129	036	.152	017	.000
PC aa C34:1	.032	.141	.026	140	.019	130	086	.068	061	.156	.001	021
PC aa C34:2	.008	.070	131	139	.043	084	027	.086	149	.149	033	016
PC aa C36:1	.088	.084	.015	147	.035	087	116	024	110	.159	.002	008
PC aa C36:2	.040	.067	111	140	.072	095	076	.064	169	.155	039	019
PC aa C36:3	.122	.057	010	151	.057	046	099	.122	064	.154	050	.003
PC aa C36:4	.015	.139	118	139	035	103	124	020	069	.149	039	.065
PC aa C38:3	.117	.101	.024	133	060	046	116	.034	019	.149	010	.048
PC aa C38:5	.007	.197	.005	052	148	.048	117	043	.026	.141	043	.103
PC aa C40:3	.150	049	029	142	.055	088	068	.180	.058	.143	.036	006
PC aa C40:4	.134	060	079	151	018	099	087	.147	.080	.155	027	.048
PC aa C40:5	021	.190	.002	074	149	043	127	005	.017	.117	003	.137
PC aa C42:5	.136	042	040	138	012	059	085	.143	.097	.147	.004	.050
PC ae C34:1	.105	.087	.005	142	.032	007	129	012	.024	.120	.080	.007
PC ae C36:3	.150	023	047	149	.061	059	138	.007	.015	.131	.026	.053
PC ae C36:4	.094	.007	104	131	005	.007	130	.001	.076	021	.108	.118
PC ae C36:5	.114	051	051	084	.095	.067	133	015	.008	.063	.097	.038
PC ae C38:1	.151	020	.047	091	.139	.045	063	.170	.010	.129	.053	116
PC ae C38:2	.137	102	004	088	.148	.005	052	.173	019	.149	025	071
PC ae C38:3	.159	012	.033	107	.107	.077	107	.119	.015	.146	.056	080
PC ae C38:4	.096	.016	132	067	081	.095	129	049	.027	.047	.012	.171
PC ae C38:5	.061	.098	113	137	030	.059	135	026	.069	.052	.074	.126
PC ae C38:6	.074	.007	126	150	.008	022	110	106	.026	.010	.127	.120
PC ae C40:1	.103	.116	045	072	131	.053	120	086	015	.068	027	.216
PC ae C40:2	.161	.035	030	138	.079	.030	131	.019	006	.066	.145	081
PC ae C40:3	.163	014	.017	118	.091	.073	090	.154	.055	.111	.099	106
PC ae C40:5	.097	.146	.002	134	023	.122	135	.001	.091	.081	.128	.017
PC ae C42:3	.104	.106	.046	114	058	.082	133	023	.012	.126	.042	.096
Phe	.086	.048	.187	.025	.157	.091	089	.040	123	.085	.086	129
SM C18:1	071	.142	019	029	137	.039	057	182	018	088	.128	.094
Val	.084	.020	.188	.014	.160	.019	076	.095	169	.103	.055	136

Supplementary Table S3. Selected PCA loading scores for females of age-matched mouse strains. Metabolites with a correlation bigger than 0.9 with principle components 1, 2, or 3 at each individual sampling time point were selected. Loading scores with a correlation bigger than 0.9 are written in bold. Loading scores of metabolites selected for further analyses (see Figure 4B) are written in italics. Metabolites selected for further analysis at all four sampling time points are marked with an asterisk.

	6 weeks			10 weeks			14 weeks			20 weeks		
Metabolite	PC1	PC2	PC3	PC1	PC2	PC3	PC1	PC2	PC3	PC1	PC2	PC3
Orn	.060	118	.163	.055	.112	.149	.032	.125	036	.021	.047	.234
PC aa C32:0	113	.021	.058	108	.005	.045	124	.031	.015	114	.070	001
PC aa C36:4	119	.019	.055	131	075	032	124	.055	017	119	081	.020
PC aa C38:0	128	.020	.043	133	023	.000	117	073	.050	124	.021	049
PC aa C40:2	109	093	.082	072	.144	.053	123	034	056	123	.012	.056
PC aa C40:3	116	069	.072	107	.047	.080	120	.036	042	121	014	.060
PC aa C40:4	126	.003	025	128	053	.064	128	.025	015	124	060	.044
PC aa C40:5	121	.046	015	114	117	.030	097	.135	.032	106	095	.078
PC aa C42:0	123	027	.071	113	.082	034	118	041	.021	120	.026	037
PC aa C42:1	125	019	.070	091	.091	.030	123	018	.027	124	.034	012
PC aa C42:2	102	098	.115	054	.150	.079	125	031	021	126	.001	.021
PC aa C42:4	126	001	.067	136	002	.010	129	031	.023	127	002	017
PC aa C42:5	124	.033	.069	122	090	.076	128	.020	.045	129	035	.012
PC ae C34:0	120	.013	011	119	.045	017	123	046	.022	087	.116	084
PC ae C36:1	093	141	050	053	.161	.082	098	060	140	121	.039	.000
PC ae C36:4	122	.048	.017	131	.017	052	113	073	014	113	.073	069
PC ae C38:0	111	.028	015	116	104	.068	119	.065	.057	124	060	026
PC ae C38:3	115	104	023	103	.123	.086	118	007	093	125	.021	.042
PC ae C38:4*	125	.043	002	136	018	089	123	074	.033	121	.007	048
PC ae C38:5	122	.066	007	134	012	019	124	024	.005	127	010	.006
PC ae C38:6	126	009	.032	136	.016	078	122	048	.055	117	.071	065
PC ae C40:0	122	.046	.008	090	150	.055	118	.072	.064	115	082	.043
PC ae C40:2	120	091	.022	097	.135	.042	127	012	025	122	.050	.048
PC ae C40:3	117	096	.015	096	.140	.025	127	026	055	127	.042	.031
PC ae C40:4	127	019	.001	137	.019	079	121	084	006	127	.012	005
PC ae C40:5*	129	.033	.037	142	054	.017	127	.051	.042	127	025	.017
PC ae C40:6	127	.030	.015	136	032	097	121	053	.092	119	.022	077
PC ae C42:0	124	.004	026	101	128	.054	122	.047	.029	114	097	.036
PC ae C42:2	121	.032	.056	101	076	.157	093	.137	.016	118	074	.071
PC ae C44:3	108	.020	.125	012	031	.157	079	.104	.007	124	016	021
PC ae C44:4	116	.024	.104	091	035	.135	122	.058	.038	125	028	.029
PC ae C44:6	124	010	.071	131	002	034	122	.007	.008	109	.081	.008
SM C16:1	117	069	022	138	.031	085	122	068	004	075	.159	077

Supplementary Table S4. Selected PCA loading scores for males of age-matched mouse strains. Metabolites with a correlation bigger than 0.9 with principle components 1, 2, or 3 at each individual sampling time point were selected. Loading scores with a correlation bigger than 0.9 are written in bold. Loading scores of metabolites selected for further analyses (see Figure 4B) are written in italics. Metabolites selected for further analysis at all four sampling time points are marked with an asterisk.

	6 weeks			10 weeks			1	4 week	s	20 weeks		
Metabolite	PC1	PC2	PC3	PC1	PC2	PC3	PC1	PC2	PC3	PC1	PC2	PC3
lysoPC a C16:1	.076	.156	052	.059	135	151	.029	179	041	.027	.124	.143
lysoPC a C17:0	121	.051	.013	136	029	008	120	.062	001	107	089	073
lysoPC a C18:0	108	.050	010	114	078	069	105	060	.089	121	009	011
lysoPC a C18:1	.064	.148	011	.028	142	164	019	182	037	026	.129	.114
lysoPC a C20:3	.090	.097	.014	.030	147	151	023	174	009	030	.154	.088
PC aa C24:0	117	.044	006	006	016	119	117	.005	.009	085	.044	.132
PC aa C32:2	.050	.156	111	.015	149	119	.005	173	104	.005	.148	.159
PC aa C34:4	.010	.197	095	037	166	064	002	182	055	057	.171	007
PC aa C36:5	.047	.164	104	.001	163	113	015	173	107	058	.158	.103
PC aa C38:0	121	.027	042	145	.022	.010	124	.061	047	120	015	090
PC aa C38:6	118	.036	044	139	052	.021	124	064	.032	108	.087	082
PC aa C40:2	125	.004	024	124	.074	024	126	.067	045	119	015	.057
PC aa C40:3	116	.047	042	132	018	047	131	023	.021	112	.021	.097
PC aa C40:4	112	.067	023	134	071	.009	129	046	.032	115	.079	.004
PC aa C40:5	120	.038	.014	128	088	.030	119	091	.036	108	.097	043
PC aa C40:6	092	066	036	142	013	.052	115	.001	.108	110	.071	088
PC aa C42:0	126	.009	.016	089	.111	017	124	.041	.002	115	039	012
PC aa C42:1	122	.002	.022	094	.100	040	119	.041	028	120	031	021
PC aa C42:2	124	010	021	104	.114	045	121	.067	052	117	022	.075
PC aa C42:4	122	.031	016	142	.013	.035	134	.024	.000	122	.002	016
PC aa C42:5	118	.062	003	136	049	.017	133	035	.027	117	.053	.010
PC aa C42:6	110	.044	059	141	022	.046	128	.036	.032	118	.037	028
PC ae C32:1	121	030	.007	085	.139	025	092	.103	049	106	086	.039
PC ae C34:3	070	130	042	014	.180	027	042	.153	139	076	146	.019
PC ae C36:3	078	.120	078	079	.008	110	094	020	187	117	.001	020
PC ae C36:5	121	.028	.025	104	.095	.034	082	.091	146	106	041	130
PC ae C38:3	126	.024	.012	105	.032	124	126	011	083	125	.006	.038
PC ae C38:4*	122	.059	.019	136	046	.072	136	009	007	110	.043	137
PC ae C38:6*	128	.002	.003	133	.068	.059	128	.051	058	117	034	100
PC ae C40:2	124	010	.001	106	.095	076	130	.036	044	122	034	.048
PC ae C40:3	127	.012	008	089	.092	113	133	.000	.002	121	020	.048
PC ae C40:4*	121	.058	.009	140	044	.053	134	.004	.003	118	.046	085
PC ae C40:5	124	.046	.035	138	060	007	134	051	009	120	.037	074
PC ae C40:6*	128	004	.009	140	.022	.079	126	.062	.000	112	026	140
PC ae C44:3	122	.044	.016	099	034	062	126	023	011	120	.015	.011
PC ae C44:4	117	.063	032	112	067	060	119	052	064	113	.059	.047
PC ae C44:6	126	.019	.003	131	.044	006	122	.023	059	115	053	017
SM (OH) C22:2	119	042	.070	138	.037	.019	123	.053	.011	078	128	088
SM C16:1	116	075	.054	137	.051	.040	124	.057	.037	117	058	029

Supplementary Table S5. Fold changes of selected metabolites showing overlap in age regulation among female mice of different strains. Listed are fold changes in levels of plasma metabolites that were found to be age dependently regulated in three of the four analyzed mouse strains. Fold changes were calculated for the time periods 6 to 10, 10 to 14, and 14 to 20 weeks of age. Changes were tested for significance using Wilcoxon rank sum tests. P-values were corrected for multiple testing using the Benjamini & Hochberg procedure and are given in brackets. * $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$, n.s. not significant.

	Age	lysoPC a	lysoPC a	PC aa	PC aa	PC ae	PC ae	PC ae	PC ae
	[weeks]	C17:0	C18:0	C42:2	C42:5	C40:2	C40:5	C42:3	C44:3
1	6 vs 10	1.10 (n.s.)	1.02 (n.s.)	1.01 (n.s.)	0.96 (n.s.)	1.02 (n.s.)	1.08 (n.s.)	0.87 (n.s.)	0.97 (n.s.)
29S	$10 \mathrm{vs} 14$	1.31 (*)	1.12 (n.s.)	1.20 (**)	1.25 (**)	1.10 (n.s.)	1.11 (*)	1.40 (**)	1.25 (*)
H	$14 \mathrm{vs} 20$	0.91 (n.s.)	0.89 (n.s.)	0.93 (n.s.)	0.89 (n.s.)	0.91 (n.s.)	1.05 (n.s.)	1.06 (n.s.)	1.52 (*)
	6 vs 10	0.97 (n.s.)	0.85 (n.s.)	1.09 (n.s.)	0.95 (n.s.)	1.07 (n.s.)	1.04 (n.s.)	0.85 (n.s.)	1.28 (*)
B6J	10 vs 14	1.46 (***)	1.24 (*)	1.21 (n.s.)	1.08 (n.s.)	0.99 (n.s.)	0.96 (n.s.)	1.07 (n.s.)	0.91 (n.s.)
	14 vs 20	0.60 (***)	0.68 (**)	0.60 (*)	0.75 (*)	0.74 (**)	0.85 (**)	0.89 (n.s.)	0.79 (*)
a	6 vs 10	1.27 (*)	1.14 (n.s.)	1.05 (n.s.)	1.22 (*)	1.02 (n.s.)	1.21 (*)	1.32 (**)	1.18 (n.s.)
LN3	$10 \mathrm{vs} 14$	0.85 (n.s.)	0.83 (n.s.)	0.95 (n.s.)	0.75 (*)	1.00 (n.s.)	0.93 (n.s.)	0.92 (n.s.)	1.15 (n.s.)
B(14 vs 20	1.44 (*)	1.32 (*)	0.56 (***)	0.71 (n.s.)	0.79 (*)	0.72 (*)	0.68 (*)	0.37 (***)
- 01	6 vs 10	0.84 (**)	0.94 (n.s.)	0.59 (**)	0.88 (n.s.)	0.74 (**)	0.96 (n.s.)	0.97 (n.s.)	0.62 (**)
$3F_{0}$	10 vs 14	1.16 (*)	1.19 (*)	1.58 (***)	0.97 (n.s.)	1.57 (**)	1.18 (*)	1.06 (n.s.)	1.64 (**)
0	14 vs 20	0.63 (***)	0.66 (***)	0.96 (n.s.)	1.12 (n.s.)	0.81 (n.s.)	1.00 (n.s.)	1.20 (n.s.)	0.93 (n.s.)

Supplementary Table S6. Fold changes of selected metabolites showing overlap in age regulation among male mice of different strains. Listed are fold changes in levels of plasma metabolites that were found to be age dependently regulated in three of the four analyzed mouse strains. Fold changes were calculated for the time periods 6 to 10, 10 to 14, and 14 to 20 weeks of age. Changes were tested for significance using Wilcoxon rank sum tests. P-values were corrected for multiple testing using the Benjamini & Hochberg procedure and are given in brackets. * $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$, n.s. not significant.

	Age	lysoPC a	PC aa	PC aa	PC aa	PC ae	PC ae	SM	SM
	[weeks]	C20:4	C34:2	C36:2	C36:4	C38:1	C38:2	C18:1	C24:1
1	6 vs 10	0.65 (**)	1.01 (n.s.)	1.04 (n.s.)	1.01 (n.s.)	1.04 (n.s.)	1.49 (**)	0.97 (n.s.)	0.83 (*)
29S	10 vs 14	1.07 (n.s.)	0.95 (n.s.)	0.92 (*)	0.84 (**)	1.36 (*)	1.17 (n.s.)	0.76 (**)	0.86 (n.s.)
H	14 vs 20	0.87 (n.s.)	0.94 (n.s.)	1.00 (n.s.)	1.03 (n.s.)	0.99 (n.s.)	1.13 (n.s.)	1.19 (*)	1.09 (n.s.)
	6 vs 10	0.68 (**)	1.18 (**)	1.25 (**)	1.16 (**)	1.61 (**)	1.50 (**)	0.87 (**)	0.76 (**)
B6J	10 vs 14	0.75 (n.s.)	0.87 (*)	0.90 (*)	0.81 (**)	1.31 (**)	1.27 (**)	0.80 (**)	1.00 (n.s.)
•	14 vs 20	1.25 (n.s.)	0.91 (**)	0.81 (**)	0.99 (n.s.)	0.51 (**)	0.65 (**)	1.11 (n.s.)	1.10 (n.s.)
ิล	6 vs 10	0.83 (n.s.)	0.93 (n.s.)	0.96 (n.s.)	0.93 (n.s.)	1.88 (**)	1.59 (**)	0.67 (*)	0.74 (*)
EN3	10 vs 14	1.10 (n.s.)	1.18 (*)	1.12 (*)	1.07 (n.s.)	0.98 (n.s.)	1.18 (n.s.)	0.90 (n.s.)	1.03 (n.s.)
B	14 vs 20	0.68 (**)	1.11 (n.s.)	1.09 (n.s.)	0.98 (n.s.)	1.07 (n.s.)	1.04 (n.s.)	0.89 (n.s.)	0.75 (**)
0	6 vs 10	1.18 (**)	1.06 (n.s.)	1.12 (n.s.)	1.09 (n.s.)	0.70 (**)	1.06 (n.s.)	0.82 (**)	0.80 (**)
3F	10 vs 14	0.87 (*)	1.02 (n.s.)	1.04 (n.s.)	0.99 (n.s.)	1.72 (**)	1.26 (**)	0.96 (n.s.)	0.91 (n.s.)
0	14 vs 20	0.91 (n.s.)	1.22 (**)	1.18 (**)	1.16 (**)	1.29 (*)	1.46 (**)	0.87 (*)	0.81 (**)