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Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the oldest and most widely
used groups of drugs nowadays. However, the problem of searching for and creating new NSAIDs
remains open, primarily due to the risks owing to their short- and long-term use. In this context,
triazole-azepine hybrid molecules are attractive and prospective objects for the rational design of
novel potential NSAIDs. In the present work studies of 3-aryl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-
a]azepines as potential non-steroidal anti-inflammatory agents are reported. Evaluation of drug-like
properties for all tested triazole-azepine hybrids was performed in silico using SwissADME. The
screening of analgesic and anti-inflammatory activities was performed in vivo using acid-induced
writhing and carrageenin-induced hind paw oedema models in mice. Derivatives with activity
levels more potent compared with reference drugs ketorolac and diclofenac sodium were identified.
Preliminary SAR was performed based on the screening results.

Keywords: NSAIDs; triazole; azepine; hybrid molecules; analgesic activity; anti-inflammatory
activity

1. Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) present a widely used and therapeu-
tically important pharmacological group with a large number of individual and combined
approved drugs [1–3]. These drugs belong to chemically different/unrelated compounds
and possess common therapeutic features such as anti-inflammatory, analgesic, and an-
tipyretic activity. The analgesic effect is a very important component of the pharmacological
profile of NSAIDs and this group of drugs provides effective and generally safe options for
mild to moderate pain [4]. At the same time, there exists an unmet need for the development
of new non-steroidal anti-inflammatory agents as well as for optimization of the properties
of the known NSAIDs focused on efficacy increasing and adverse effects decreasing [5,6].

Heterocyclic scaffolds play a leading role in the process of research and development of
new potential NSAIDs [7,8]. Among the variety of heterocyclic compounds, the derivatives
with triazole and azepine rings are attractive and prospective objects for the focused
and rational design of novel molecules with pharmacological profiles characterized for
NSAIDs [8–10]. Azepine-bearing derivative A (Figure 1) was reported in [11] as a potential
agent with a high level of anti-inflammatory and analgesic activity and with selective
inhibition of COX-2. Derivative B (Figure 1) with 1,2,4-triazole-3-thiol scaffold in the
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molecule showed an equal level of anti-inflammatory activity compared with classic NSAID
sodium diclofenac [12] in vivo on the carrageenin model. The anti-inflammatory activity
of diarylsubstituted 1,2,4-triazoles with hydroxamic acid or N-hydroxyurea moieties in
the molecules has been evaluated [13] and it was found that all the compounds of the
series showed dual inhibitory activity in vitro toward COX-2/LOX-5 and the most active
derivative C (Figure 1) was more potent than celecoxib in the xylene edema model in vivo.
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Methods and strategies of molecular hybridization are convenient tools for achieving
the desired properties of heterocyclic molecules which have been successfully applied to
the above-mentioned types of heterocycles for obtaining potential pharmacological agents
with antitumor activity [14–18].

In our previous studies, we used the above-mentioned approaches in the design of
novel analgesics among fused triazole-azepine hybrid molecules [19–23]. As result, a
series of hit-compounds (D–F, Figure 1) with high activity levels equal to ketorolac and
diclofenac sodium were identified in the in vivo models (“hot-plate” and “acetic acid-
induced writhing test”). Herein we present the novel results of our studies dedicated
to the design of potential non-steroidal anti-inflammatory agents and report about the
synthesis of new 3-aryl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepines, evaluation of
their drug-like properties in silico, analgesic and anti-inflammatory activities in vivo.

2. Materials and Methods
2.1. General Information

All materials were purchased from commercial sources and used without purifica-
tion. Melting points were measured in open capillary tubes and are uncorrected. The
elemental analyses (C, H, N) were performed using the Perkin–Elmer 2400 CHN analyzer
(Perkin–Elmer, Norwalk, CT, USA) and were within 0.4% of the theoretical values. The
1H and 13C NMR spectra were recorded on a Bruker AVANCE-400 spectrometer (Bruker,
Bremen, Germany). All spectra were recorded at room temperature, except where indicated
otherwise, and were referenced internally to solvent reference frequencies. Chemical shifts
(δ) are quoted in ppm, and coupling constants (J) are reported in Hz. LC–MS spectra were
obtained on a Finnigan MAT INCOS-50 (Thermo Finnigan LLC, San Jose, CA, USA). The
reaction mixture was monitored by thin layer chromatography (TLC) using commercial
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glass-backed TLC plates (Merck Kieselgel 60 F254, Merck, Darmstadt, Germany). Solvents
and reagents that are commercially available were used without further purification.

2.2. Synthesis and Characterization of Compounds

Starting compound 3 was prepared according to protocol described in [24]. Derivatives
6a–g were synthesized following the protocol described in [25].

2.2.1. General Procedure of Synthesis of 3-aryl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-
a]azepines 7a–g

A mixture of 10 mmole of corresponding hydrazide 6a–g and 10 mmole of 7-methoxy-
3,4,5,6-tetrahydro-2H-azepine 3 was refluxed for 3 h in 100 mL of toluene. The obtained
solution was left for 12 h at room temperature. Subsequently, obtained solid products of
derivatives 7a–g were collected by filtration, washed with benzene, and recrystallized from
the appropriate solvent.

2.2.2. Characterization of Compounds 7a–g

3-Phenyl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepine (7a). Yield 75%, mp 167–168 ◦C.
1H NMR (400 MHz, DMSO-d6, δ): 1.65–1.71 (m, 4H, 7,8-CH2CH2-), 1.75–1.81 (m, 2H, 6-
CH2), 2.96–3.00 (m, 2H, 9-CH2), 3.97–4.00 (m, 2H, 5-CH2), 7.50–7.54 (m, 5H, arom.). 13C
NMR (100 MHz, DMSO-d6, δ): 25.1, 25.9, 27.9, 29.7, 45.1, 127.5, 128.8, 128.9, 129.6, 153.8,
157.3. LCMS (ESI+) m/z 214.2 (100%, [M+H]+). Anal. calc. for C13H15N3: C 73.21%, H
7.09%, N 19.70%. Found: C 73.40%, H 7.20%, N 19.90%.

2-(6,7,8,9-Tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepine-3-yl)-phenol (7b). Yield 73%, mp
242–243 ◦C. 1H NMR (400 MHz, DMSO-d6, δ): 1.65–1.69 (m, 4H, 7,8-CH2CH2-), 1.78–1.81
(m, 2H, 6-CH2), 2.94–2.98 (m, 2H, 9-CH2), 3.76–3.80 (m, 2H, 5-CH2), 6.80 (t, 1H, J = 7.4 Hz,
arom), 7.00 (d, 1H, J = 7.8 Hz, arom), 7.30 (d, 1H, J = 7.8 Hz, arom), 7.40 (t, 1H, J = 7.4 Hz,
arom), 10.1 (s, 1H, OH). 13C NMR (100 MHz, DMSO-d6, δ): 25.1, 25.9, 27.9, 29.7, 45.0, 115.6,
116.6, 119.4, 128.6, 129.9, 153.8, 157.2, 157.5. LCMS (ESI+) m/z 230.2 (100%, [M+H]+). Anal.
calc. for C13H15N3O: C 68.10%, H 6.59%, N 18.33%. Found: C 68.30%, H 6.80%, N 18.50%.

3-(6,7,8,9-Tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepine-3-yl)-phenol (7c). Yield 70%, mp
239–240 ◦C. 1H NMR (400 MHz, DMSO-d6, δ): 1.64–1.70 (m, 4H, 7,8-CH2CH2-), 1.75–1.79
(m, 2H, 6-CH2), 2.90–2.94 (m, 2H, 9-CH2), 3.96–3.99 (m, 2H, 5-CH2), 6.90–6.95 (m, 3H, arom),
7.33 t, 1H, J = 7.3 Hz, arom), 9.84 (s, 1H, OH). 13C NMR (100 MHz, DMSO-d6, δ): 25.1, 25.9,
27.9, 29.7, 45.0, 115.6, 116.6, 119.4, 128.6, 129.9, 153.8, 157.2, 157.5. LCMS (ESI+) m/z 230.2
(100%, [M+H]+). Anal. calc. for C13H15N3O: C 68.10%, H 6.59%, N 18.33%. Found: C
68.20%, H 6.70%, N 18.40%.

3-(4-Methoxyphenyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepine (7d). Yield
77%, mp 167–168◦C. 1H NMR (400 MHz, DMSO-d6, δ): 1.64–1.69 (m, 4H, 7,8-CH2CH2-),
1.79–1.81 (m, 2H, 6-CH2), 2.90–2.93 (m, 2H, 9-CH2), 3.82 (s, 3H, OCH3), 3.95–3.99 (m, 2H,
5-CH2), 7.09 (d, 2H, J = 8.3 Hz, arom), 7.46 (d, 2H, J = 8.3 Hz, arom). 13C NMR (100 MHz,
DMSO-d6, δ): 25.2, 25.9, 27.9, 29.8, 45.0, 55.3, 114.2, 119.7, 130.4, 153.7, 157.0, 160.1. LCMS
(ESI+) m/z 244.2 (100%, [M+H]+). Anal. calc. for C14H17N3O: C 69.11%, H 7.04%, N 17.27%.
Found: C 69.30%, H 7.20%, N 17.40%.

3-(3,4,5-Trimethoxyphenyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepine (7e). Yield
71%, mp 116–117 ◦C. 1H NMR (400 MHz, DMSO-d6, δ): 1.64–1.68 (m, 4H, 7,8-CH2CH2-),
1.79–1.82 (m, 2H, 6-CH2), 2.90–2.94 (m, 2H, 9-CH2), 3.72 (s, 3H, OCH3), 3.83 (s, 6H, 2*OCH3),
3.99–4.03 (m, 2H, 5-CH2), 6.79 (s, 2H, arom). 13C NMR (100 MHz, DMSO-d6, δ): 25.2, 25.9,
27.8, 29.7, 45.1, 56.0, 60.1, 106.4, 122.8, 138.4, 153.0, 153.9, 157.1. LCMS (ESI+) m/z 304.0
(100%, [M+H]+). Anal. calc. for C16H21N3O3: C 63.35%, H 6.98%, N 13.85%. Found: C
63.60%, H 7.00%, N 14.00%.

3-p-Tolyl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepine (7f). Yield 77%, mp 157–
158 ◦C. 1H NMR (400 MHz, DMSO-d6, δ): 1.64–1.69 (m, 4H, 7,8-CH2CH2-), 1.78–1.81 (m,
2H, 6-CH2), 2.38 (s, 3H, CH3), 2.91–2.94 (m, 2H, 9-CH2), 3.98–4.01 (m, 2H, 5-CH2), 7.35 (d,
2H, J = 8.0 Hz, arom), 7.42 (d, 2H, J = 8.0 Hz, arom). 13C NMR (100 MHz, DMSO-d6, δ):
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20.9, 25.2, 25.9, 27.9, 29.7, 45.0, 124.7, 128.8, 129.4, 139.2, 153.8, 157.1. LCMS (ESI+) m/z 304.0
(100%, [M+H]+). Anal. calc. for C14H17N3: C 73.98%, H 7.54%, N 18.49%. Found: C 74.10%,
H 7.70%, N 18.60%.

N-[4-(6,7,8,9-Tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-3-yl-phenyl]acetamide (7g).
Yield 81%, mp 219–220 ◦C. 1H NMR (400 MHz, DMSO-d6, δ): 1.64–1.70 (m, 4H, 7,8-
CH2CH2-), 1.78–1.81 (m, 2H, 6-CH2), 2.08 (s, 3H, CH3), 2.91–2.94 (m, 2H, 9-CH2), 3.97–4.01
(m, 2H, 5-CH2), 7.46 (d, 2H, J = 8.4 Hz, arom), 7.74 (d, 2H, J = 8.4 Hz, arom), 10.2 (s, 1H, NH).
13C NMR (100 MHz, DMSO-d6, δ): 24.0, 25.2, 25.9, 27.9, 29.7, 45.0, 118.9, 121.8, 129.4, 140.1,
153.7, 157.1, 168.6. LCMS (ESI+) m/z 271.0 (100%, [M+H]+). Anal. calc. for C15H18N4O: C
66.64%, H 6.71%, N 20.73%. Found: C 66.80%, H 6.90%, N 20.90%.

2.3. Pharmacology Studies
2.3.1. Animals

Female non-linear mice (18–22 g) were used for the experimental studies. The ani-
mals were housed in a quarantine facility for 7 days before the experiment was started.
Throughout the experiment, the animals were randomized in groups (n = 6) per cage with
bedding composed of wood shavings (exchanged daily). The animals had free access to
a standard commercial diet and water. The animals were kept under a stable regimen
of 12 h light/12 h darkness. The animals were treated humanely throughout the study
period adhering to the guideline for the use and care of animals in the Declaration of
Helsinki (National Research Council, 2011). The experiment design and study protocol
were approved by the Animal Ethics Committee of the Institute of Pharmacology and
Toxicology of the National Academy of Medical Sciences of Ukraine, protocol No. 14, 20
June 2022.

2.3.2. Analgesic Activity

The acetic acid-induced writhing model in mice was used for studying the analgesic
activity of synthesized compounds. Compounds 7a–g were administered once orally (p.o.)
at the dose of 25 mg/kg [26] in the form of an aqueous-ethanol emulsion using Twin-80
as an emulgator. Ketorolac (Ketorolac tromethamine (JSC “Lek-Chem”, Ukraine), was
administered once orally (p.o.) in the form of an aqueous solution at the dose of 25 mg/kg.
Tested compounds and reference drug were administrated 60 min before the administration
of 0.6% acetic acid solution. The number of writhing behaviors produced were determined
in each group for the following 10 min [27]. Inhibition of writhing was calculated by the
formula below and compared with the standard drug (ketorolac):

Inhibition of writhing, % = {(Wc −Wt) × 100%}/Wc

where, Wc = number of writhing in the control group; Wt = number of writhing of the
experimental group.

2.3.3. Anti-Inflammatory (Antiexudative) Activity

The carrageenin-induced hind paw oedema was produced by the method of Win-
ter et al. [28]. The synthesized compounds were intraperitoneally injected in a dose
25 mg/kg (in saline solution with one drop of Tween-80™). Diclofenac (tablets “Diclofenac
sodium”, “Zdorovja narodu”, Ukraine) in dose 25 mg/kg was used as reference drug. The
antiexudative activity (inflammation inhibition) was expressed as a decrease of rats-paw
oedema, was calculated using the equation and was given in percentage:

Inhibition, % = (∆Vcontrol − ∆Vexperiment)/∆Vcontrol × 100%

where, ∆Vcontrol and ∆Vexperiment—the mean values of the volume difference for control
and experimental animals hinds respectively.
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3. Results and Discussion
3.1. Synthesis and Characterization of Derivatives 7a–g

Commercially available azepan-2-one (caprolactam) 1 and aromatic carboxylic acids
4a–g were used as initial compounds for the construction of the target derivatives 7a–g.
Azepan-2-one 1 was transformed to the 7-methoxy-3,4,5,6-tetrahydro-2H-azepine 3 fol-
lowing the protocol reported in [24] (Scheme 1A), whereas the routine scheme including
esterification with the next hydrazinolysis by hydrazine hydrate of corresponding acids
4a–g was used for obtaining hydrazides 6a–g (Scheme 1B).
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conditions: (A) 1 (10 mmole), (CH3)2SO4 (10 mmole), benzene, stirring 3 h, 60 ◦C; 2 (10 mmole),
K2CO3 (20 mmole), H2O, stirring 1 h, 5 ◦C; (B) 4a–g (10 mmole), ethanol (20 mL), H2SO4 concentrated
(one drop), reflux 3 h; 5a–g (10 mmole), hydrazine hydrate (11 mmole), ethanol (20 mL).

Physicochemical properties and spectral characteristics of the synthesized derivatives
6a–g correspond to literature data [29–32].

Targeting triazole-azepine hybrids 7a–g were obtained with a yield of 70–81% via the
condensation of 3 with hydrazides 6a–g and subsequent cyclization of the intermediate
products following the method reported in [25] (Scheme 2).
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The structure of synthesized hybrid molecules 7a–g was confirmed using 1H, 13C
NMR and LC-MS spectra (copies of spectra are presented in the Supplementary Materials).
In the 1H NMR spectra of compounds 7a–g protons of the azepine ring give a complex
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pattern with four multiplets at ~1.65–1.70, ~1.81–1.84, ~2.93–2.96, and ~3.80–4.03 ppm. The
protons of OH-groups of compounds 7b and 7c were resonated as singlets at 10.10 and
9.84 ppm, respectively. The molecular ion peaks observed in the mass spectra for the m/z
values of the synthesized compounds in the positive ionization mode corresponded to
Mr+1 which confirmed the formation of the derivatives 7a–g.

3.2. In Silico Evaluation of Drug-Likeness Parameters and Pharmacokinetics Properties of
Compounds 7a–g Using the SwissAdme

The series of drug-likeness and pharmacokinetics properties of the compounds 7a–g
were evaluated in silico using the SwissAdme of the Swiss Institute of Bioinformatics
website [33]. The calculated prognostic data are highlighted in Table (Table 1).

Table 1. Drug-likeness and pharmacokinetics properties of derivatives 7a–g calculated in silico.

Compound/Parameter
Lipinski Rules Veber Rules

Fraction Csp3
≥0.25

GI
Absorption

BBB
Permeant

P-gp
SubstrateMW

≤500
Log P
≤5

NHD
≤5

NHA
≤10

NBR
≤10

TPSA
≤140

7a 213.28 1.96 0 2 1 30.71 0.38 High Yes Yes
7b 229.28 2.10 1 3 1 50.94 0.38 High Yes Yes
7c 229.28 2.04 1 3 1 50.94 0.38 High Yes Yes
7d 243.30 2.45 0 3 2 39.94 0.43 High Yes Yes
7e 303.36 2.43 0 5 4 58.40 0.50 High Yes Yes
7f 227.30 2.79 0 2 1 30.71 0.43 High Yes Yes
7g 270.33 2.04 1 3 3 59.81 0.40 High Yes Yes

GI—gastrointestinal; BBB—blood-brain barrier; P-gp—P-glycoprotein1.

Accordingly, with obtained data, all derivatives 7a–g correspond to the Lipinski and
Veber rules. Moreover, all the molecules possess predicted satisfactory pharmacokinetic
parameters such as a high level of gastrointestinal absorption, the ability to pass through
the blood-brain barrier and to be a substrate for P-glycoprotein1. Additionally, should be
noted that calculated by the SwissAdme fraction of Csp3 for all the molecules were in the
range from 0.38 to 0.50.

3.3. In Vivo Studies of Analgesic and Anti-Inflammatory Activity of Compounds 7a–g and
Emprical SAR

All the derivatives 7a–g were tested in vivo for their analgesic and anti-inflammatory
activity using the acetic acid-induced writhing model and carrageenin-induced inflamma-
tion models in mice, respectively. Ketorolac and diclofenac sodium, nonselective inhibitors
of both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), were used as a reference
drugs in the experiments. The study results are presented in Figure 2A,B.

Analgesic activity screening results revealed that among derivatives 7a–g only two
compounds (7b and 7d) showed significant activity levels compared with the reference
drug (Figure 2A). Derivative 7b was more potent than ketorolac in the experimental
conditions with inhibition of writhing value 95.5% compared with the 85.9% value for
ketorolac. Compound 7d possesses lower analgesic activity with inhibition of writhing
value 76.6%. Synthesized hybrid molecules 7a,c,e,g were characterized with inhibition
of writhing values in the range of 17.1%–45.9%, whereas for the derivative 7f analgesic
activity was not observed at all.

Anti-inflammatory activity screening results revealed that tested derivatives 7a–g
possess promising anti-exudative effects, and all the compounds were more potent than
the reference drug diclofenac sodium (Figure 2B). The inflammation inhibition index
for compounds 7a–g was in the range of 50.3%–73.0%, whereas for the reference drug
diclofenac sodium it was 44.2% in the experimental conditions.
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Figure 2. Pharmacological screening results for compounds 7a–g in vivo in mice. (A) Anal-
gesic activity, acetic acid-induced writhing model (intraperitoneally use; doses: 0.6% acetic acid;
ketorolac—25 mg/kg). (B) Anti-inflammatory activity, carrageenin-induced paw edema model (in-
traperitoneally use; doses: carrageenin 1%, 0.1 mL; diclofenac sodium—8 mg/kg). Tested compounds
7a–g were used in doses 25 mg/kg in both models. All the data presented as M ±m; n = 6 in each
group. * p < 0.05 compared to the control group.

From the point of view of structure–activity relationships (SAR), it is worth noting
that the derivatives with a hydroxyl group in the phenyl ring (7b, 7c) were the most active
both in the case of analgesic and anti-inflammatory activity (Figure 3). The change of
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OH-group position from ortho (7b) to meta (7c) leads to a significant decrease in analgesic
activity level compared with the ketorolac effect. Whereas the same structural change in
the case of anti-inflammatory activity keeps the effect at a more potent level compared
with the reference drug. Also, in the context of SAR, should be noted that the presence of
methoxy-group (7d) contributed to the significant analgesic activity, whereas the presence
of other substituents does not lead to the appearance of an analgesic effect. Summarizing
the pharmacological screening results, compound 7b is of interest for further development
and optimization as a potential non-steroidal anti-inflammatory agent.
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azepine hybrid molecules 7a–g.

4. Conclusions

In the present work, the evaluation of triazole-azepine hybrid molecules as potential
NSAIDs is reported. All the studied hybrid molecules correspond to key drug-likeness
parameters and possess predicted satisfactory pharmacokinetic properties according to
the in silico evaluation performed using SwissADME. Analgesic and anti-inflammatory
activities were studied in vivo using acid-induced writhing and carrageenin model of
inflammatory oedema on white mice for the synthesized hybrids. Highly active derivatives
with a promising effect that exceeds the activity level of reference drugs ketorolac and
sodium diclofenac were identified. According to the obtained results, compound 7b
represents an interest for in-depth studies as a potential non-steroidal anti-inflammatory
agent. Preliminary SARs contributing to the medicinal chemistry of triazole and azepine
derivatives and their hybrid molecules are presented. The polypharmacological profile of
studied hybrids is an argument for in-depth studies of these types of molecules applying
classic pharmacological as well as computational chemistry methods with the aim of
identifying their potential molecular targets.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/scipharm91020026/s1, Figures S1–S21: 1H NMR, 13C NMR, and
LC–MS spectra of compounds 7a–g.
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