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Abstract: Cancer is a large group of diseases that can affect any organ or body tissue due to the
abnormal cellular growth with the unknown reasons. Many of the existing chemotherapeutic agents
are highly toxic with a low level of selectivity. Additionally, they lead to development of therapeutic
resistance. Hence, the development of targeted chemotherapeutic agents with low side effects and
high selectivity is required for cancer treatment. Quinazoline is a vital scaffold well-known to be
linked with several biological activities. The anticancer activity is one of the prominent biological
activities of this scaffold. Several established anticancer quinazolines work by different mechanisms
on the various molecular targets. The aim of this review is to present different features of medicinal
chemistry as drug design, structure activity relationship, and mode of action of some targeted
anticancer quinazoline derivatives. It gives comprehensive attention on the chemotherapeutic activity
of quinazolines in the viewpoint of drug discovery and its development. This review provides
panoramic view to the medicinal chemists for supporting their efforts to design and synthesize novel
quinazolines as targeted chemotherapeutic agents.

Keywords: quinazoline; development; discovery; design; synthesis; anticancer; structure activity
relationship

1. Introduction

Nowadays, cancer is the most terrifying disease affecting the mankind. It is a group
of diseases that arise from the abnormal cell growth that has an ability to spread to any
part of the body [1]. Research on cancer represents 4% of the whole studies in the world.
This area of research expands year after year to include more studies which reflects the
global importance of this research area [2]. As cancer is a complicated disorder, there are
several difficulties in the treatment process [3]. Many anticancer agents are used alone
or in combination with other agents [4]. Understanding the molecular targets, and the
cellular proliferation over the past 50 years has triggered the development of over 100 FDA-
approved anticancer agents [5]. The earlier anticancer medications as alkylating agents,
antifolates, and antimitotic agents were used for treatment of lymphoma and leukemia.
These classes of chemotherapeutic agents had a lot of toxic effects with low selectivity
and developed resistance [6]. Targeted therapy approach was used to produce more
selective, less toxic, and highly effective anticancer agents [7]. Heterocyclic compounds
represent the biggest group in the field of medicinal chemistry for treatment of diseases
and infections [8–11]; among this group, quinazoline moiety [12–14]. Quinazoline is a
heterocyclic system having two aromatic six-membered rings. One of them contains two
nitrogen atoms named as pyrimidine ring and this ring is fused to the second aromatic
benzene ring [15]. Therefore, quinazoline is a phenyl pyrimidine compound [16]. The
quinazoline system can be divided into three members, the 2-quinazolinone containing a
carbonyl group at the C-2 (1), the 4-quinazolinone containing a carbonyl group at the C-4 (2),
and the 2,4-quinazolinedione containing two carbonyl groups at the C-2 and the C-4 (3).
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(Figure 1) [17]. Quinazolines have a wide range of pharmacological activities [18–20]. They
are used as anticancer, antiviral, antibacterial, antitubercular, analgesic, antihypertensive,
anti-inflammatory, antidiabetic, sedative-hypnotic, antihistaminic, anticonvulsant, and
many other uses [19–23]. The aim of this review is to collect the literatures reported by
researchers on quinazoline derivatives, their pharmacological activities, and their structure–
activity relationships as chemotherapeutic agents targeting tyrosine kinases.
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Figure 1. Quinazolines (1–3) and some of their pharmacological activities.

2. Therapeutic Importance of Quinazolines

Quinazoline molecules form a favored group of multi acting therapeutic agents in
the pharmaceutical and biological fields. The easy preparation and the diverse spectrum
of pharmacological activities made this scaffold very important among the different ther-
apeutic agents [20–23]. Placing different substituents at the 4, 6, and 7-positions of the
quinazoline system is the basic approach for the development of novel agents having anti-
cancer activity [21,22]. There are many quinazoline derivatives still in the clinical phase for
treatment of different diseases. The physicochemical characters of 4-aminoarylquinazoline
are shown in the Table 1 [24]. The 4-aminoarylquinazoline (Figure 2) is the core structural
feature of many FDA-approved anticancer agents which are illustrated in the Table 2 [23];
among these agents, erlotinib, gefitinib, Afatinib, dacomitinib, and many other agents.
These agents are currently used for treatment of different types of cancer such as colon,
breast, prostate, and lung cancer. Figure 1 shows some of the pharmacological uses of
quinazoline derivatives [23,25].
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Table 1. The physicochemical characters of 4-aminoarylquinazoline.

Character 4-Aminoquinazoline

Molecular formula C8H9N3
Molecular weight 147.18 g/mol

Number of heavy atoms 11
Number of aromatic heavy atoms 6

Fraction Csp3 0.12
Number of rotatable bonds 0

Number of H-bond acceptors 2
Number of H-bond donors 2

Molar refractivity 51.25
Tropological polar surface area 50.41 A2

Lipophilicity 0.66
Water solubility Soluble
GI absorption High

BBB permeation No
Bioavailability score 0.55

Lipinski Yes
Synthetic accessibility Easy
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Figure 2. Surface map for interactions of the 4-aminoarylquinazoline. The pink color shows hydro-
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Figure 2. Surface map for interactions of the 4-aminoarylquinazoline. The pink color shows hydrogen
bonding area, the green color indicates hydrophobic area, and the blue color indicates a mild polar
area [24].

Table 2. Molecular structures, generic names, chemical names, and biological targets of some
marketed anticancer quinazolines.

Molecular Structure Generic Name Chemical Name Biological
Target

Sci. Pharm. 2023, 91, x FOR PEER REVIEW 27 of 35 
 

 

N

N

(68)

N
H

O

Cl

H2N

O N

N

HN
H2N

O

N
O

O

CF3

N

N

HN
N

CN
O N

O

O

N

N

(71)

N
H

O

O

N

N
S

O

OHO

(69)

(70)

N
O

 
Figure 37. The anticancer quinazolines 68–71. 

6. Pharmaceutical Marketed Anticancer Quinazolines  
The following Table 2 displays molecular structures, generic names, chemical names, 

biological targets, and IC50 of the commonly used anticancer quinazolines which are avail-
able in the pharmaceutical market [110].  

Table 2. Molecular structures, generic names, chemical names, and biological targets of some mar-
keted anticancer quinazolines. 

Molecular Structure Generic Name Chemical Name 
Biological  

Target 

N

N

HN
O

O

F

Cl
N

O

 

Gefitinib 
Iressa 

Irressat 
NSC 759856 

UNII-S65743JHBS 
ZD 1839 

CCRIS 9011 

4-(3’-Chloro-4’-fluoroanilino)-7-
methoxy-6-(3-morpho-

linopropoxy)quinazoline 

Tyrosine kinase  
(EGFR) 

IC50 = 33 nM 

N

N

HN
OO

OO

 

Erlotinib HSDB 8082 
UNII-J4T82NDH7E 

4-Quinazolinamine, N-(3-
ethynylphenyl)-6,7-bis(2-methoxy-

ethoxy)- 

Tyrosine kinase  
(EGFR) 

IC50 = 2 nM 

Gefitinib
Iressa

Irressat
NSC 759856

UNII-S65743JHBS
ZD 1839

CCRIS 9011

4-(3’-Chloro-4’-fluoroanilino)-
7-methoxy-6-(3-

morpholinopropoxy)quinazoline

Tyrosine kinase
(EGFR)

IC50 = 33 nM

Sci. Pharm. 2023, 91, x FOR PEER REVIEW 27 of 35 
 

 

N

N

(68)

N
H

O

Cl

H2N

O N

N

HN
H2N

O

N
O

O

CF3

N

N

HN
N

CN
O N

O

O

N

N

(71)

N
H

O

O

N

N
S

O

OHO

(69)

(70)

N
O

 
Figure 37. The anticancer quinazolines 68–71. 

6. Pharmaceutical Marketed Anticancer Quinazolines  
The following Table 2 displays molecular structures, generic names, chemical names, 

biological targets, and IC50 of the commonly used anticancer quinazolines which are avail-
able in the pharmaceutical market [110].  

Table 2. Molecular structures, generic names, chemical names, and biological targets of some mar-
keted anticancer quinazolines. 

Molecular Structure Generic Name Chemical Name 
Biological  

Target 

N

N

HN
O

O

F

Cl
N

O

 

Gefitinib 
Iressa 

Irressat 
NSC 759856 

UNII-S65743JHBS 
ZD 1839 

CCRIS 9011 

4-(3’-Chloro-4’-fluoroanilino)-7-
methoxy-6-(3-morpho-

linopropoxy)quinazoline 

Tyrosine kinase  
(EGFR) 

IC50 = 33 nM 

N

N

HN
OO

OO

 

Erlotinib HSDB 8082 
UNII-J4T82NDH7E 

4-Quinazolinamine, N-(3-
ethynylphenyl)-6,7-bis(2-methoxy-

ethoxy)- 

Tyrosine kinase  
(EGFR) 

IC50 = 2 nM 

Erlotinib HSDB 8082
UNII-J4T82NDH7E

4-Quinazolinamine,
N-(3-ethynylphenyl)-6,7-
bis(2-methoxyethoxy)-

Tyrosine kinase
(EGFR)

IC50 = 2 nM



Sci. Pharm. 2023, 91, 18 4 of 34

Table 2. Cont.

Molecular Structure Generic Name Chemical Name Biological
Target
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Table 2. Cont.

Molecular Structure Generic Name Chemical Name Biological
Target
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3. Physicochemical Characters of the Core Structural Feature of Anticancer Quinazolines

Figure 2 displays the surface map for interactions of the 4-aminoarylquinazoline which
is the core structural feature of the anticancer quinazolines [24]. Table 1 demonstrates
physicochemical characters of this group [26].

4. Methods of Preparation of Quinazolines

Due to the enormous synthetic importance and the various therapeutic activities of
quinazoline derivatives, several efforts have been made by many researchers to prepare
a library of these molecules. Griess et al. synthesized the first derivative of 2-cyano-
quinazolin-4-one in 1869 [27]. Then, Bischler and Lang prepared quinazoline by decarboxy-
lation of quinazoline-2-carbocylic acid [28]. In 1903, Gabriel synthesized quinazoline by
reduction of o-nitrobenzylamine to o-aminobenzylamine which condensed with formic
acid to yield dihydroquinazoline, additional oxidation gave quinazolin-4-one [29]. Several
synthetic strategies have been utilized for preparation of quinazoline molecules [30–36].
The following synthetic reactions show some common traditional methods for preparation
of quinazolines:

1. Niemtowski technique (Figure 3) was done through fusion of anthranilic acid and
formamide at (130–150 ◦C) for 6 h. 4-(3H)-quinazolinone was produced with 40%
yield [30].

2. Morgan technique (Figure 4) by refluxing of 2-acetamidobenzoic acid and an aromatic
amine in toluene for 2 h using phosphorous trichloride (PCl3) as a catalyst to give
2-methyl-3-phenylquinazolin-4(3H)-one with 45% yield [31].

3. Amination of isatoic anhydride by refluxing with ammonium hydroxide for 3 h
followed by refluxing with ethyl orthoformate for 6 h without isolating the amide
intermediates (Figure 5) to produce 4-(3H)-quinazolinone with 55% yield [32].

4. Amination of 2-methyl-5-nitro-bezoxazin-4-one by refluxing with ammonium hydrox-
ide for 1 h to produce anthranilamides which cyclizes to 2-methyl-5-nitro-quinazolin-
4-one with 65% yield under thermal conditions (240–280 ◦C) or on heating with acetic
anhydride for 1–3 h (Figure 6) [33].

5. Reaction between anthranilic acid and aqueous solution of potassium cyanate by re-
fluxing the two reactants in a glacial acetic acid for 6 h to produce 2,4-quinazolinedione
with 75% yield (Figure 7) [34].

6. Reaction between 2-aminobenzamide and styrene in existence of di-tertiary-butyl
peroxide (DTBP) and P-toluene sulfonic acid (p-TsOH) by heating them in DMSO at
115 ◦C for 16 h gives 2-phenylquinazoline-4(3H)-one with 70% yield (Figure 8) [35].

7. Transition metals-catalyzed method. The nitrobenzamide derivative is reduced by pal-
ladium chloride (PdCl2) and iron pentacarbonyl Fe(CO)5 in presence of iodobenzene
to give 2-phenyl-4(3H)-quinazolinone. This reaction is performed by a microwave-
assisted reaction at 110 ◦C for 0.5 h with 85% yield (Figure 9) [36].

8. Quinazolines can be produced through reaction of guanidine with 2-aminobenzonitrile
by heating them at 120 ◦C for 2 h to produce 2,4-diamino-6-iodo-quinazoline with
90% yield (Figure 10) [33,34].

9. The 2-substituted-4-aminoquinazoline derivatives can be prepared by mixing 2-
aminobenzonitrile with nitriles under basic condition in the microwave for 1–3 min to
produce 2-substituted-4-aminoquinazolines with 76–93% yield (Figure 11) [33,34].

10. Reaction of 2-aminophenylethanone with 4-methoxyaniline in presence of 4-ter-
butylbenzene-1,2-diol and 1,4-dioxane at 140 ◦C for 20 h produces 2-substituted-
4-methylquinazoline with 85% yield (Figure 12) [35,36].
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5. Mode of Action of Quinazolines as Anticancer Agents

Quinazolines constitute a promising group of anticancer agents active against different
types of tumors with an effective therapeutic activity [37–40]. The majority of quinazolines
anticancer research focused on the mechanistic pathways of their chemotherapeutic action.
Most of the quinazoline derivatives having the anticancer activity were found as protein
kinase inhibitors. They cause inhibition of replication and transcription of DNA to prevent
a tumor growth. Additionally, some of these anticancer derivatives overcome the breast
cancer resistance by inhibition of breast cancer resistant proteins [38]. There are other en-
zymes inhibited by anticancer quinazolines such as thymidylate synthase, poly ADP-ribose
polymeras-1 (PARP), topoisomerase. Therefore, quinazolines exerted their chemotherapeu-
tic activity by various molecular interactions (Figure 13) [40] and mechanistic pathways
(Figure 14) [39].
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5.1. Crystallographic Studies of Quinazolines

Shewchuk et al. revealed the modes of binding for two members of quinazoline tyrosine
kinase inhibitors by X-ray crystallographic study. The two inhibitors were hydroxyaniline-
6,7-dimethoxyquinazoline in complex with cyclin-dependent kinase 2 (CDK2) and the
methylsulfanylaniline-6,7-dimethoxyquinazoline in complex with the p38 kinase. The
4-anilinoquinazoline moiety in the two inhibitors was attached in the ATP site with the
quinazoline ring system oriented along the peptide strand that connects the two domains
of the protein and with the anilino substituent projecting into a hydrophobic pocket within
the protein interior. In each case, the nitrogen at position-1 of the quinazoline accepted a
hydrogen bond from a backbone NH (CDK2, Leu83, p38, Met109) of the domain connector
strand, and aromatic hydrogen atoms at C2 and C8 interacted with backbone carbonyl
oxygen atoms of the peptide strand. The aniline group of the CDK2-bound compound was
basically coplanar with the quinazoline nucleus system and occupied a pocket between
Lys33 and Phe80. Regarding the p38-bound inhibitor, the aniline group was pointed out of
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plane and was located between Lys53 and Thr106 in a mode like that detected for the aryl
substituent of the pyridine-imidazole inhibitor (Figure 13) [40].

Cathrine et al. compared the crystal structure of p38 pound to four different com-
pounds of quinazolinone and pyridol-pyrimidine derivatives. They found that binding
of these specific molecules is characterized by a peptide flip between Met109 and Gly110
which explain the selectivity of these molecules [41].

5.2. Protein Kinases Inhibitors

Protein kinases are a group of enzymes utilizing ATP as a source of phosphate and
phosphorylate certain types of amino acids in various types of proteins. They accomplish
some conformational changes in proteins to regulate their biological functions. Human
genome includes more than 500 types of protein kinases [42]. In 1980, discovery of the
various naturally isolated protein kinase inhibitors anticancer agents such as erbastatin,
genistein, quercetin led to the development of novel chemotherapeutic agents working on
protein kinase enzymes [43]. Based on the amino acid chain that undergoes phosphoryla-
tion, there are three types of protein kinases:

1. Tyrosine kinases responsible for phosphorylation of phenolic hydroxyl (OH) group.
2. Serine-threonine kinases responsible for phosphorylation of serine and threonine

amino acids.
3. Histidine-kinases responsible for phosphorylation of nitrogen in histidine residues.

It has been known that mutation in the protein kinases leads to impaired signaling,
uncontrolled proliferation of cells, and uncontrolled differentiation of these cells. Ac-
cordingly, inhibition of tyrosine kinases could be an important biological target in cancer
treatment. Several quinazolines produce their anticancer activity through inhibition of
different kinases as shown in Figure 14 [42,43].

Tyrosine kinases (TK) include an essential part of oncoproteins associated with the
various types of malignancies. Hence, they were selected as a promising biological target
for anticancer agents [44]. There are two forms of protein tyrosine kinase, transmembrane
receptor linked and non-receptor tyrosine kinase (nRTK). More than 20 types of recep-
tor tyrosine kinases (RTK) were discovered [45]. Binding the ligand with one of these
extracellular receptors of tyrosine kinase (RTK) results in dimerization of receptors. This
process triggers the cytoplasmic tyrosine kinase to phosphorylate different types of tyrosine
residues which in turn initiate various cell signaling pathways such as phosphoinositide
3-kinases (PI3Ks), the mitogen-activated protein kinase (MAPK), and signal transducer
activator of transcription 3 (STAT3). On the other hand, the non-receptor tyrosine kinase
(nRTK) are enzymes having an important role in regulation of cell growth, differentiation,
migration, adhesion, and apoptosis [46].

Quinazoline molecules target the (RTKs) which involve the following receptors [47]:

1. Epidermal growth factor receptor (EGFR);
2. Platelet derived growth factor receptor (PDGFR);
3. Vascular endothelial growth factor receptor (VEGFR);
4. Fibroblast growth factor receptor (FGFR).

These RTKs were found to be overexpressed in different types of malignancies such
as prostate, colon, breast, lung, stomach, and ovarian cancer [48]. The 4-anilinquinazoline
derivatives displayed an ability to inhibit these types of PTKs such as EGFR, VEGFR-2,
PDGFR, and FGFR. Accordingly, these derivatives were widely explored as anticancer
agents against various types of tumors (Figure 15) [47–49].
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5.2.1. Epidermal Growth Factor Receptor (EGFR) Inhibitors

Epidermal growth factor receptor (EGFR) is a one of the transmembrane receptors-
linked tyrosine kinase (TKRs), and it is an important biological target for many anticancer
agents due to its role in controlling cellular proliferation, survival, and anagenesis [50]. It
is activated by EGF ligand and transforming growth factor α (TGF-α). When the ligand
binds to this receptor, the activation and the dimerization processes are performed through
autophosphorylation of Tyr-1068 residue, followed by activation of intracellular signaling
series [51]. Overexpression of EGFR characterizes the cancerous cells from the normal cells.
Consequently, inhibition of proliferation cancerous cells could be obtained by inhibition of
the following two types of EGFR inhibitors [52]:

1. Tyrosine kinase inhibitors molecules which act as a competitive inhibitor on EGFR;
2. Monoclonal antibodies which interfere with the binding of EGF and TGF-α.

Quinazolines act as small tyrosine kinase inhibitor molecules. Many marketed quina-
zoline derivatives such as gefitinib, erlotinib, and lapatinib belong to this class of anticancer
agents [53]. These compounds bind reversibly with the ATP binding area, interfere with
its binding site, and then inhibit the biological activity of EGFR TK [54]. After years
of treatment with gefitinib and erlotinib, development of EGFR mutations may lead to
progress of the disease. This development results in resistance of the cancerous cells to-
ward these anticancer agents. For this reason, a second generation of irreversibly binding
anticancer quinazolines was developed. These molecules bind with EGFR TK binding
sites by irreversible covalent bond resulting from the α, β carbonyl groups [55]. Afatinib
is an example of these derivatives. It was approved by FDA for treatment of advanced
non-small cell lung cancer (NSCLC) including EGFR mutations [54–56]. Dacomitinib is
another example of the second generation which was approved by FDA. Moreover, caner-
tinib is a quinazoline derivative third-generation anticancer agent, displaying a potent
activity with IC50 = 0.8 nM. Structures of the previously mentioned derivatives are shown
in (Figure 16) [55,56].
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Several studies were performed for discovery of novel quinazoline molecules-based
EGFR TK inhibitors. The most modifications were carried out through changing the
substituents at the C-6 and the C-7 positions of the anilinoquinazoline moiety. The following
literature reports discuss the recent progression in chemotherapeutic activity of quinazoline
derivatives as tyrosine kinases inhibitors.

6,7-Substituted-4-anilinoquiazolines as Anticancer Agents

Chilin et al. prepared some dioxygenated derivatives by introducing two dioxo
groups at the C-6 and the C-7 positions of the quinazoline nucleus to investigate their
antiproliferative activity by their ability to inhibit the EGFR TK. Compound (4) having
a dioxane ring and a trifluoromethyl group at the C-3 of the anilinoquinazoline ring
showed the highest activity of IC50 = 0.77 µM, and 7.1 µM against A431, and NIH313 cell
lines, respectively [38]. Ongoing with this strategy, other derivatives of quinazoline were
prepared via replacement of the aniline with the biphenylamino group or by expanding or
contracting the deoxygenated ring. Among these derivatives, compounds (5)–(7) gave the
highest cytotoxic activity (Figure 17) [38,39].
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Conconi et al. designed a group of 6,7-dialcoxy-4-phenylamino-quinazolines to be 
well-fitted inside the EGFR TK binding site. Compound (8) was found to be the highest 
active EGFR TK inhibitor. This derivative showed good activity with low bioavailability 
due to its poor water solubility [39]. A novel series of para-substituted anilinoquinazoline 
containing 6,7-dialcoxy groups was synthesized by Abouzeid and Shouman to be tested 
against the human breast cancer cell MCF-7 as an EGFR TK inhibitor. The compound con-
taining thiazolyl sulfanilamide moiety (9) showed high potency (IC50 = 0.13 nM). The mo-
lecular modeling study of this compound displayed good binding affinity with the ATB 
binding site of EGFR-TK like the standard drug lapatinib with an additional hydrogen 
bond between N of thiazole group and water [42]. Another work by Lu et al. showed the 
modification of 6,7-dialkoxy-substituted-4-anilinoquinazoline to 3-chloro-4-fluoro-
phenyl-6,7-dimethoxyquinazolin-4-amine (10). This compound showed an activity of IC50 
= 3.8 nM against EGFR TK. Placing ethylenediamine at the C-6 instead of the alkoxy group 
maintained the activity due to the formation of hydrogen bonds between ethylenediamine 
group and Asp776, Cys773 in the binding site of EGFR [43]. As a continuation for this 
work, Zahang et al. introduced urea at the C-6 position instead of the alkoxy group as 
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Conconi et al. designed a group of 6,7-dialcoxy-4-phenylamino-quinazolines to be
well-fitted inside the EGFR TK binding site. Compound (8) was found to be the highest
active EGFR TK inhibitor. This derivative showed good activity with low bioavailability
due to its poor water solubility [39]. A novel series of para-substituted anilinoquinazoline
containing 6,7-dialcoxy groups was synthesized by Abouzeid and Shouman to be tested
against the human breast cancer cell MCF-7 as an EGFR TK inhibitor. The compound
containing thiazolyl sulfanilamide moiety (9) showed high potency (IC50 = 0.13 nM). The
molecular modeling study of this compound displayed good binding affinity with the ATB
binding site of EGFR-TK like the standard drug lapatinib with an additional hydrogen
bond between N of thiazole group and water [42]. Another work by Lu et al. showed the
modification of 6,7-dialkoxy-substituted-4-anilinoquinazoline to 3-chloro-4-fluorophenyl-
6,7-dimethoxyquinazolin-4-amine (10). This compound showed an activity of IC50 = 3.8 nM
against EGFR TK. Placing ethylenediamine at the C-6 instead of the alkoxy group main-
tained the activity due to the formation of hydrogen bonds between ethylenediamine group
and Asp776, Cys773 in the binding site of EGFR [43]. As a continuation for this work,
Zahang et al. introduced urea at the C-6 position instead of the alkoxy group as shown
in the compounds (11–14). These compounds displayed good inhibitory activity ranging
from 0.024–1.715 µM [44]. Acyclic amine substituted derivatives (11 and 12) completely
blocked the phosphorylation process of EGFR-TK in the A431 cell line (IC50 = 0.01 µM),
while cyclic amine substituted derivatives (13 and 14) blocked the phosphorylation process
of EGFR in the NCI-H1975 cell line (IC50 = 10 µM). The structural activity relationship
(SAR) study showed that side chain with a heteroatom forms a hydrogen bond. Cyclization
of the terminal N decreased the inhibitory activity which may resulted from the long side
chain that had no ability to form hydrogen bonds [44]. The anticancer quinazolines 8–14
are shown in (Figure 18) [39–44].
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The 2-nitroimidazole moiety was used as a substituent at the position 7 from the ani-
linoquinazoline system (15). The resulted compound showed a strong EGFR-TK inhibi-
tory activity (IC50 = 0.47 nM). This excellent activity was noticed in case of some tumors 
associated with hypoxia against A549 cell line (IC50 = 0.77 and 0.18 μM), HT-29 cell line 
(IC50 = 1.13 and 0.18 μM) compared to the standard erlotinib against A549 cell line (IC50 = 
7.59 and 9.1 μM), HT-29 cell line (IC50 = 2.98 and 4.37 μM) [45]. 

The literatures reported development of resistance in the most of cancer patients after 
one year from treating with gefitinib. There are some mechanisms that tried to explain 
this process, but the exact reason is still unknown. Emergence of secondary mutations 
resulted in deviation in the downstream signals and generation of alternative pathways. 
As a trial to overcome this resistance, Yu et al. designed novel anilinoquinazoline deriva-
tives having a hydrophobic group at the C-4 position of the quinazoline ring (16). All the 
newly synthesized compounds strongly inhibited EGFR type (wt) with IC50 ranging from 
1.12–15.4 nM compared to the standard gefitinib of 15.5 nM. The compound containing 
N-adamantly benzamide ring displayed a potent inhibition against the resistant cell line 
H1975 and A431 with IC50 = 5.89 and 2.06 μM, respectively. Additionally, it produced a 
strong inhibitory activity against the EGFR-TK mutation L858R/T790M (IC50 = 4.62 μM). 
The modeling study revealed that the 1-adamantyl moiety at the para position occupied 
the hydrophobic region in the binding pocket then, the aniline part became closer to the 
Met790 amino acid which supported the binding process with the EGFR [46].  
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The 2-nitroimidazole moiety was used as a substituent at the position 7 from the
anilinoquinazoline system (15). The resulted compound showed a strong EGFR-TK in-
hibitory activity (IC50 = 0.47 nM). This excellent activity was noticed in case of some
tumors associated with hypoxia against A549 cell line (IC50 = 0.77 and 0.18 µM), HT-29
cell line (IC50 = 1.13 and 0.18 µM) compared to the standard erlotinib against A549 cell line
(IC50 = 7.59 and 9.1 µM), HT-29 cell line (IC50 = 2.98 and 4.37 µM) [45].

The literatures reported development of resistance in the most of cancer patients after
one year from treating with gefitinib. There are some mechanisms that tried to explain
this process, but the exact reason is still unknown. Emergence of secondary mutations
resulted in deviation in the downstream signals and generation of alternative pathways. As
a trial to overcome this resistance, Yu et al. designed novel anilinoquinazoline derivatives
having a hydrophobic group at the C-4 position of the quinazoline ring (16). All the
newly synthesized compounds strongly inhibited EGFR type (wt) with IC50 ranging from
1.12–15.4 nM compared to the standard gefitinib of 15.5 nM. The compound containing
N-adamantly benzamide ring displayed a potent inhibition against the resistant cell line
H1975 and A431 with IC50 = 5.89 and 2.06 µM, respectively. Additionally, it produced a
strong inhibitory activity against the EGFR-TK mutation L858R/T790M (IC50 = 4.62 µM).
The modeling study revealed that the 1-adamantyl moiety at the para position occupied
the hydrophobic region in the binding pocket then, the aniline part became closer to the
Met790 amino acid which supported the binding process with the EGFR [46].

Other novel analogues of gefitinib were synthesized to be investigated as EGFR in-
hibitors. Among these analogues, 4-benzothienylamino quinazoline derivatives showed
different secondary amino propoxy side chain at the C-6 and the C-7 of the quinazoline
moiety. These derivatives gave a good anticancer activity against six human cancer cell
lines, but their activity decreased compared to the standards gefitinib and erlotinib. Com-
pound (17) produced a cytotoxic activity with IC50 = 1.32 µM and induced an apoptosis
in the MiaPaCa2 cell line. The 7-amino propoxy side chain derivatives were more active
than the 6-amino propoxy side chain derivatives [47]. The anticancer quinazolines 15–17
are shown in (Figure 19) [45–47].
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Another way for the development of EGFR inhibitors was performed by Zhao et al. 
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containing azaspirocycle (18) showed an excellent activity with IC50 = 15 nM and 28 nM 
against EGFR and HCC827 respectively, while it showed no activity against A459. The 
biological results showed that the inhibitory activity of EGFR was retained even by intro-
duction of the four-membered heterocyclic ring instead of the morpholine ring of ge-
fitinib. Additionally, these heterocyclic rings at the 6-position improved the water solu-
bility [48].  

To develop water solubility, different hydrophilic amino substituents were intro-
duced at the C-7 of the anilinoquinazoline system. Out of this series, compound (19) hav-
ing 4-phenylpiperidine moiety via a propyl chain at the C-7 of the anilinoquinazoline sys-
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was 3.62 nM compared to gefitinib (IC50 = 2.21 nM). The structural activity relationship 
study (SAR) explained that the ortho and the para-cyano groups on the aniline ring 
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with the amino acids of the binding pocket [49].  
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biological screening as EGFR inhibitors. Their EGFR inhibitory activity was lower than 
that of the standard drugs gefitinib and erlotinib, but their inhibitory activity against SCR 
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Another way for the development of EGFR inhibitors was performed by Zhao et al.
through placing the heterocyclic ring azaspirocycle or azetidine instead of the morpholine
ring in the anticancer drug gefitinib. The newly synthesized molecules were tested against
EGFR, HCC827, and A549 cancer cell lines using the standard gefitinib. The compound
containing azaspirocycle (18) showed an excellent activity with IC50 = 15 nM and 28 nM
against EGFR and HCC827 respectively, while it showed no activity against A459. The
biological results showed that the inhibitory activity of EGFR was retained even by intro-
duction of the four-membered heterocyclic ring instead of the morpholine ring of gefitinib.
Additionally, these heterocyclic rings at the 6-position improved the water solubility [48].

To develop water solubility, different hydrophilic amino substituents were introduced
at the C-7 of the anilinoquinazoline system. Out of this series, compound (19) having
4-phenylpiperidine moiety via a propyl chain at the C-7 of the anilinoquinazoline system
displayed a strong cytotoxic activity against HepG2, A549, MCF-7, DU145, and SH-SY5Y
cancer cell line at 5–10 µM. The cytotoxic activity of compound (19) against EGFR was
3.62 nM compared to gefitinib (IC50 = 2.21 nM). The structural activity relationship study
(SAR) explained that the ortho and the para-cyano groups on the aniline ring showed
higher activity than the meta position due to the formation of a hydrogen bond with the
amino acids of the binding pocket [49].

In 2013, Cai et al. designed new derivatives of 4-benzothiazoleaminoquinazolines for
biological screening as EGFR inhibitors. Their EGFR inhibitory activity was lower than that
of the standard drugs gefitinib and erlotinib, but their inhibitory activity against SCR and
ABI was considerable (SCr = 91.8% and AB1 = 82.3%) at 1 µM. The SAR study showed that
presence of bulky substituents at the 6 or the 7 positions of the quinazoline moiety increased
the potency [50]. The anticancer quinazolines 18–20 are shown in (Figure 20) [48–50].
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Several studies were performed to overcome the resistance resulting from the first-
generation EGFR inhibitors. Afatinib anticancer emerged as a lead compound for synthe-
sis of the irreversible second-generation EGFR inhibitors. 

The irreversible binding resulted from the formation of a covalent bond between the 
Michael acceptor moiety and the cysteine amino acid in EGFR binding site. Among these 
irreversible EGFR inhibitors, compounds (21) and (22) displayed a strong inhibition 
against EGFR resistant cells H197, IC50 = 10.2, and 16.1 nM, respectively. The SAR study 
revealed that 3-ethylaniline and 3-chloro-4-fluoroaniline groups are the best substituents 
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showed a potent activity with IC50 = 5 nM, and it was also effective against cell lines having 
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nonsteroidal anti-inflammatory drug (NSAIDs), while erlotinib is a quinazoline-based an-
ticancer drug. The conjugated compounds were tested against A431 and HCC827 cancer 
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from IC50 = 0.005–0.88 μM. Pharmacokinetic studies explained that the hydrolysis of this 
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Several studies were performed to overcome the resistance resulting from the first-
generation EGFR inhibitors. Afatinib anticancer emerged as a lead compound for synthesis
of the irreversible second-generation EGFR inhibitors.

The irreversible binding resulted from the formation of a covalent bond between the
Michael acceptor moiety and the cysteine amino acid in EGFR binding site. Among these
irreversible EGFR inhibitors, compounds (21) and (22) displayed a strong inhibition against
EGFR resistant cells H197, IC50 = 10.2, and 16.1 nM, respectively. The SAR study revealed
that 3-ethylaniline and 3-chloro-4-fluoroaniline groups are the best substituents for the
inhibitory activity [51].

Hou et al. synthesized 4-anilinoquinazoline compounds having benzamide group
at the 6-position of the quinazoline moiety. Among these compounds, compound (23)
showed a potent activity with IC50 = 5 nM, and it was also effective against cell lines having
EGFR mutations. The SAR study displayed that the irreversible covalent bond formed
between the benzamide group of this compound and the sulfhydryl group (SH) of the
Cys797 residue of EGFR binding site [52].

A novel series of the naproxen-erlotinib conjugates (24) was synthesized to target
more than one pathway involved in the development of cancer. Naproxen works as a
nonsteroidal anti-inflammatory drug (NSAIDs), while erlotinib is a quinazoline-based
anticancer drug. The conjugated compounds were tested against A431 and HCC827 cancer
cell lines. All the derivatives showed a promising EGFR inhibitory activity that ranged
from IC50 = 0.005–0.88 µM. Pharmacokinetic studies explained that the hydrolysis of this
conjugate gave the hydroxylated form of erlotinib with a strong activity IC50 = 0.001 µM.
The presence of naproxen at the C-6 position was better than the C-7 position [53]. The
anticancer quinazolines 21–24 are shown in (Figure 21) [51–53].
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Other derivatives of the morpholin-3-one fused quinazoline molecules (25) were pre-
pared by Qin et al. as EGFR inhibitors. Out of these molecules, compound (25) showed 
the highest activity against EGFR kinase (IC50 = 53.1 nM). Molecular modeling study re-
vealed a good docking of this compound into the binding pocket of EGFR such as the 
standard drug gefitinib [54]. 

Another series of propen-phenylamino-quinazoline molecules having similar frag-
ments at the 6 and the 7 positions of the quinazoline moiety was designed and prepared 
to be investigated as EGFR inhibitors. Among these derivatives, compound (26) showed 
IC50 = 1.35–8.83 μM against the four tested cell lines A431, A549, NCI-H1975, and SW480. 
In addition, it showed a strong EGFR inhibitory activity (IC50 = 20.72 nM) better than the 
standard lapatinib (IC50 = 27.06 nM). The Western blot analysis revealed an inhibition of 
EGF induced EGFR in the two cell lines A549 and NCI-H1975 [55]. 

These results encouraged them to synthesize a novel series of 6,7-dimorpholinoalkyl 
quinazoline compounds. Compound (27) having 3-chloro-4-(3-fluorophenyl)aniline pro-
duced an excellent EGFR inhibitory activity with IC50 = 7, 9.3 nM against the two cell lines 
wt and T790M, respectively [55]. The anticancer quinazolines 25–27 are shown in (Figure 
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Other derivatives of the morpholin-3-one fused quinazoline molecules (25) were
prepared by Qin et al. as EGFR inhibitors. Out of these molecules, compound (25) showed
the highest activity against EGFR kinase (IC50 = 53.1 nM). Molecular modeling study
revealed a good docking of this compound into the binding pocket of EGFR such as the
standard drug gefitinib [54].

Another series of propen-phenylamino-quinazoline molecules having similar frag-
ments at the 6 and the 7 positions of the quinazoline moiety was designed and prepared
to be investigated as EGFR inhibitors. Among these derivatives, compound (26) showed
IC50 = 1.35–8.83 µM against the four tested cell lines A431, A549, NCI-H1975, and SW480.
In addition, it showed a strong EGFR inhibitory activity (IC50 = 20.72 nM) better than the
standard lapatinib (IC50 = 27.06 nM). The Western blot analysis revealed an inhibition of
EGF induced EGFR in the two cell lines A549 and NCI-H1975 [55].

These results encouraged them to synthesize a novel series of 6,7-dimorpholinoalkyl
quinazoline compounds. Compound (27) having 3-chloro-4-(3-fluorophenyl)aniline pro-
duced an excellent EGFR inhibitory activity with IC50 = 7, 9.3 nM against the two cell
lines wt and T790M, respectively [55]. The anticancer quinazolines 25–27 are shown in
(Figure 22) [54,55].

6-Substituted-4-anilinoquinazoline Derivatives

The mono substituted anilinoquinazoline derivatives at the 6-position of the quina-
zoline system were designed and synthesized as EGFR inhibitors. Among this series,
compound 28 has an alkynyl group at the 6-position from the anilinoquinazoline system.
This compound showed a potent inhibitory activity with IC50 = 14.1 nM higher than the
reference gefitinib (IC50 = 39 nM) [56].

Another series of the 4-anilinoquinazolines containing dioxygenated rings at the
6-position was synthesized by Liu et al. The dioxygenated group is attached to the 4-
anilinoquinazoline system via an amide linkage. Additionally, there are different sub-
stituents at the 3-position such as chlorine or bromine substituents. The compound (29)
having dioxepine ring at the 6-position and bromine at the 3-position showed a significant
EGFR inhibitory activity of IC50 = 0.098 µM. It also showed IC50 = 2.77, and 5.02 µM
against A431 and MCF-7 cancer cell lines, respectively. The Western blot analysis at 100 nM
displayed a complete inhibition of the EGFR autophosphorylation [57].
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Continuing with this strategy, Li et al. prepared benzylamino-substituted-4-anilino-
quinazoline having hydroxy group (OH) at 4-position (30). This compound gave strong
cytotoxic activity with IC50 = 0.28 µM against Hep G2, and 0.59 µM against A16-F10
cell line. It also gave significant EGFR inhibitory activity with IC50 = 0.87 µM. The SAR
study explained the essential role of meta-bromo-substituted-4-anilino moiety. The para
substitution on the benzyl rig was more active than ortho substitution. The hydroxy
substitution of benzyl ring was more active than the methoxy substituted form [58]. The
anticancer quinazolines 28–30 are shown in (Figure 23) [56–58].
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Later in 2011, new derivatives of cinnamic acid-substituted anilinoquinazoline were
designed as EGFR inhibitors. Out of these derivatives, compounds (31) and (32) have a
bromo or a chloro substitution at the 3-position of the aniline ring, producing a potent EGFR
inhibitory activity of IC50 = 0.12 and 0.19 µM, respectively. The activity of the standard



Sci. Pharm. 2023, 91, 18 19 of 34

erlotinib was IC50 = 0.03 µM [59]. They also showed IC50 = 0.33, and 0.49 µM against A431
cancer cell line. The SAR study revealed that the meta or the ortho substituted rings were
more potent than the para substituted derivatives [60]. In addition, compound (33) with a
4-chloro-6-ureidoquinazoline moiety displayed a potent EGFR inhibitory activity against
EKVX, NCI-H322M, A498, TK-10, and MDA-MB-468 cell lines ranging from 0.37–1 µM [61].
Compound (34) was synthesized by Zhang et al. It is an anilinoquinazoline derivative with
the 4-aryl-amino-6-(furan-2-yl) substitution. The EGFR inhibitory activity of this compound
was IC50 = 5.06 nM. Molecular modeling study revealed the binding interaction of this
derivative was like that of the standard erlotinib [62]. The anticancer quinazolines 31–34
are shown in (Figure 24) [59–62].
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Structural activity relationship studies (SAR)

1. The 4-anilinoquinazoline with substitution at the C-6 and/or the C-7 positions is
the general pharmacophoric group required for the EGFR inhibitory activity. These
structural requirements are shown by the common tyrosine-kinase inhibitors such as
gefitinib, erlotinib, and other anticancer pharmaceutically marketed products.

2. The electron-withdrawing groups such as fluoro, bromo, chloro, and ethylene at the
aniline ring is advantageous for the antiproliferative activity.

3. The 3-bromo substituted quinazoline molecules displayed potent activity.
4. The 3-chloro-4-fluoro-aniline substituted quinazoline molecules showed strong activity.
5. Changing the aniline moiety at the 4-position with other groups decreased the activity.
6. The electron donating groups at the 6 and/or the 7-positions improved the binding

activity of N1 and N3 of quinazoline system with the binding pocket.
7. The propoxy linker at the C-6 and/or the C-7 of quinazoline moiety showed stronger

activity than the methoxy group.
8. Dioxygenated groups at the 6 and the 7 positions of quinazoline moiety improved the

cytotoxic activity.
9. The Michael addition group at 6-position of quinazoline leads to irreversible binding

with the receptor-site.

Figure 25 shows the SAR of EGFR inhibitors [62].
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5.2.2. Vascular Endothelial Growth Factor Receptors (VEGFR) Inhibitors

The VEGFR are a group of vascular endothelial growth factor receptors. They are
associated with the angiogenesis process which include formation of new blood vessels
(neovascularization) [63]. It is also responsible for some important physiological and
pathological stages [64]. They are produced by the vascular endothelial growth factor
(VEGF) and required for the growth of the different tumors. The EGFR stimulation and
hypoxia stimulate the VEGFR production by cancer cells [65]. The binding site of the
VEGF is the VEGFR-2 tyrosine kinase. When the binding process happen, it activates the
autophosphorylation process involved in the proliferation of cancer cells [66]. The VEGF
overexpression is associated with the progression of tumors in several types of cancer.
Therefore, targeting the VEGF is a main strategy of second-generation anticancer agents
which have a dual activity through an inhibition of the EGFR TK and the VEGFR TK like
vandetanib. Cediranib is another quinazoline derivative working as VEGF inhibitor [67].
Cediranib is a quinazoline-based marketed anticancer agent having an indole-ether moiety
joined to the quinazoline system at the 4-position. It inhibits VEGFR-TK [68]. The anticancer
quinazolines vandetanib and cediranib are shown in (Figure 26) [67,68].

Sci. Pharm. 2023, 91, x FOR PEER REVIEW 18 of 35 
 

 

N

N

HN
H3CO

(Vandetanib)

F Br

O
N

N

N

O
H3CO

F

ON

H
N

(Cediranib)

 
Figure 26. The anticancer quinazolines vandetanib and cediranib. 

The inhibitors having urea and thiourea based 4-arylquinazolines work as dual in-
hibitors for both EGFR and VEGFR [68]. Figure 27 [69] illustrates the effect of each group 
on the biological activity based on the SAR study of the dual acting quinazolines. 

N

N

X
H3CO

R2

Urea or ThioureaAromatic SpacerPotentiate activity

Aminoalkoxy increases potency

X = O or N

 
Figure 27. The general structural model for the quinazoline-based dual EGFR and VEGFR inhibi-
tors. 

Garofalo et al. designed novel derivatives of quinazoline VEGFR inhibitors by intro-
duction of aryloxy, aniline, and N-methylaniline fragments at the 4-position of the 
quinazoline system. The urea-substituted aryloxyquinazolines were 100-fold more active 
than the anilinoquinazoline against the VEGFR-2. Among these derivatives, naphthyl-
substituted derivative (37) showed activity with IC50 = 30 nM [69]. The same research 
group carried out further modification by placing methyl or halogen substituents on the 
aryloxy ring to see their activity against the VEGFR-2. A remarkable inhibition was ob-
served by the methyl derivative of the compound (37) which gave IC50 = 2 nM [70]. Some 
new derivatives of the 7-aminoalkoxy-4-aryloxy-quinazolines were synthesized as multi-
tyrosine kinase inhibitors. The piperidinopropoxy substituted derivative (38) produced a 
potent activity with IC50 = 4.09 μM, 1, 5.02 μM, and 0.33 μM against PC3, MCF7, HT29, 
and HUVEC cancer cell lines, respectively [71]. 

In 2018, Sun et al. prepared substituted thiourea quinazoline-based derivatives as 
dual inhibitors of EGFR and VEGFR-2. Among these derivatives, compound (39) having 
thiourea linked by ether linkage at the position-4 of the quinazoline scaffold gave the high-
est potency of IC50 = 0.02 and 0.05 μM against EGFR and VEGFR-2, respectively. The com-
pound 40 also displayed IC50 = 0.01 and 0.08 μM against the EGFR and the VEGFR-2, re-
spectively. In addition, these two compounds showed potent cytotoxicity against other 
cancer cell lines such as HCT-116, MCF-7, and B16. The SAR study revealed the im-
portance of the two electron withdrawing groups at the terminal phenyl ring 3-CF3, 4-Cl 

Figure 26. The anticancer quinazolines vandetanib and cediranib.

The inhibitors having urea and thiourea based 4-arylquinazolines work as dual in-
hibitors for both EGFR and VEGFR [68]. Figure 27 [69] illustrates the effect of each group
on the biological activity based on the SAR study of the dual acting quinazolines.

Garofalo et al. designed novel derivatives of quinazoline VEGFR inhibitors by in-
troduction of aryloxy, aniline, and N-methylaniline fragments at the 4-position of the
quinazoline system. The urea-substituted aryloxyquinazolines were 100-fold more active
than the anilinoquinazoline against the VEGFR-2. Among these derivatives, naphthyl-
substituted derivative (37) showed activity with IC50 = 30 nM [69]. The same research group
carried out further modification by placing methyl or halogen substituents on the aryloxy
ring to see their activity against the VEGFR-2. A remarkable inhibition was observed by the
methyl derivative of the compound (37) which gave IC50 = 2 nM [70]. Some new derivatives
of the 7-aminoalkoxy-4-aryloxy-quinazolines were synthesized as multi-tyrosine kinase
inhibitors. The piperidinopropoxy substituted derivative (38) produced a potent activity
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with IC50 = 4.09 µM, 1, 5.02 µM, and 0.33 µM against PC3, MCF7, HT29, and HUVEC
cancer cell lines, respectively [71].
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In 2018, Sun et al. prepared substituted thiourea quinazoline-based derivatives as
dual inhibitors of EGFR and VEGFR-2. Among these derivatives, compound (39) having
thiourea linked by ether linkage at the position-4 of the quinazoline scaffold gave the
highest potency of IC50 = 0.02 and 0.05 µM against EGFR and VEGFR-2, respectively. The
compound 40 also displayed IC50 = 0.01 and 0.08 µM against the EGFR and the VEGFR-2,
respectively. In addition, these two compounds showed potent cytotoxicity against other
cancer cell lines such as HCT-116, MCF-7, and B16. The SAR study revealed the importance
of the two electron withdrawing groups at the terminal phenyl ring 3-CF3, 4-Cl of (39)
and 3-CF3, 4-Br of the compound 40 [72]. The anticancer quinazolines 37–40 are shown
(Figure 28) [72].
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The dual inhibition of the two enzymes EGFR and FGFR-2 is a very useful strategy for
treatment of resistant cancer cases since they are targeting different signaling pathways to
inhibit the tumor growth.

Barbosa et al. synthesized the 2-chloro-4-substituted-anilinoquinazoline derivatives
containing a hydrogen bond donor and acceptor groups at the 4-position of the terminal
phenyl ring to interact with the suitable target. Compound 41 gave a strong potency with
IC50 = 1.63, 0.85 µM against the EGFR and the VEGFR, respectively [73].

Other derivatives of the diarylamide-substituted-4-anilinoquinazoline were prepared
to be investigated as dual EGFR and FEGFR-2 inhibitors. The antiproliferative activity
of this compound was assessed by MTT assay against HT-29, MCF-7 and H460 cell lines.
The compounds 42 and 43 having a methyl piperazine substituent at the position-7 of
quinazoline displayed the highest activity of IC50 = 0.13, 0.56 µM against HT-29, MCF-7
for compound 42, IC50 = 0.15, 1.81 µM against HT-29, MCF-7 for compound 43 [74]. The
anticancer quinazolines 41–43 are shown in (Figure 29) [73,74].
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In search of new dual inhibitors, some derivatives having diarylurea group at the
4-position of the terminal phenyl ring attached to the quinazoline moiety were designed
and tested as a dual inhibitor against the EGFR and the VEGFR. It was found that the
derivative with meta and para dimethyl fragments on the terminal phenyl ring and chloro
substituent ortho to the urea group (44) produced an excellent activity with IC50 = 1 nM
against EGFR, and 79 nM against the VEGFR. The compound 45 showed IC50 = 51 nM
against EGFR, and 14 nM against VEGFR compared to the reference drug vandetanib
IC50 = 11, 15 nM against EGFR, and VEGFR, respectively. The SAR study revealed that the
derivatives possessing the 4-methylpiperazine group at the position-7 from the quinazoline
moiety with a diaryl urea substituent displayed a better antiproliferative activity than the
derivatives possessing morpholine or piperidine groups [75].

The substitution at the 5-position of the quinazoline scaffold instead of the 4-position
was studied by Xi et al. He synthesized the 5-anilino-8-nitroquinazoline derivatives to be
investigated for their antiproliferative activity against the EGFR and the VEGFR-2. The
compound (47) showed a strong and a selective inhibitory activity with IC50 = 12 nM
against the EGFR kinase enzyme, and IC50 = 1.8 µM against HUVEC cell line [76].

Hybrid derivatives of quinazoline-indazole were synthesized by Elsayed et al. as VEGFR-
2 inhibitors. The molecule (46) displayed a potent cytotoxic activity with IC50 = 5.4 nM
against the VEGFR-2 kinase enzyme. It also showed 130% growth inhibition on the full NCI
panel of cancer cell lines when exposed to in vitro antiproliferative assay. In addition, a
99.6% was shown against HUVEC cancer cell line at 10 µM [77]. The anticancer quinazolines
44–47 are shown in (Figure 30) [75–77].
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SAR of VEGFR Inhibitors

1. Quinazolin-4-aniloino or quinazoline-4-oxyaryl scaffold is required for VEGFR in-
hibitory activity.

2. Substitution at the 6-position of the quinazoline moiety with an electron-releasing
group enhances the activity.

3. Substitution at the 7-position of the quinazoline with an aminoalkoxy group increases
the activity.

4. Aromatic spacer between urea or thiourea and N or O at the 4-position of quinazoline
is necessary for the activity.

5.2.3. PDGFR Inhibitors

PDGFR is a type of cell surface TK receptor functions as the other types of tyrosine
kinases. It has an important role in the cell proliferation, growth, and differentiation.
The uncontrolled cellular growth resulted from the hyperactivity of PDGFR resulted in
different diseases like pulmonary fibrosis, restenosis, and cancer [78]. In 2012, Shepard et al.
discovered the 4-piperazino-substituted quinazoline derivative (48) as a PDGFR inhibitor.
It showed a strong activity against FLT-3, c-KIT [79]. The anticancer quinazolines 48 is
shown in (Figure 31) [79].

Sci. Pharm. 2023, 91, x FOR PEER REVIEW 21 of 35 
 

 

5.2.3. PDGFR Inhibitors 
PDGFR is a type of cell surface TK receptor functions as the other types of tyrosine 

kinases. It has an important role in the cell proliferation, growth, and differentiation. The 
uncontrolled cellular growth resulted from the hyperactivity of PDGFR resulted in differ-
ent diseases like pulmonary fibrosis, restenosis, and cancer [78]. In 2012, Shepard et al. 
discovered the 4-piperazino-substituted quinazoline derivative (48) as a PDGFR inhibitor. 
It showed a strong activity against FLT-3, c-KIT [79]. The anticancer quinazolines 48 is 
shown in (Figure 31) [79]. 

N

N

N

(48)
O

N

O
H
N

O

N

O

 
Figure 31. The anticancer quinazolines 48. 

5.2.4. Serine-Threonine Kinase Inhibitors 
Serine-threonine kinas is a type of TK that performs the autophosphorylation process 

at the oxygen atom of serine or threonine amino acid residues. It also plays an important 
role in regulation of cell proliferation, differentiation, and apoptosis. There are two types 
of this kinase [80]: 
1. Serine-threonine receptor type kinase (TGFBR). 
2. Serine-threonine non-receptor type kinas (aurora kinases, CDK, and PI3K). 

Aurora Kinase Inhibitors 
Aurora kinase plays an essential role in cell division processes such as chromosomes 

segregation, centrosomes maturation, and cytokinesis. There are three types of this kinase 
A, B, and C. These types are overexpressed in many types of tumors as breast, ovarian, 
colon, pancreatic, and thyroid cancers. The overexpression of this kinase is also associated 
with genetic characters and treated by aurora kinase inhibitors. 

The 4-aminoquinazoline molecule ZM447439 (49) was revealed by AstraZeneca in 
2003 as dual aurora kinase inhibitor of A and B types with IC50 = 0.1 μM [81]. When the 
phenyl ring attached to the 4-position of the quinazoline moiety is replaced by the six-
membered pyrimidine ring (50), a compound with a higher affinity to aurora A and B was 
obtained. The activity of this compound was 0.011 and 0.025 μM against aurora A and B, 
respectively. Substitution of the compound (50) with the morpholinopropoxy group at the 
7-position of the quinazoline system showed a potent inhibitory activity with IC50 = 0.003 
and 0.001 μM. Moreover, substitution of the terminal phenyl ring (benzamido group) with 
a small lipophilic group as chloro substituent (51) displayed an excellent activity of less 
than 0.1 nM [82].  

Introduction of a small five-membered heterocyclic ring such as thiazole and thio-
phene instead of the central phenyl ring of the aniline moiety resulted in an excellent in-
hibitory activity against aurora kinase due to the strong binding affinity. Additionally, 
placing a methylene group between the amide group and the five-membered ring (52) 
considerably increased the cellular potency [83]. The anticancer quinazolines 49–52 are 
shown in (Figure 32) [81–83]. 

Figure 31. The anticancer quinazolines 48.



Sci. Pharm. 2023, 91, 18 24 of 34

5.2.4. Serine-Threonine Kinase Inhibitors

Serine-threonine kinas is a type of TK that performs the autophosphorylation process
at the oxygen atom of serine or threonine amino acid residues. It also plays an important
role in regulation of cell proliferation, differentiation, and apoptosis. There are two types of
this kinase [80]:

1. Serine-threonine receptor type kinase (TGFBR).
2. Serine-threonine non-receptor type kinas (aurora kinases, CDK, and PI3K).

Aurora Kinase Inhibitors

Aurora kinase plays an essential role in cell division processes such as chromosomes
segregation, centrosomes maturation, and cytokinesis. There are three types of this kinase
A, B, and C. These types are overexpressed in many types of tumors as breast, ovarian,
colon, pancreatic, and thyroid cancers. The overexpression of this kinase is also associated
with genetic characters and treated by aurora kinase inhibitors.

The 4-aminoquinazoline molecule ZM447439 (49) was revealed by AstraZeneca in
2003 as dual aurora kinase inhibitor of A and B types with IC50 = 0.1 µM [81]. When the
phenyl ring attached to the 4-position of the quinazoline moiety is replaced by the six-
membered pyrimidine ring (50), a compound with a higher affinity to aurora A and B was
obtained. The activity of this compound was 0.011 and 0.025 µM against aurora A and B,
respectively. Substitution of the compound (50) with the morpholinopropoxy group at the
7-position of the quinazoline system showed a potent inhibitory activity with IC50 = 0.003
and 0.001 µM. Moreover, substitution of the terminal phenyl ring (benzamido group) with
a small lipophilic group as chloro substituent (51) displayed an excellent activity of less
than 0.1 nM [82].

Introduction of a small five-membered heterocyclic ring such as thiazole and thio-
phene instead of the central phenyl ring of the aniline moiety resulted in an excellent
inhibitory activity against aurora kinase due to the strong binding affinity. Additionally,
placing a methylene group between the amide group and the five-membered ring (52)
considerably increased the cellular potency [83]. The anticancer quinazolines 49–52 are
shown in (Figure 32) [81–83].

A novel class of the selective aurora kinase inhibitors containing pyrazolo-substituted-
quinazoline scaffold was discovered [84]. Among this class, barasertib, or AZD1152 (53) is
a phosphate-based antineoplastic drug showed a 1000-fold greater potency against aurora
kinase B (IC50 = 0.37 nM) than A [85]. It is an FDA-approved antineoplastic agent for treat-
ment of hematologic cancer and solid malignant tumors [86]. Moreover, another acetanilide-
aminopyrazole-substituted quinazoline (54) which was designed by a group of researchers
in AstraZeneca, was found to be more potent and selective than the 3-aminopyrazole
derivative with IC50 less than 1 nM against aurora kinase B [87]. It also inhibited other
kinases PDGFR a, B, CSF-1R, and c-KIT with IC50 values 0.069, 0.006, 0.036, and 0.009 µM,
respectively [88,89]. The compound (55), which have a structural similarity with this
class, displayed high selectivity toward aurora A with IC50 = 0.038 µM [90]. Continuing
in this direction, Cai et al. designed some urea derivatives of the 4-anilinoquinazoline
scaffold to be investigated as cytotoxic agents against aurora A and B kinases. The 2-
methylpiperidine analogue (56) produced a strong activity (IC50 = 0.9–3.1 µM) against solid
tumors. Additionally, it showed selectivity with aurora A (IC50 = 61 nM) while aurora B
was IC50 = 172 nM [91]. Similarly, Hsu et al. discovered BPR1K871 (57) as a quinazoline
derivative multikinase inhibitor. It displayed a strong cytotoxic activity against MOLM-13,
MV4-11 AML, aurora kinase A, and FLT-3 equal to 5, 5, 22, and 19 nM, respectively [92].
The anticancer quinazolines 53–57 are shown in (Figure 33) [84–92].
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SAR of Aurora Kinase Inhibitors

1. Quinazoline with an aminoalkyl or an aminoaryl moiety at the 4-position of the
quinazoline is required for the anticancer activity.

2. Substitution at the 5 and the 6-positions of the quinazoline with an electron releasing
group increases the activity.

3. A lipophilic aromatic group attached to the 4-aminoaryl group increases the activity.

Cyclin-Dependent Kinase (CDK) Inhibitors

Cyclin-dependent kinase (CDK) is a type of serine-threonine kinases. It plays an
important role in the protein phosphorylation process. It also regulates transcription,
mRNA processing, metabolism, and cells differentiation [93]. Cyclin is a regulatory protein
binds with CDK to form cyclin-CDK complex that phosphorylates specific substrates in
the cell cycle [94]. In many types of cancer, CDKs become overreactive or CDK inhibiting
proteins are not working. Therefore, CDKs display a target to inhibit the uncontrolled
cellular growth by blocking this uncontrolled activity [95]. The X-ray analysis revealed the
mode of binding of anilinoquinazoline derivatives with CDKs [96].

In a recent study, Sielecki et al. designed a group of 2, 4, and 6 substituted quinazolines
as CDK inhibitors. Among these derivatives, compound (58) formed extensive hydrogen
bonds with ATP pocket of CDK2 enzyme. It showed a potent inhibitory activity with
IC50 = 0.6 µM [97].

Bathini et al. prepared a series of 2,7,8-trisubstituted quinazolines for testing as
CDK inhibitors. It was found that substitution at the 4-position of the aniline ring of
the quinazoline system influences CDK-4 inhibition. The piperazine quinazoline-based
derivative (59) showed the highest activity among these derivatives (IC50 = 0.007 µM) [98].
Placing of cyclopentyl group at the 8-position from the quinazoline system resulted in
a higher CDK-4 inhibitory activity in the compound (60) (IC50 = 0.001 µM) [99]. The
molecular modeling study of compound (61) showed that the pyrazole ring attached to
the quinazoline moiety should have electron withdrawing group for a good activity [99].
A new quinazoline molecule (62) containing Michael acceptor at the 6-position of the
quinazoline system was prepared by Shi et al. and showed a strong activity against A549
cell line. The anticancer activity of this molecule was explained based on accumulation
of the reactive oxygen species which down-regulated the cyclin B1 regulatory proteins
resulting in apoptosis and cell cycle arrest [100]. The anticancer quinazolines 58–62 are
shown in (Figure 34) [97–100].

Phosphoinositid-3-Kinase (PI3K) Inhibitors

Phosphoinositid-3-kinase (PI3K) performs essential functions in many cellular pro-
cesses such as proliferation, differentiation, and migration. It is activated by a wide range of
receptor tyrosine kinases. The transduction system is activated by several types of tyrosine
kinases which generate another messenger called phosphatidylinositol 3,4,5 triphosphate
(PIP3). This messenger controls the cellular function by phosphorylating effectors and
adaptors. There are different isoforms of PI3Ks such as PI3Kα, PI3Kβ, PI3Kδ, and PI3KΥ.
The inhibitors of PI3K work by inhibition of one or more of the activator kinases enzymes.
The mutations and the dysregulation of PI3K occur in many types of tumors which make it
an important target for the anticancer agents [101].

Idelalisib (63, Zydelgi®) [102] is a highly effective quinazoline derivative selective
PI3Kδ inhibitor (IC50 = 2.5 nM). It is an FDA-approved antineoplastic medication for
treatment of hematologic malignancies and used as a second line of choice for treatment of
patients having relapse from chronic lymphocytic leukemia [102].
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Copanilisin (64, Aliqopa®) [103] is another PI3K inhibitor. It is an imidazoquinazoline
molecule that inhibits two types of PI3K including PI3Kα and PI3Kδ isoforms. The inhibi-
tion of these enzymes leads to inhibition of growth and proliferation of the malignant B
cells. It also controls tumor cell death by apoptosis. This medication was approved by the
FDA for treatment of patients having relapsed follicular lymphoma [103]. The anticancer
quinazolines 63 and 64 are shown in (Figure 35) [102,103]
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Shao et al. designed 4,6-disubstituted quinazoline as PI3K inhibitors. These deriva-
tives were tested against A549, HCT-116, U-87 MG, and KB cell lines using MTT assay
method. Out of these derivatives, compound (65) displayed a potent cytotoxic activity with
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IC50 = 4.32, 0.54, 1.37, and 4.45 µM, respectively. Furthermore, this compound was found
as an inhibitor of PI3K, mTOR, and AKT. It also showed tumor growth inhibition in the
nude mice U-87 MG model [104].

A hybrid derivative of chalcone-quinazoline (66) was designed by Wani et al. to be
investigated for the cytotoxic activity against PI3K, AKT, and mTOR cancer cell lines. This
derivative inhibited proliferation of the cancer cells lines in micromolar range. Additionally,
it inhibited in vivo tumor growth in the animal models [105].

Another hybrid derivative of a hydroxamic-quinazoline molecule was designed as a
dual inhibitor of PI3K and HDAC. The HDAC is the histone deacetylase enzyme which
allow wrapping the DNA before expression. Disorientation of HDAC changes gene ex-
pression and cell phenotype, which results in cancer incidence. Therefore, combination of
HDAC inhibitor and quinazoline-based PI3K inhibitor targeted more than one target and
led to a potent cytotoxic activity. Compound (67) showed IC50 = 2.98, and 50 nM against
PI3K, and HDAC, respectively. This compound was also tested for the in vitro cytotoxicity
on human colon carcinoma HCT116, leukemia (K562), and T lymphocyte (Hut78). It dis-
played IC50 = 0.33, 0.095, 0.062 µM, respectively [106]. The anticancer quinazolines 65–67
are shown in (Figure 36) [104–106].
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Xin et al. synthesized some derivatives of 4-phenylquinazoline having benzamide 
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Xin et al. synthesized some derivatives of 4-phenylquinazoline having benzamide
moiety at the 6-position to be investigated for their PI3K inhibitory activity. Among these
analogues, compound (68) displayed the highest cytotoxic activity with IC50 = 17 nM. A
further extension for this work by preparing different derivatives with different substituents
at the 6-position, produced the compound (69) having the trifluoromethyl benzamide group.
This derivative displayed PI3K inhibitory activity with IC50 = 9.7 nM, and antiproliferative
activity IC50 = 1 µM against the RPMI-8226 human B cell line [107].

Another derivative containing 4-pyrrolidineamino group instead of 4-anilino group
was designed by Xin et al. and tested as PI3Kδ inhibitor. It was found that the compound
having tetrahydo-2H-pyran group at the 4-position (70) increased PI3K binding affinity
and produced a strong inhibition (IC50 = 2.7 nM) [108]. A novel series of 2-pyridin-
substituted-quinazoline-4-one was synthesized to be investigated as PI3K inhibitors. Of
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these newly synthesized derivatives, compound (71), containing oxo-benzothiazine group
attached to the benzamide moiety at the 3-position from quinazoline-4-one system, showed
IC50 = 60.29 µM against the human hepatic carcinoma HepPG-2 cell line compared to the
reference doxorubicin (IC50 = 69.6 µM). It also displayed IC50 of 31.92 µM against PI3K
which was also better than the standard LY294002 (IC50 = 57.3 µM) [109]. The anticancer
quinazolines 68–71 are shown in (Figure 37) [107–109].
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6. Pharmaceutical Marketed Anticancer Quinazolines

The following Table 2 displays molecular structures, generic names, chemical names,
biological targets, and IC50 of the commonly used anticancer quinazolines which are
available in the pharmaceutical market [110].

7. Conclusions

Discovery of novel anticancer agents has advanced from a period of toxic non-selective
agents to less toxic selective agents. Deficiency of selectivity and high toxicity are major
drawbacks of the current chemotherapeutic drugs. Hence, the targeted therapy acting on
a specific biological target is required for the treatment of these life-threatening diseases.
Continuous research efforts in the field of drug discovery have resulted in exploration of
quinazoline and its derivatives as a targeted anticancer agent. Quinazolines were used as
tyrosine kinases inhibitors for treatment of cancer. A huge frame of scientific experiments
proved the efficacy of quinazolines as targeted anticancer agents. Several molecules of the
anticancer quinazolines were approved by the FDA and are available in the market for treat-
ment of different types of cancer diseases. Most modifications performed on quinazolines
were carried out via changing the substituents at C-4, C-6, and C-7 from the quinazoline
system to develop the anticancer activity. Small molecular changes in the quinazoline
system led to dramatic changes in the selectivity, the potency, and the anticancer activity.
Regardless of the availability of quinazoline molecules, an abundant potential remains in
this promising system to be discovered for preparing useful chemotherapeutic agents. Ad-
ditional structural variations in the quinazoline system might lead to novel derivatives with
more activity than the current available drugs. The previously mentioned literature survey
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displayed the importance of structural modifications of quinazolines on their anticancer
activity. This review presents a clear perspective and a good understanding to scientists and
chemists aiming toward development of quinazolines as targeted chemotherapeutic agents.
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