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Abstract: Paracetamol (acetaminophen, APAP) is known as a safe pain reliever; however, its negative
effects on the central nervous system have gradually been reported. We examined alterations in
learning and memory, and brain-derived neurotrophic factor (BDNF) expression in the frontal cortex
and hippocampus at different durations of APAP treatment in rats. Novel object recognition (NOR)
and Morris water maze (MWM) paradigms were used to assess learning and memory in rats fed
with 200 mg/kg APAP at single-dose, 15-day or 30-day treatments. BDNF expression was evaluated
through immunohistochemistry and Western blotting. The single-dose APAP treatment did not
alter the NOR performance. However, deficits in the NOR and MWM capacities were detected in
the rats with longer durations of APAP treatment. An analysis of BDNF expression revealed no
significant change in BDNF expression in the single-dose APAP treatment, while rats given APAP for
extended periods as treatment showed a significant decrement in this protein in the frontal cortex
and hippocampus. Short-term APAP treatment has no effect on learning and memory, or BDNF
expression; however, long-term APAP exposure causes cognitive impairment. The diminishment
of the BDNF level in the frontal cortex and hippocampus due to the long period of treatment with
APAP may at least in part be involved in altered learning and memory in rats.

Keywords: paracetamol; novel object recognition; Morris water maze; brain-derived neurotrophic
factor; frontal cortex; hippocampus

1. Introduction

Paracetamol or acetaminophen (APAP) is usually selected as the first drug of choice
for both acute and chronic pain treatments due to its properties such as its high availability,
inexpensiveness, and minimal side effects. However, several studies have linked the
adverse effects of APAP treatment to homeostasis disturbances in the central nervous
system (CNS) [1–5]. It has previously been demonstrated that a single-dose treatment with
APAP at a dose under the dose required to induce hepatotoxicity could induce neuronal
apoptosis in a rat cortex [3]. The adverse effects of a high-dose APAP treatment for a short
period on neurobehaviors, including learning and memory, and anxiety-like behavior, have
been established [2,6]. Additionally, in our earlier report, the hippocampus and frontal
cortex, two parts of the brain known for learning and memory processes, experienced an
elevation in oxidative stress and impaired synaptic integrity after having received a 30-day
treatment of 200 mg/kg APAP [7].

It is known that the brain-derived neurotrophic factor (BDNF) is a growth factor that
plays a key role in several neuronal activities, including synaptic plasticity, and learning
and memory processes [8–12]. Among all brain regions, the distribution of BDNF and

Sci. Pharm. 2023, 91, 11. https://doi.org/10.3390/scipharm91010011 https://www.mdpi.com/journal/scipharm

https://doi.org/10.3390/scipharm91010011
https://doi.org/10.3390/scipharm91010011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/scipharm
https://www.mdpi.com
https://doi.org/10.3390/scipharm91010011
https://www.mdpi.com/journal/scipharm
https://www.mdpi.com/article/10.3390/scipharm91010011?type=check_update&version=1


Sci. Pharm. 2023, 91, 11 2 of 12

its major receptor, tyrosine receptor kinase B (TrkB), are highest in the hippocampus
and cerebral cortex [13,14]. Several recent studies suggest a link between developing
brain APAP exposure and a fluctuation in BDNF levels in several brain regions, as well
as behavioral consequences later in life including recognition memory, anxiolytic-like
behavior, sociability, and emotionality [15–17]. Nevertheless, knowledge related to the
impact of APAP treatment on the BDNF expression in adults with a fully developed brain
has never been explored.

This study, therefore, aimed to investigate alterations in learning and memory abilities,
and BDNF expression in adult Wistar rats that received APAP at the dose of 200 mg/kg in
three different regimens of treatment: single-dose (0-day), 15-day, and 30-day treatments.

2. Materials and Methods
2.1. Animals

Sixty adult male Wistar rats (weighing between 250 and 300 g) were purchased from
the National Laboratory Animal Center, Mahidol University, Thailand. The rats were
housed as five per cage in a controlled atmosphere (20 ± 22 ◦C) with a 12 h cycle of
darkness and light. Standard food and drinking water were freely accessed by the animals.
The protocols carried out in this study have already been accepted by the Animal Ethical
Committee of the Faculty of Medicine, Chulalongkorn University, Thailand (CU–ACUC
No. 23/57).

2.2. Drug Treatment

In this study, APAP (TYLENOL®, OLIC (Thailand) Ltd., Ayutthaya, Thailand), at a
dose of 200 mg/kg was employed. This dose, after being converted from an animal dose
in mg/kg to a human equivalent dose (HED) in mg/kg by the formula described by the
US Food and Drug Administration (FDA), is equal to 32.25 mg/kg or 1935 mg per day for
humans with a weight of 60 kg [18]. Since the FDA has recommended the dose of 4000 mg
(in any 24 h period) as a maximum dose of APAP for treatment [19], it can be indicated that
the dose of APAP used in the present study was within the therapeutic dose range [5,7].

2.3. Experimental Design

The experiment in this study was separated into three experiments. In the first
experiment, twenty rats were randomly selected and separated into the control and APAP-
treated groups (n = 10). One hour prior to being assessed with the NOR test, 200 mg/kg
APAP was fed to the rats in the APAP-treated group, whereas the control group received the
same volume of distilled water. In the second experiment, APAP at the dose of 200 mg/kg
or distilled water was given to the rats in the APAP-treated or control groups (n = 10) for
15 days, respectively. On day 8 of the treatment, the NOR test was performed 1 h following
the treatment, and on day 9 of the treatment, the MWM test was initiated. For the MWM
test, the rats were trained to find the hidden platform for 6 consecutive days, and their
spatial memory was evaluated with the probe trial on the last day of the treatment. For the
third experiment, APAP or distilled water was given to the rats for 30 days (n = 10). The
NOR test was conducted on day 23, and the MWM test was performed between days 24
and 30 of the treatment. All behaviors were analyzed from videotape by experimenters
who were blinded to the experimental conditions. The experimental design of this present
study is demonstrated in Figure 1.
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Figure 1. Illustration of the experimental design. Abbreviation: APAP, paracetamol; NOR, novel
object recognition; MWM, Morris water maze.

2.4. Novel Object Recognition (NOR) Test
The NOR test was conducted according to the procedure described by Morley et al. [20]

with a minor adjustment. The test was performed in an acrylic box (100 × 100 cm wide
floor and 50 cm high wall), and all the rats’ behaviors throughout the test were captured
by a digital video camera positioned above the box. For the test procedure, the rats were
habituated in the empty box for 5 min. After a 1 h delayed stay in their home cage, the rats
were trained by experience with two identified objects (objects A and B) for 10 min. Ten
min later, the rats were again exposed to two objects, where one old object was replaced
by a new one (object C) for 10 min. The exploration behaviors of the rats were defined as
sniffing or having their head directed toward the object within a 2 cm perimeter around the
object. At the end of each trial, the arena and all objects were cleaned with 70% ethanol to
eliminate olfactory cues. The calculation of preference and recognition indexes were based
on Equations (1) and (2).

The preference index (%) =
Total time spent for exploring object A

Total time spent for exploring both objects during training trial
× 100 (1)

The recognition index (%) =
Total time spent for exploring object C

Total time spent for exploring both objects during testing trial
× 100 (2)

2.5. Morris Water Maze (MWM) Test

The MWM test was carried out in accordance with the procedure introduced by Morris
in 1981 [21] with minor modifications. The test apparatus consisted of a circular pool with
a 200 cm diameter and 60 cm depth, filled with water (23–24 ◦C) to a height of 30 cm above
the base. Different visual cues were labeled on the wall of the pool, which were obviously
seen by the animals. A hidden platform with diameter of 20 cm was submerged 2 cm below
the water surface and constantly located in one of the quadrants of the pool. In the training
session, the rats were trained on 6 consecutive days with 3 trials per day to find the hidden
platform. If the rats failed to reach the hidden platform within 90 s, they were guided by
placing them on the platform for 15 s. The average time spent to reach the platform during
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the training trial was reported as the escape latency, which indicated rats’ spatial learning
capacity. In the probe trial, the hidden platform was removed, and the rats were allowed to
freely swim for 90 s in the pool. The time spent within the zone where the platform was
previously located was recorded to determine a spatial memory.

2.6. Sample Collection

In the first experiment, rats were euthanized by intraperitoneal injection with 60 mg/kg
of sodium pentobarbital after 1 h of the treatment. The whole blood (5 mL) was collected
from all rats by the cardiac puncture method. To perform the histochemistry, the rats were
transcardially perfused with precooled 250 mL of 0.1 M phosphate-buffered saline (PBS),
pH 7.4, and then with a 4% paraformaldehyde solution until the rat was stiff. The brain
and liver were collected, immerged in the fixative solution, and maintained at 4 ◦C for
48 h. For the Western blotting, after perfusion with PBS, the rats’ brains were removed, and
the frontal cortex and hippocampus were quickly dissected on ice, immediately frozen in
liquid nitrogen, and then kept at –80 ◦C for further investigation. For the second and third
experiments, all rats were euthanized 24 h after the last treatment for sample collection,
which was performed according to the first experiment’s procedures.

2.7. Immunohistochemistry (IHC)

The paraformaldehyde-fixed brains were dehydrated, processed, and embedded in
paraffin wax. The sections with a 5 µm thickness were cut and placed on Superfrost plus
slides (Thermoscientific, Portsmouth, NH, USA). After deparaffinization, the sections were
incubated with citrate buffer pH 6.0 (Dako, Glostrup, Denmark), 3% hydrogen peroxide,
and 3% normal horse serum (PAN Biotech GmbH, Aidenbach, Germany) in PBS. The
sections were exposed to primary rabbit anti-BDNF antibody (1:2000; Abcam, Cambridge,
UK) for 37 min at 37 ◦C. The signal of BDNF immunostaining was visualized using
an ultraView Universal DAB Detection Kit (Ventana Medical Systems, Inc., Oro Valley,
AZ, USA), which was processed in an automatic slide staining machine (Benchmark XT,
Ventana Medical Systems, Inc., Oro Valley, AZ, USA). All slides were counterstained with
hematoxylin, dehydrated, mounted, and cover-slipped with a mounting media before
scanning using a slide scanner (Aperio ScanScope, Aperio, Vista, CA, USA).

2.8. Western Blotting (WB)

The frontal cortex and hippocampal proteins were extracted and measured in accor-
dance with the prior study’s protocol [7]. The proteins were electrically separated in a
12.5% SDS–polyacrylamide gel and blotted onto nitrocellulose membranes (GE Healthcare
Life Sciences, Buckinghamshire, UK). After blocking with 5% w/v of bovine serum albumin
(Merck Millipore, Burlington, MA, USA) in tris-buffered saline containing 0.1% tween-20
pH 7.4 (TBS–T), the blots were incubated with rabbit anti-BDNF (1:500; Abcam, Cambridge,
UK) or mouse anti-β-actin (1:3000; Sigma, St. Louis, MO, USA) antibodies overnight at 4 ◦C.
After washing, the blots were exposed to appropriated horseradish peroxidase-coupled
secondary antibodies (1:10,000; Sigma, St. Louis, MO, USA) and enhanced chemilumines-
cence system (ECL, GE Healthcare Life Sciences, Buckinghamshire, UK). The quantitative
analysis of the protein band densities was conducted by using ImageJ software (National
Institute of Health, Bethesda, MD, USA).

2.9. Statistical Analysis

A two-way analysis of variance (ANOVA) with a post hoc Bonferroni test was em-
ployed to analyze the escape latency in the MWM test, while a student’s t-test was applied
for other parameters. Statistical significance was defined as p < 0.05.

3. Results

It is known that hepatotoxicity can interfere with neuronal homeostasis of the brain [22].
Therefore, in this study, the liver morphology as well as the liver enzymes indicating liver
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function (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase)
were monitored in all rats. The findings revealed that neither the hepatic morphology nor
the levels of liver enzymes obtained from the rats receiving APAP treatment and the control
group differed significantly (data not shown), suggesting that any alteration shown in the
rats treated with APAP in the present study did not result from hepatotoxicity.

3.1. Effect of APAP Treatment on NOR Memory

The results demonstrated that there was no difference in the preference index among
all groups (data not shown). When compared to the control, a single-dose APAP adminis-
tration did not affect the recognition index (p > 0.05, Figure 2a). However, the rats given
APAP treatment for the longer durations of treatment (8 and 23 days) showed a significantly
lower recognition index (p < 0.05, Figure 2b,c).
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Figure 2. Effect of APAP treatment on the NOR performance. The recognition index in control
and APAP-treated groups are shown; (a) 0-day, (b) 8-day and (c) 23-day treatments. The data are
represented as mean ± SEM (n = 10). * Significant decrease in recognition index when compared to
the control group, p < 0.05.

3.2. Effect of the APAP Treatment on the MWM Performance

To evaluate the MWM performance, the animals needed to be trained consecutively
for 6 days; therefore, the MWM performance was not monitored in the rats with acute
APAP treatment.

In the experiment with the 15-day treatment, the rats treated with APAP showed
a significant increase in escape latency on the second day of the training trial (p < 0.01,
Figure 3a), and a significant decrease in the time spent in the target zone was also detected
in these rats as compared with those observed in the control group (p < 0.05, Figure 3b).
The results obtained from the 30-day treatment were in line with what was observed in
the experiment with the 15-day treatment. A significant increase in escape latency (on the
third and fourth days of the training trial) and a significant decrease in the time spent in
the target zone were observed in the 30-day APAP-treated rats as compared to the control
group (p < 0.01, Figure 3c,d).
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Figure 3. Effect of APAP treatment on the MWM performance. The escape latency (a) and the time
spent in the target zone (b) for the rats in the experiment with the 15-day treatment. The escape
latency (c) and the time spent in the target zone (d) for the rats in the experiment with the 30-day
treatment. The data are represented as mean ± SEM (n = 10). * Significant increase in escape latency
when compared to the control group, p < 0.05. ** Significant decrease in time spent in the target zone
when compared to the control group, p < 0.01.

3.3. Effect of APAP Treatment on the BDNF Protein Expression

By using IHC, a strong staining (brown color of DAB staining) was observed in
both the frontal cortex and hippocampus for the control and 0-day APAP-treated groups,
while a weak staining was obviously observed in the 30-day APAP-treated group. This
indicates that chronic APAP treatment decreased the expression of BDNF protein in both
the frontal cortex and hippocampus of rats (Figure 4). The results obtained in the WB
were in agreement with those observed in the IHC. It was shown that a single-dose APAP
treatment had no effect on the expression of the BDNF protein in either the frontal cortex
or the hippocampus (p > 0.05, Figure 5a). However, the results obtained from the study
in the 15-day treatment demonstrated a significant reduction in BDNF protein in the
hippocampus in the APAP-treated rats (p < 0.05, Figure 5b). The alteration in BDNF protein
expression was clearly demonstrated in the experiment with the 30-day treatment. It was
shown that the expression of BDNF protein in both the frontal cortex and hippocampus of
APAP-treated rats was significantly reduced when compared with the control (p < 0.01 and
p < 0.001, respectively, Figure 5c).
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(a) and the hippocampus (b) obtained from the control and APAP-treated groups for the experiments
with the 0-, 15- and 30-day treatments (n = 2); scale bar: 500 and 700 µm for the frontal cortex and
hippocampus, respectively.
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* and *** Significant reduction in BDNF protein when compared to the control group, p < 0.05, and
p < 0.001, respectively.

4. Discussion

The effects of APAP treatment on learning and memory have been shown in several
studies. However, the precise mechanism underlying how APAP exposure affects cognitive
outcomes in adults has not been concluded to date. The results obtained from this study
have shown that long-term APAP exposure affects learning and memory, and BDNF
expression differently from acute treatment.

It is well accepted that APAP can easily penetrate the blood–brain barrier (BBB). After
entering the cerebral blood flow, APAP can be quickly distributed into the brain and
converted by cytochrome P450 2E1 (CYP2E1) enzymes to form the toxic metabolite known
as N-acetyl-p-benzoquinone imine (NAPQI) [3]. Normally, small fractions of NAPQI can be
rapidly captured by glutathione (GSH) to form a non-toxic byproduct and excreted through
the urine [3,23]. Our findings demonstrated that treatment with a single dose of 200 mg/kg
of APAP had no impact on learning and memory abilities, and BDNF expression in both
the frontal cortex and hippocampus. It is possible that, with acute treatment, NAPQI can
be completely detoxified by existing GSH. In this case, the homeostasis in the brain is not
disturbed, which then results in no changes in the learning and memory performance. Our
findings in this part support a previous document claiming that APAP is a safe drug when
administered at a therapeutic dose for a short period of time [19].

However, the results obtained from the rats that received APAP treatment for longer
periods show different outcomes. The performance in both NOR and MWM tasks was
significantly decreased in the APAP-treated rats. In a previous study, rats receiving low
doses of APAP (10 and 50 mg/kg) for 8 weeks exhibited an enhancement in working spatial
memory for the short period [1]. Moreover, the neuroprotective effect of a chronic low
dose of APAP treatment (15.1 mg/kg) has been reported in mice with colchicine-induced
cognitive dysfunction [24]. Zhao et al. [25] also demonstrated that APAP treatment at a
dose of 100 mg/kg could attenuate lipopolysaccharide-induced spatial memory deficit. In
addition, a recent study by Garrone et al. provided evidence supporting the neuroprotective
effects of APAP. They found that treatment with APAP (75 and 150 mg/kg) in short periods
could prevent cognitive disturbance and allodynia in the animal model of post-operative
cognitive decline by modulating hippocampal cytokines and markers of microtubule
dynamics [26]. As compared to those studies, our present results demonstrated the opposite
effect of APAP treatment on learning and memory. It has to be noted here that the dose
of APAP used in the present study was different from those employed in the previous
studies [1,24]. While the animals were treated with APAP at low doses (10–50 mg/kg) in
those studies, a higher dose of APAP (200 mg/kg) was given to the rats in our present study.
Furthermore, the duration of APAP treatment in our study was longer than those reported
by Garrone et al. and Zhao et al. [25,26]. We suggest that the difference in concentration
and duration of the treatment might result in a different amount of reactive metabolite
accumulation in the brain.
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In parallel with the diminishing of learning and memory, a downregulation of the
BDNF protein in both the frontal cortex and hippocampus was also demonstrated in rats
that received the APAP treatment for a long period (15 and 30 days). The impact of APAP
treatment on the BDNF expression was first reported by Viberg et al. in 2014. This study
demonstrated that neonatal APAP exposure could induce a fluctuation in BDNF levels
in the parietal and prefrontal cortex, and neurobehavioral dysfunctions were detected in
adulthood [17]. Recently, Blecharz-Klin et al. have proved that impaired recognition and
sociability in prenatal APAP treatment were accompanied by a decrement in BDNF protein
in the striatum [15]. In our present study, the effect of APAP treatment in adult rats with
a fully matured brain is clearly demonstrated. There is insufficient evidence to explain
why BDNF fluctuates in different brain regions and different stages of age following APAP
exposure. The possible reasons for this may be the different amounts of the compound
reaching specific brain regions or retention of the compound due to blood flow to those
specific parts. Moreover, different stages of the brain might have differential metabolic
pathways that affect the mode of action of the compound.

The brain changes caused by APAP intoxication are well known to be secondary to
hepatotoxicity. The key factor for producing the toxic metabolite of APAP, NAPQI, is
P450 enzymes (especially CYP2E1), which is mainly found in the liver. However, the
contribution of CYP2E1 has also been reported in several brain areas, and a high expression
of this enzyme has been demonstrated in the cortex and hippocampus [27]. This indicates
that the toxic metabolite NAPQI can be produced in the critical brain areas for learning
and memory processes. Even though the direct toxic effects of APAP on the brain are the
subject of only a few published studies, Posadas et al. have demonstrated that APAP at
a dose lower than that required to produce hepatotoxicity (250 and 500 mg/kg) could
increase neuronal CYP2E1 enzymatic activity and protein levels, which are the mechanisms
proposed to be involved in neuronal cell death in the rat cerebral cortex [3]. In addition
to increasing CYP2E1 activity, APAP can induce the generation of reactive oxygen species
(ROS) and decrease GSH levels in neuroblastoma cells [28]. The high vulnerability of the
brain to APAP intoxication might be due to the fact that the brain utilizes oxygen more than
other organs, is rich in lipids with unsaturated fatty acids, and is not particularly enriched
with protective antioxidant enzymes or antioxidant compounds [29].

In an animal with long-term exposure to APAP, the toxic NAPQI molecule can be
generated continuously and cannot be completely detoxified by GSH. This phenomenon
can then result in the accumulation of NAPQI and an increase in oxidative stress in the brain.
Simultaneously, NAPQI itself can interact with cellular proteins, especially mitochondrial
proteins, resulting in protein adducts and malfunctions that can finally lead to cell damage
and death [30]. Regarding our findings in the present study, the reduction in BDNF and
cognitive functions was exhibited without the presence of hepatic dysfunction or injury
since we could not detect a significant difference in the liver function enzymes and the
morphology of the liver among experimental groups. Despite the fact that we could
not measure an increment in NAPQI due to the limitations of our research technique,
the depletion of GSH and the increment in protein oxidation in the brains of the rats
with 30-day APAP treatment were demonstrated in our previous study. These alterations
were accompanied by impairment of the synaptic plasticity in the frontal cortex and
hippocampus [7]. Altogether, our findings support the idea that excessive use or a long
period of APAP treatment (even within a therapeutic dose range) has a direct toxic effect
on the brain, and the generation of toxic metabolites and ROS may, at least in part, produce
deleterious effects. Although the action of oxidative stress in interfering with the expression
of BDNF is very complicated, several studies have suggested a link between an elevated
oxidative stress and downregulated BDNF levels. Increased oxidative stress could decrease
the DNA-binding activities of the activator protein-1 [31] and cause a dysfunction of the
N-methyl-D-aspartate (NMDA) channel due to energy depletion [32,33]. These phenomena
have been proposed as hidden mechanisms to lower the BDNF expression.
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Additionally, the mechanism underlying the analgesic and anti-anxiolytic effects
of APAP has newly been proposed to be involved in the modulation of the endoge-
nous cannabinoid system. After being delivered to the brain, APAP is deacetylated to
p-aminophenol, which undergoes conjugation with arachidonic acid by fatty acid amide
hydrolase (FAAH) enzymes to form analgesic and anti-anxiolytic compounds known as
N-arachidinoyl-phenolamine (AM404) [34]. AM404 can indirectly activate the cannabi-
noid receptors due to the inhibition of the anandamide membrane transporter, which can
lead to an increase in endocannabinoid levels in both human and rodent brains [34,35].
Previous studies have linked a modulation of the cannabinoid system with changes in
BDNF levels. One preliminary clinical study found that light users of cannabinoids had
lower basal BDNF levels in their serum. This effect is believed to be a possible mechanism
underlying the consequences of exposure to cannabis and altered neurodevelopment, such
as schizophrenia [36]. The formation of AM404 in the brain is also supposed to be involved
in the fluctuation of BDNF levels in the brains of mice with neonatal APAP exposure [17].
According to the findings of our study, we suggest that a decrease in BDNF levels after long-
term APAP treatment could also be attributed to a modulation of the endocannabinoids
system in the brain via metabolite AM404 production.

Regarding the association between BDNF protein and synaptogenesis, BDNF can
enhance synaptic connectivity and play an important role in learning and memory [37–39].
Lacking the BDNF receptor (TrkB receptor) or dysfunction of the BDNF/TrkB signaling
could result in decrements in both synaptic vesicles and total synapse number [40–42].
Learning and memory formation are well known to be predominately facilitated by synaptic
plasticity in the frontal cortex and hippocampus [43,44]. Therefore, an impairment of the
synaptic plasticity in those brain areas can be one explanation for the decline in learning
and memory performance demonstrated in the 30-day APAP-treated rats in the present
study. With these cumulative data, we suggest that a long-term APAP-treatment-induced
downregulation of BDNF protein expression is related to impaired synaptic integrity in
key brain areas, which can further decrease the capacity for learning and memory in adult
rat brains.

5. Conclusions

Based on the results of this study, we suggest that chronic exposure to APAP, even
at doses that are therapeutic, can impair the expression of BDNF protein in key brain
regions and may consequently result in learning and memory deficits. Our present results
strengthen the evidence that, contrary to short-term usage of APAP, long-term usage of this
drug can possibly be detrimental to the brain. Therefore, using APAP as a drug for chronic
pain management should strictly follow the guidelines.
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