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Abstract: It was determined that the studied 5-[(Z)-(4-nitrobenzylidene)]-2-(thiazol-2-ylimino)-4-
thiazolidinone (Les-6222) affects the cyclooxygenase pathway of the arachidonic acid cascade, the
markers of damage to neurons on models of PTZ kindling. In the model of chronic epileptogenesis in
mice (pentylenetetrazole kindling), a 4-thiazolidinone derivative showed high anticonvulsant activity,
which is weaker than the effect of sodium valproate and higher than Celecoxib. The mentioned
compound has a pronounced anti-inflammatory effect in the brain on the background of the PTZ
kindling, reliably inhibiting COX-1 and COX-2. The predominant inhibition of COX-2 by 44.5%
indicates this enzyme’s high selectivity of Les-6222. According to the molecular docking study
results, the studied compound revealed the properties of COX-1/COX-2 inhibitor and especially
5-LOX/FLAP. The decreasing content of 8-isoprostane in the brain of mice of the Les-6222 group
indicates a beneficial effect on cell membranes in the background of oxidative stress during the
long-term administration of PTZ. In addition, Les-6222 significantly decreased the content of neuron-
specific enolase, indicating neuroprotective properties in the background of chronic epileptogenesis.
The obtained results experimentally substantiate the feasibility of further developing Les-6222 as a
promising anticonvulsant agent.

Keywords: antiepileptic drugs; thiazolidinones; pentylenetetrazole kindling; inflammation;
molecular docking

1. Introduction

According to the World Health Organization’s data, the prevalence of epilepsy in
the world population is about 0.5–1% [1]. In 20–40% of cases [2,3], it is not possible to
achieve control over epileptic attacks by standard methods of treatment, which significantly
worsens the quality of life of patients, increases economic costs, and creates a difficult
choice in terms of the optimal treatment to reduce the frequency of attacks. This explains
the urgency of creating new anticonvulsant agents and finding new targets of influence on
the pathogenesis of epilepsy.

An evaluation of the effectiveness of new anticonvulsant agents at the stage of pre-
clinical studies was carried out on chemo- and electrically induced seizure models in
animals. Kindling models of epilepsy are of great importance when an irritating factor in a
subthreshold dose repeatedly affects the motor neurons of animals, after which the brain
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can generate epileptic discharges without stimulation. As a result, after a specific time,
convulsive attacks appear without the influence of a provoking factor. Such animal models
of chronic epileptogenesis are close to human clinical pathology [4].

The pathophysiological mechanisms underlying the occurrence and recurrence of
epileptic seizures remain poorly understood. Animal models of epilepsy reproduce the
dynamic changes that occur in the brain during epileptogenesis (the process that leads to
the onset and progression of the disease) and the neurophysiological modifications that
underlie ictogenesis (seizure generation and recurrence). These models showed that some
mechanisms contribute to the development of both phenomena. Among these mechanisms
is neuroinflammation, a complex reaction that includes the release of proinflammatory
cytokines and chemokines with glia activation. The content of proinflammatory cytokines
and chemokines increases in blood serum, cerebrospinal fluid, and brain tissue of patients
with epilepsy [5]. In animals with epilepsy models, their level increases in various brain
structures, including the cortex and hippocampus [6].

Glial cells such as astrocytes and microglia are responsible for releasing inflammatory
cytokines and chemokines. The activation of astrocytes and microglial cells is the main
pro-inflammatory pathway in epilepsy. Therefore, neuroinflammation contributes to the
development and progression of epilepsy and can be considered a potential target for
treating seizures of various etiologies [7]. Activation of the cyclooxygenase pathway of the
arachidonic acid cascade plays a significant role in the pathogenesis of neuroinflammation,
and inhibitors of this pathway—non-steroidal anti-inflammatory drugs—are considered as
means of adjuvant therapy for epilepsy [8].

Oxidative stress initiates the widespread death of neurons. A vicious circle is then
formed in which a cascade of interconnected reactions can be traced. Traumatic damage to
neurons promotes the formation of excitatory neurotransmitters, the deficiency of macroer-
gic substances, and the accumulation of calcium ions, nitric oxide, pro-inflammatory
cytokines and other substances, which in combination contribute to strengthening the
lipoperoxidation process [9,10]. At the same time, active radicals destabilize the function
of cell membranes and thereby accelerate the degradation of lipids, contributing to the
excess supply of glutamate, calcium ions, and other altering components through microde-
fects inside the cell [11]. The content of 8-isoprostane, a product of peroxide oxidation of
arachidonic acid, allows for assessing the level of oxidative stress with a sufficient degree
of reliability and reproducibility of research results, and its amount is directly proportional
to the level of free radicals formed [10].

NSE (neuron-specific enolase) is an enzyme of the glycolytic chain found mainly in
neurons and neuroendocrine cells of the nervous system. As a result of the damage to brain
cells, there is an increase in the level of neurospecific enzymes and their isoforms in the
extracellular environment. Therefore, the severity of structural and functional disorders of
biomembranes in the CNS can be determined by the degree of NSE increase in brain tissue.
Due to the destruction of brain cells, the flow of NSE into the blood increases. In studies
devoted to ischemic strokes in adults, a correlation was found between an increase in the
level of NSE in the blood and the severity of neurological deficits [12]. Increased content of
NSE in adult patients with epileptic syndrome and the dependence of NSE content on the
frequency of seizures was also found [13].

The thiazolidinone derivatives have undergone significant development in medicinal
chemistry over the past 20 years, including as promising anticonvulsant agents [14–16].
Recently, we designed and synthesized 5-[(Z)-(4-nitrobenzylidene)]-2-(thiazol-2-ylimino)-4-
thiazolidinone Les-6222 (Figure 1), which has a significant anticonvulsant activity [17,18]
and low toxicity level [19].
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Figure 1. Chemical structure of compound Les-6222. 
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ground of kindling [8]. All procedures performed in studies involving animals were in 
accordance with the ethical standards of the institution or practice at which the studies 
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Figure 1. Chemical structure of compound Les-6222.

The current work is devoted to the evaluation of the anticonvulsant activity of Les-6222
on the pentylenetetrazole kindling model and to determining its effect on the content of cy-
clooxygenase 1 and 2 types (COX-1, COX-2), prostaglandins (PG) E2, F2α, I2, thromboxane
(TX) of B2, 8-isoprostane and NSE in mouse brain homogenate compared to the classical
anticonvulsant sodium valproate and the nonsteroidal anti-inflammatory drug Celecoxib,
as well as to reach the actual and predicted effects of Les-6222 on the cyclooxygenase
pathway of the arachidonic acid cascade by molecular docking.

2. Materials and Methods
2.1. Pharmacology Assay
2.1.1. Animals

The experiments were conducted on random-bred male albino mice weighing 20–27 g
purchased from the vivarium of the Central Research Laboratory of the Educational and
Scientific Institute of Applied Pharmacy of the National University of Pharmacy, Kharkiv,
Ukraine. Animals were randomly divided into five groups: intact control; control pathology
(kindling without treatment); mice, which were injected with Les-6222, sodium valproate,
and Celecoxib, which has anticonvulsant properties on the background of kindling [8]. All
procedures performed in studies involving animals were in accordance with the ethical
standards of the institution or practice at which the studies were conducted and were
approved by the Local Ethical Committee at the National University of Pharmacy, Kharkiv,
Ukraine (Approval No: 3/2019).

2.1.2. PTZ-Induced Kindling

PTZ-induced kindling was performed using pentylenetetrazole (PTZ) at a dose of
30 mg/kg intraperitoneally for 16 days [20]. The convulsant was administered simulta-
neously once a day after each animal was continuously observed for 30 min. The anti-
convulsant activity was assessed daily by the following indicators: the day of the first
convulsion, the percentage of mice with seizures in each group, the number of seizure-free
days, and the severity of the seizures [20]. The drugs were administered 30 min before
pentylenetetrazol. The Les-6222 was administered to animals in an effective anticonvulsant
dose of 100 mg/kg [18] intragastrically in the form of a suspension stabilized by Tween-80
in a volume of 0.1 mL per 100 g of body weight. The anticonvulsants, sodium valproate (De-
pakin, Sanofi-Aventis, Ambarès-et-Lagrave, France) at 300 mg/kg and Celecoxib (Celebrex,
Pfizer, New York, NY, USA), were used as anti-inflammatory agents at a dose of 4 mg/kg
in the form of a suspension stabilized by Tween-80 were used as comparison drugs. The
doses of sodium valproate and Celecoxib were chosen based on literature data [8] and our
previous reports [21]. Animals of intact control and control pathology groups received
purified water intragastrically in a similar volume (0.1 mL per 10 g of animal weight).

2.1.3. Immunochemical Studies

Immunochemical methods examined the brains of mice after PTZ-induced kindling.
On the 16th day of the experiment, 1 h after administering drugs and tested substances,
the animals were euthanized by dislocation of the cervical vertebrae [22]. The brain was
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immediately removed, frozen with liquid nitrogen, stored in a freezer at −70 ◦C and ho-
mogenized immediately before testing the sample. In the homogenate of the brain of mice,
the following was determined using standard species-specific kits: the content of COX-1
(Cyclooxygenase-1, ELISA Kit), COX-2 (Cyclooxygenase-2, ELISA Kit), prostaglandins:
PGE2 (Prostaglandin E2 (PG-E2), ELISA Kit), PGF2α (Prostaglandin F2alpha (PGF2alpha),
ELISA Kit), PGI2 (Prostacyclin, ELISA Kit), TXB2 (Thromboxanes B2, ELISA Kit), 8-
isoprostane (8-isoprostane ELISA, Enzyme immunoassay for the quantitative determination
of 8-isoprostane) and NSE (Mouse Neuron-specific enolase (NSE) ELISA Kit).

2.2. Molecular Docking

AutoDock Vina v.1.2.0 was used for the molecular docking study. The MM+ molecular
mechanic’s method optimized the molecular structure, achieving an RMS gradient of less
than 0.1 kcal/(mol Å). The basis of the mentioned process is comparing small molecules
with the active center of the receptor to identify an imaginary ligand with the greatest
affinity [23]. The semi-empirical quantum chemical method PM3 carried out the final
minimization of the energies of the studied intermediates until the RMS gradient was
less than 0.01 kcal/(mol Å). Verifying the selected docking parameters was performed by
re-docking the original ligands from the enzyme spectra and comparing the actual and
predicted positions of the ligands inside the allosteric centers. Visualizer Discovery Studio
was used to visualize and interpret the obtained data.

2.3. Statistical Analysis

For statistical analysis, Statistica 12.0 for Windows was used. Data are reported as the
mean ± standard error of the mean (mean ± SEM). Statistical differences between groups
were analyzed using the parametric Student’s t-test in cases of the normal distribution;
non-parametric Mann–Whitney U-tests in its absence. For the results in the alternative form,
Fisher’s angular transformation was used. Spearman’s rank correlation coefficient was
used to identify the relationship between individual indicators [24]. The level of statistical
significance was considered as p < 0.05.

3. Results

The PTZ-induced kindling model allows for studying the effect of drugs and tested
thiazolidinone derivative on the convulsive state, which is closest to the real pathophysio-
logical and clinical features of epileptogenesis [20] by repeated stimulation of subthreshold
intensity, which causes focal convulsive discharges and generalized convulsive attacks [25].

The results of the study are shown in Table 1. On the 4th day of the experiment,
sub-threshold doses of PTZ led to a gradual increase in convulsive activity: the appearance
of clonic seizures was observed in the control pathology, Celecoxib and Les-6222 groups.
The first paroxysms were recorded in the sodium valproate group on the sixth day of PTZ
administration. No statistically significant difference was found between the studied and
the control pathology groups in the latent period duration.

The studied Les-6222 showed an anticonvulsant effect, which indicates a statistically
significant difference in the number of animals with seizures from the 8th to the 16th day of
the experiment. On days 8 and 9 and from 11 to 13, no seizures were registered in animals
of the Les-6222 group, which is significantly (p < 0.05) different from the parameters of
the control pathology group and Celecoxib, in which seizures were observed daily. In the
sodium valproate group, which was not inferior to the compound Les-6222, there were no
seizures for 8, 10, and 12 days.
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Table 1. Effects of the Les-6222, sodium valproate and Celecoxib on the course of pentylenetetrazole
kindling in mice (M ± m).

Experimental Data

Group of Animals

Control Pathology
(Pentylenetetrazole),

n = 9

Sodium Valproate,
n = 8

Celecoxib,
n = 7

Les-6222,
n = 9

Dose, mg/kg 30 300 4 100
Latent period of seizures, days 4 6 4 4

% of mice
with convulsions, the average

value for the entire period
29.83 ± 7.22 9.08 ± 3.44 29.84 ± 6.71 7.29 ± 2.79

Number of days with seizures 13/16 8/16 13/16 7/16
Number of days without seizures 3/16 8/16 3/16 9/16

On the last day of the experiment (on the 16th day of administration), 77.78% of the an-
imals had pronounced seizures in the control pathology group. In contrast, in the Les-6222
group, only 33.33% of the mice had paroxysms, which statistically confirms the effective-
ness of the study compound (p < 0.01). According to this indicator, this group was also
not inferior to sodium valproate (25%). At the same time, on the background of Celecoxib,
convulsions were observed in 85.71% of animals (p < 0.05) against the Les-6222 group.

Thus, the effectiveness of Les-6222 is confirmed by a statistically significant reduction
in the percentage of animals with paroxysms against the control pathology indicator,
which is statistically different from the parameter of the Celecoxib group. No significant
differences were found with the sodium valproate group.

According to the number of animals with convulsions, Celecoxib did not show a
protective anticonvulsant effect. At the same time, sodium valproate reduced the number
of mice with convulsions by 20.75%, which statistically exceeds the corresponding indicator
of the control pathology groups (p < 0.05) and Celecoxib (p < 0.01).

In the Les-6222 group, the proportion of animals with seizures during the experiment
was 22.54% less than in the PTZ-induced kindling group (p < 0.05) and 22.55% less than in
the Celecoxib group (p < 0.01). No statistically significant differences were found between
the Les-6222 and sodium valproate groups.

Summarizing the dynamics of the development of the convulsive syndrome, it is
worth noting that only in the groups of the Les-6222 and sodium valproate a significant
decrease (p < 0.05) in the number of days without seizures was observed (Table 1). Thus, a
high anticonvulsant activity of studied 5-[(Z)-(4-nitrobenzylidene)]-2-(thiazol-2-ylimino)-
4-thiazolidinone was found in the PTZ-induced kindling model, which reproduces the
conditions of chronic epileptogenesis secondary generalized seizures.

The results of the study of indicators of the cyclooxygenase pathway of the cascade of
arachidonic acid, 8-isoprostane and NSE against the background of PTZ-induced kindling
are presented in Table 2.

Table 2. Effects of Les-6222, sodium valproate, and Celecoxib on the cyclooxygenase pathway of the
arachidonic acid cascade, 8-isoprostane and NSE on the pentylenethazole kindling model in mice,
M ± m.

Group Dose,
mg/kg

COX-1,
pkg/g of
Tissue

COX-2,
ng/g Tissue

PGE2,
pkg/g of
Tissue

PGF2a,
pkg/g of Tissue

PGI2,
ng/g of Tissue

TXB2,
pkg/g of
Tissue

8-isopro-
stane, nM/g

NSE,
ng/h

Intact control – 794.86 ± 4.59 132.16 ± 3.44 704.70 ± 4.57 988.79 ± 15.15 6.15 ± 0.05 131.66 ± 1.32 19.65 ± 0.23 4.04 ± 0.05
Control pathology 30 893.06 ± 7.50 216.12 ± 7.98 407.82 ± 3.08 1258.98 ± 18.42 3.05 ± 0.06 263.44 ± 1.14 54.67 ± 1.94 70.84 ± 1.01

Les-6222 100 843.32 ± 9.35 119.94 ± 2.48 515.04 ± 3.44 1030.58 ± 25.39 3.88 ± 0.06 148.55 ± 2.78 45.75 ± 0.93 57.83 ± 0.90
Celecoxib 4 778.25 ± 7.73 213.25 ± 3.38 609.10 ± 3.64 1129.62 ± 16.11 2.91 ± 0.05 183.93 ± 2.43 40.42 ± 0.63 68.12 ± 0.48

Sodium valproate 300 760.40 ± 8.55 103.31 ± 4.33 629.42 ± 26.77 1085.49 ± 15.47 4.11 ± 0.10 142.10 ± 1.65 32.04 ± 0.54 34.44 ± 0.51

In the group of control pathology, an increase in inflammatory markers was observed,
which indicates the development of a neuroinflammatory reaction against the long-term
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administration of the convulsant PTZ. As is known, as a result of the activation of cytokines
from vascular endotheliocytes, excessive amounts of secondary messengers (nitric oxide,
prostaglandins, etc.) are released and enter the CNS, which causes damage to the brain cells.
COX-1 content increased by 12.4%, the COX-2 expression increased almost 2-fold, PGF2α
content increased by 27.3%, TXB2 increased by two-fold, and PGE2 and PGI2 production
decreased by 42.1% and 50.4%, respectively (p < 0.01).

Despite belonging to highly selective COX-2 inhibitors and lipophilicity, which deter-
mines the ability to cross the blood–brain barrier, Celecoxib did not affect the increased
level of this COX isoform in the brain (Table 2). However, the increased content of COX-
1 due to the effect of Celecoxib decreased to the level of the intact control, the content
of PGE2 increased by 49.4%, PGF2α decreased by 10.27%, the level of PGI2 was stable,
and TXB2 decreased by 30.2% compared to the corresponding indicators of the control
group pathologies.

Sodium valproate significantly (p < 0.01) affected all the investigated markers of the
state of the arachidonic acid cascade compared to the indicators of the control pathology
group: the level of COX-1 decreased by 14.9%, COX-2—by 52.2%, the content of PGE2
increased by 54.3%, PGF2α decreased by 13.8%, PGI2 increased by 34.8%, and TXB2
decreased by 46.1%.

In the Les-6222 group the content of COX-1 decreased by 5.6% compared to the
parameter of the control pathology group (p < 0.01), and COX-2—by 44.5% (p < 0.01). The
content of PGE2 increased by 26.3% (p < 0.01) compared to the similar parameter of the
control pathology group, the level of PGF2α decreased by 18.1% (p < 0.01), PGI2 increased
by 27.2% (p < 0.01), and TXB2 decreased by 43.6% (p < 0.01).

In the model of chronic epileptogenesis, the content of 8-isoprostane, a marker of
lipid peroxide oxidation, with a high degree of reliability increased by 2.78 times (p < 0.01)
compared to the value of the intact control. This confirms the development of neuroinflam-
mation under PTZ kindling conditions. Under the influence of sodium valproate, the level
of 8-isoprostane decreased statistically significantly by 41.39% (p < 0.01) compared to the
control pathology group. Celecoxib significantly reduced its content by 26.07% (p < 0.01)
and the Les-6222 by 16.32% against the control pathology group (p < 0.01). This testifies to
the antioxidant properties of all the tested compounds.

NSE is a biomarker that is associated with microglial activation. It makes it possible
to assess the degree of brain neuron damage that occurs during ischemia and various
metabolic, inflammatory, and neurodegenerative diseases [26]. A 17.5-fold increase in the
level of NSE in the control pathology group compared to the intact control indicates the
development of a rapid process of neuron impression in the brain of mice. In the sodium
valproate group, the NSE level was statistically significantly reduced by 51.4% compared
to the PTZ-induced kindling group, which is characteristic of this anticonvulsant [27]. No
statistically significant decrease in this marker was found in the Celecoxib group, which
indicates that the highly selective COX-2 blocker lacks distinct neuroprotective properties.
Under the influence of Les-6222, the level of NSE was statistically reduced compared to the
indicator of the control pathology group by 18.4%. This indicates a similar mechanism of
action between Les-6222 and sodium valproate in counteracting PTZ-induced neuronal
damage in models of chronic epileptogenesis.

Taking into account the high anti-inflammatory potential of 5-[(Z)-(4-nitrobenzylidene)]-
2-(thiazol-2-ylimino)-4-thiazolidinone, it was reasonable to perform molecular docking
studies on several anti-inflammatory targets. Initially, the structures of COX-1 (PDB code
4O1Z) and COX-2 (PDB code 3LN1) were selected for docking procedures as standard
anti-inflammatory targets. Before docking, the 3D structure of Les-6222 was prepared using
HyperChem 7.5 software. The MM+ molecular mechanic’s method optimized the molecule’s
structure, achieving an RMS gradient of less than 0.1 kcal/(mol Å). The semiempirical
quantum chemical method PM3 performed the final minimization of the energies of the
studied intermediates until the RMS gradient was less than 0.01 kcal/(mol Å). However,
the obtained binding energy values were small enough to explain the anti-inflammatory
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activity of Les-6222 through COX inhibition. That is why the structures of 5-LOX (PDB code
3V99) and the FLAP enzyme (PDB code 6VGI) were also used for molecular docking.

The results of determining the binding energy of Les-6222 complexes and comparing
drugs with inflammatory enzymes are given in Table 3.

Table 3. The binding energy of Les-6222 complexes and comparison drugs with biotargets.

COX-1,
kcal/mol

COX-2,
kcal/mol

5-LOX,
kcal/mol

FLAP,
kcal/mol

Les-6222 −6.9 −6.9 −7.5 −7.7
Meloxicam −9.8 – – –
Celecoxib – −12.4 – –
Licofelon −8.0 –
MK-886 – – −7.9

According to the obtained data, Les-6222 showed a high affinity for 5-LOX and FLAP
and a lower binding energy for COX-1/2. Thus, 5-[(Z)-(4-nitrobenzylidene)]-2-(thiazol-2-
ylimino)-4-thiazolidinone can be considered as a potential COX-1/COX-2/5-LOX/FLAP
inhibitor. These results are essential for further in-depth study of the mechanisms of
neuroinflammation. It is worth mentioning that the literature described similar studies
about licofelone as a potent dual COX/LOX inhibitor, which has prominent anticonvulsant
activity [28].

The 4-thiazolidinone derivative Les-6222 forms two hydrogen bonds with Arg596
and His367 with lengths of 2.85 Å and 2.12 Å, respectively. All three molecule cycles are
connected to the number of lipophilic amino acids via the different types of hydrophobic
non-covalent interactions of 5-LOX, as shown in Figure 2.
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According to molecular docking studies, Les-6222 has a pronounced affinity for FLAP
with binding energy close to that of MK-886 (a leukotriene antagonist). The molecule
does not form any hydrogen bonds and occupies a hydrophobic pocket formed by several
lipophilic amino acids (Figure 3). The same interactions without any hydrogen bonds can
be observed in the MK-886-FLAP complex.
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Thus, the results of the conducted molecular docking study confirm the presence of
affinity of 5-[(Z)-(4-nitrobenzylidene)]-2-(thiazol-2-ilimino)-4-thiazolidinone to the targets
of inflammation and determine the expediency of further in-depth studies of the effect of
the compound on the 5-lipoxygenase pathway of the arachidonic acid cascade.

4. Discussion

Our study showed that the course of PTZ-induced kindling in mice significantly
depends on the applied experimental therapy. Under the influence of the classic anticon-
vulsant sodium valproate and the studied Les-6222, a pronounced anticonvulsant effect
was observed, while Celecoxib did not improve the course of the model pathology. In
our model of chronic epileptogenesis, the highly selective COX-2 inhibitor was clinically
ineffective. The high level of NSE also confirms this in the mouse brain homogenate.
Moderate anticonvulsant activity of Celecoxib in seizure models is known [8], which was
confirmed in previous studies on a model of acute PTZ-induced seizure syndrome [29].
However, Celecoxib’s protective properties are insufficient for effective seizure control in
the kindling model.

COX-2 is an inducible enzyme in the inflammation process in response to various phl-
ogogens. It is known that the expression of COX-2 increases in patients with epilepsy [30]
and in animals during seizure modeling [31]. COX-2 catalyzes the conversion of arachi-
donic acid to the intermediate prostaglandin-H2, which is then converted by cell-specific
synthases to thromboxane-A2 and four different prostaglandins: PGD2, PGE2, PGF2α, and
PGI2, which are called prostanoids.

In our study on the PTZ-induced kindling model in the control pathology group, the
content of COX-2 increased almost twice, which was not observed under the action of
Les-6222 and sodium valproate. Compared to COX-2, the content of COX-1 only slightly
increased in the model of chronic epileptogenesis. Therefore, the expression of COX-2
increases in the brain of mice in the background of PTZ kindling. Les-6222 preferentially
inhibits COX-2, thus indicating its high selectivity for this enzyme, reducing the risk of
side effects due to inhibiting constitutive COX-1. Interestingly, the tested 4-thiazolidinone
derivative and its analogues in in vitro COX Inhibitor Screening Assay demonstrated
predominantly COX-1 inhibition, nor COX-2 as described by Geronikaki et al. [32]. Sodium
valproate also markedly inhibits COX-2.

According to the results of the correlation analysis, a moderate negative relationship
is observed between COX-1 and COX-2 (ρ = −0.43). After PTZ kindling, a strong relation-
ship (ρ = 0.83, p < 0.05) appears in the control pathology group, which indicates a direct
dependence on the expression of both forms of COX. This dependence is weakened by the
least effective anticonvulsant Celecoxib (ρ = −0.31). The highly effective agents Sodium
Valproate and Les-6222 invert it, returning to the regularity characteristic of intact animals
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(ρ = −0.60 and ρ = −0,66, respectively), which indicates the involvement of the influence
on the regulation of the arachidonic acid cascade.

Prostacyclin is an antagonist of TXB2. In intact animals, their contents have a weak
correlation (ρ = 0.31). In the model of epileptogenesis, its strength increases (ρ = 0.83),
which may indicate compensatory mechanisms of regulation of prostacyclin content and
the processes of vasoconstriction and thrombus formation. On the background of anticon-
vulsant compound Les-6222 and sodium valproate, this relationship is inverted (ρ = −0.54
and ρ = −0.43, respectively), which can be considered as a marker of a common link in
the mechanism of anticonvulsant and anti-inflammatory action of these agents, in contrast
to celecoxib, which almost did not affect the correlation and left it at the level of control
pathology (ρ = 0.71).

Celecoxib was found to not affect or target the brain of mice with a model of chronic
epileptogenesis, but showed potent inhibition of COX-1. A study [8] reported the presence
of possible non-selectivity of the COX-2 inhibitor Celecoxib, which can be explained by the
use of high doses of the compound since its selectivity coefficient for COX-2 (IC50 = 7.6). It
is also possible that such atypical nature of the effect of celecoxib on COX isoforms is due
to the peculiarities of the model pathology.

In the study [33], to confirm the correlation between COX-2 level and PG production,
PGE2, PGH2, PGD2, and PGI2 were determined in the hippocampus of intact mice on
the model of PTZ-induced kindling, including under experimental celecoxib therapy.
The authors showed that the content of PGE2 and PGH2 significantly increased in the
hippocampus of mice under the influence of PTZ. Notwithstanding, celecoxib under these
conditions significantly inhibited the formation of PGE2 and PGH2 and had almost no
effect on PGD2 and PGI2. In our study using a similar model, the level of PGE2 in the
homogenate of the whole brain, on the contrary, decreased almost by half, and against the
background of the studied drugs, including celecoxib, with a close level to the intact control.
The level of PGI2 in the mice in the control pathology group also decreased almost by half.
This significant difference may be related to the fact that prostanoids were determined
directly in the hippocampus of animals, where the main inflammatory processes of the
epileptic brain are concentrated, and PGE2 regulates membrane excitability and long-term
synaptic plasticity in perforant pathways [33].

In another study [34], the level of tumor necrosis factor-α (TNF-α), interleukin-1β
(IL-1β), malondialdehyde (MDA) and PGE2, as well as glutathione (GSH) content was
studied. In the homogenate of the brain, extracted 24 h after the last PTZ administration, a
statistically significant increase in the level of PGE2 by 8 times was found in the group of
control pathology compared to the level of intact animals. Under the influence of sodium
valproate, the level of prostaglandin also increased, but significantly less than in the group
of control pathology.

The shift in inflammatory mediators in several studies and in our experiment can be ex-
plained by the fact that the brain was removed 1 h after the last PTZ administration—much
earlier than in previous works [33,34]. Therefore, such a discrepancy may indicate a certain
phasic nature of changes in inflammatory mediators. Our approach to choosing a time
point is based on numerous data in the literature, according to which the expression of
COX-1, COX-2, and other mediators gradually increases with strengthening at the stage
of seizure onset and within 1 h [35–37]. Twenty-four hours after seizures, the ratio of the
mediators changes.

The role of individual prostaglandins in epileptogenesis is not clearly defined and can
only be assessed comprehensively, taking into account all aspects of neuroinflammation.
Experimental evidence suggests that PGE2 is a critical mediator in COX-2 signaling [38].
Moreover, administration of exogenous PGE2, but not PGD2 or PGF2α, increases seizure
frequency and amplitude of excitatory postsynaptic potentials [39]. In addition, PGE2
increases glutamate release from astrocytes [40], suggesting a role for PGE2 in controlling
excitatory transmission in the brain. However, another study [41] showed that PGE2
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protects cultured cortical neurons from NMDA-receptor-mediated glutamate neurotoxicity
via EP2 receptors, i.e., exhibits neuroprotective properties.

The level of PGF2α increases in cerebral ischemia and epilepsy. This prostaglandin
exerts its neurotoxic effect through PGF2α receptors coupled to a G protein [42]. In the
context of these data, the decrease in PGF2α content in the brain suggests a protective effect
of the studied Les-6222.

PGI2 exhibits neuroprotective properties in ischemic neuronal damage (including
epilepsy) as it improves cerebral blood circulation [43]. In our study, the level of PGI2 was
statistically significantly (p < 0.01) increased under the influence of Les-6222 and sodium val-
proate, which is evidence of a positive effect on neurons in a model of chronic epileptogenesis.

Prostacyclin antagonist TXB2 stimulates platelet aggregation and causes vasoconstric-
tion, which is essential in developing epileptic brain ischemia [44]. Its decrease under the
action of Les-6222 and sodium valproate can be considered a link to the neuroprotective
activity of the studied compounds.

The molecular docking results showed Les-6222 inherent affinity for 5-LOX and FLAP
and had weaker binding energy for COX-1/2. Activation of the 5-LOX inflammatory
pathway is crucial in the neurodegenerative processes, which were widely described and
discussed in the scientific literature [45–47]. Thus, the studied 4-thiazolidinone deriva-
tive can be considered as a potential inhibitor not only of COX-1/COX-2 but also of
5-LOX/FLAP, which provides background for further in-depth studies of the lipoxygenase
link of the arachidonic acid cascade as a promising target in neuroinflammation.

Convulsive states contribute to the consumption of metabolic energy in the central
nervous system and hypoxia of the central nervous system, which leads to the development
of oxidative stress. The latter is one of the mechanisms involved in epileptic brain forma-
tion [48]. The high efficiency of the compound in reducing the content of 8-isoprostane is a
favorable link in the mechanism of realizing the anticonvulsant effect.

According to the literature data, in diseases associated with the direct involvement of
nervous tissue in the pathological process, qualitative and quantitative determinations of
NSE indicate the severity of neuronal damage and violations of the general integrity of the
blood–brain barrier [49].

As can be seen from Table 2, the levels of NSE in the Les-6222 and sodium valproate
groups are statistically significantly (p < 0.01) lower than the level in the control pathology
group. This proves the effectiveness of these drugs in anticonvulsant activity, which is
confirmed by a significant (p < 0.05) decrease in the % of mice with seizures and a decrease
in the number of days with paroxysms against the indicator of the control pathology group.
Les-6222 and sodium valproate also produced a neuroprotective effect, protecting neurons
from damage and death, and reducing inflammation in the brains of mice.

Thus, numerous inflammation mediators are involved in chronic epileptogenesis, and
its mechanism requires further investigation. It is unclear whether blocking the neuroin-
flammatory pathway with COX inhibitors can prevent seizures under these conditions. The
anticonvulsant properties of COX inhibitors and their role in the process of epileptogenesis
require further targeted study. However, the promising anticonvulsant agent 5-[(Z)-(4-
nitrobenzylidene)]-2-(thiazol-2-ylimino)-4-thiazolidinone, like the classical antiepileptic
drug sodium valproate, exhibits pronounced anti-inflammatory properties in the brain of
animals with a model of chronic epileptogenesis by inhibiting the cyclooxygenase pathway
of the arachidonic acid cascade, which is associated with a reduction of oxidative stress and
neuronal damage. Additionally, the tested 4-thiazolidinone derivative favorably differs
from sodium valproate in the characteristics of secondary pharmacodynamics, in particular,
in the absence of prodepressant side effects [50].

5. Conclusions

The results of the anticonvulsant activity of the promising anticonvulsant 5-[(Z)-(4-
nitrobenzylidene)]-2-(thiazol-2-ylimino)-4-thiazolidinone on the model of PTZ-induced
kindling with the determination of the effect on the content of inflammatory markers
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(indicators of the arachidonic acid cascade COX-1, COX-2, PGE2, PGF2α, PGI2 and TXB2,
as well as NSE in the homogenate of the mouse brain) are presented. In the model of
chronic epileptogenesis, the studied 4-thiazolidinone derivative shows a pronounced
anticonvulsant activity with marker indicators (latent period of attacks, percentage of
animals with seizures, total number of days with seizures) comparable to sodium valproate.
In the model of PTZ-induced kindling, the studied Les-6222, like sodium valproate, clearly
affects the cyclooxygenase pathway of the arachidonic acid cascade, reducing the level of
COX-1, COX-2, PGF2α and TXB2. The molecular docking confirmed that the compound
Les-6222 has anti-inflammatory properties and affinity for 5-LOX and FLAP inflammatory
targets. Les-6222 and sodium valproate exhibit neuroprotective properties and decrease
the level of NSE by 18.4 and 51.4% in animal brain homogenate.
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