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Abstract: The most challenging step in developing bioanalytical methods is finding the best sample
preparation method. The matrix interference effect of biological sample become a reason of that.
Molecularly imprinted SERS become a potential analytical method to be developed to answer
this challenge. In this article, we review recent progress in MIP SERS application particularly in
bioanalysis. Begin with the explanation about molecular imprinting technique and component, SERS
principle, the combination of MIP SERS, and follow by various application of MIP SERS for analysis.
Finally, the conclusion and future perspective were also discussed.

Keywords: molecularly imprinted polymer; surface-enhanced Raman spectroscopy; bioanalysis

1. Introduction

Bioanalysis is related to drug development, forensic analysis, doping control, and
identification of biomarkers for diagnostic methods of various diseases. Bioanalysis also
provides information regarding the toxicokinetics, pharmacokinetics and pharmacody-
namics of new drugs. Bioanalysis is the analysis of analytes, i.e., drugs, metabolites, and
biomarkers, in biological samples (blood, plasma, serum, saliva, urine, feces, skin, hair,
and organ tissues). Bioanalysis consists of several stages which include sample collection
from preclinical and clinical trials, sample preparation, and bioanalysis stages using cer-
tain methods and instruments. The sample preparation stage is the most important stage
in a bioanalysis. The role of the sample preparation stage is to remove the influence of
the sample matrix, as well as to improve the analytical performance of a bioanalytical
method [1].

Sample preparation helps increase the selectivity and sensitivity of bioanalytical
methods. Due to the matrix complexity of biological sample, a sample preparation step
is required [2,3]. Liquid-liquid extraction (LLE) and solid-phase extraction (SPE) are
two commonly used techniques [1]. Liquid-liquid extraction has limitations, including
minimal enrichment factor, inadequate recoveries, and requires large amounts of organic
solvents [4]. Solid-phase extraction is usually used for cleaning and pre-concentration in
analyzing biological samples due to the simplicity, rapidness, and minimizing of those
limitations of LLE [4,5]. The main drawback of SPE is the selectivity of the sorbent that
separates the analyte [5]. The use of SPE in sample preparation, is strongly influenced
by selecting the suitable SPE sorbent. A good separation needed a selective and specific
sorbent [6]. The SPE sorbent is the determining factor in the ultimate performance of the
sample preparation procedure [7]. The most common adsorbent (C8, C18, Al2O3, silica)
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are usually interfered by the sample impurities [8–10]. Molecularly imprinting technology
allows us to create materials that can identify specific molecules to be analyzed and offer
high selectivity of bioanalytical method [4]. Molecularly imprinted polymer (MIP) is a
materials that mimic antigen-antibody reactions, so it can gained the specific recognition
of analytes in sample preparation [11,12]. Because of that, MIP is widely employed in
solid-phase extraction as a sorbent [3,4,10,13–24]. The use of MIP as a sorbent in SPE, can
improve the selectivity, sensitivity and accuracy of the bioanalytical method.

Sample preparation is usually followed by detection using analytical instruments,
such as HPLC, LC/MS, LC/MS/MS, SERS, electrochemical method, etc. Surface-enhanced
Raman spectroscopy is a non-destructive, fast and sensitive method, particularly for trace
analysis. The use of SERS depends on enhancement of Raman signal. Signal enhancement
in SERS application, can happen if the analytes are adsorbed on rugged metal surfaces
(e.g., Au, Ag, and Cu NPs) [25]. SERS has been utilized to detect trace organic chemicals,
because of its facile procedure. The matrix interference effect, which includes non-targeted
analytes and rugged Raman-like peaks from other molecules such as proteins, lipids, and
pigments, prohibits it from being widely employed in complex matrix. The interference
effect diminishes analyte sensitivity and can result in Au or Ag nanoparticle colloid pre-
cipitates. The matrix complexity of bioanalytical and trace analysis sample, can cause the
failure in the enhancement Raman signals of SERS applications. These factors cause an
increase in weak signal, matrix effect, and fluorescence interference from the background.
These limitations can be overcome by the use of appropriate preparation techniques [26].

The combination of MIP and SERS as a sample preparation and detection method is
one of the solution for bioanalysis. matrix MIP as a “smart” material that can increase the
selectivity of sample preparation, was combined with SERS substrates (Au, Ag, CuNPs),
into a new material, which can overcome the existing limitation [27,28].

Currently, published research article related to MIP-SERS are increasing time by time
(Figure 1). This review discuss about current research regarding MIP-SERS application,
particularly in bioanalysis. This review’s scope is research articles published in the period
2016 to mid-2022. Compared to previous review articles (https://doi.org/10.1016/j.talanta.
2020.122031 and https://doi.org/10.1021/acssensors.9b02039), this review article discusses
more about the research related to MIP-SERS which were also published in 2021 and some
from initial year of 2022. In addition, this review article discusses about MIP-SPE and
SERS. The research articles presented in this review also discuss the variety of materials,
especially combination of MIP and metal nanoparticles, which is used as SERS substrates.
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2. Molecularly Imprinted Polymer (MIP)

MIPs (molecularly imprinted polymers) are synthetically generated high-affinity recog-
nition materials. They are commonly utilized as a solid-phase extraction (SPE) sorbent
because they efficiently separate and enrich analytes, particularly in complex matrix. Be-
cause of its recognition ability, chemical and thermal durability, easy synthesis, and low
manufacturing cost, MIPs appear more promising than antibodies and aptamers [27,29–31].

Components needed for MIP synthesis are functional monomer, crosslinkers, porogen
solvent, initiator, and template [30]. The molecularly imprinted polymer can be synthesized
through covalent [24,32–34] and noncovalent methods [35–41]. Covalent imprinting proce-
dures used reverse condensation processes such as Schiffs base, boronate ester, ketal, and
acetal. Covalently prepared MIP’s use covalent bonds to bind the target molecule to the
functional monomer before polymerization, and the bond must be cleaved before the use
of the MIP. Noncovalent imprinting techniques include hydrogen bonds, ion-pairs, dipole-
dipole interactions, and van der Waals interactions. Nosncovalent polymer allows for easy
removal of the target molecule and reversible binding during later use of MIP [42,43]. The
methodologies for synthesis rely on the copolymerization of functional monomers and
crosslinkers in the presence of a template or target molecule. The orientations and loca-
tions of the functional residue monomers are trapped in the polymer after polymerization,
simulating a lock and key between a polymer and a target molecule [28].

2.1. Advantages and Limitations of MIP

The advantage of using MIP in the analysis process is the increased selectivity of the
analytical method. MIP can extract analytes from samples with greater efficiency as it
involves using molds suitable for the analyte. The molding process produces an active
polymer site in a cavity that remains following a particular conformation. Affinity can
also be maintained in the presence of hydrogen bonds. This causes the analyte to be easily
captured at the active site of the MIP. MIP is flexible so that it can be used for various
analytical purposes. MIP can also maintain stability and is sturdy in a broad pH and
pressure range [44].

MIP’s main drawback is template leakage [21,29,35,45–52]. This happens when not all
templates are released during the template removal process, some are still left in the MIP
cavity. To overcome this limitation, the utilization of dummy templates or templates analo-
gous, can be chosen. Dummy template can be in the form of derivative compounds, those
in the same group to analyte or the use of deuterated molecules or their isotope analogs.
The use of this dummy template has proven to be able to overcome the shortcomings of
MIP. The use of dummy templates can also overcome another drawback of MIP related to
the availability of templates, where some templates are challenging to obtain due to price
issues [45,48–52].

2.2. Component of MIP

The main components for MIP manufacture are templates, functional monomers, and
crosslinkers. These components are needed, especially at the pre-polymerization stage,
which is essential in manufacturing MIP.

2.2.1. Functional Monomer

The functional monomer in the imprinted cavities supplies the functional groups that
are important for the interactions involving the target molecule. The stronger the contacts
during imprinting, the higher MIP’s binding capacity and selectivity. Under rare circum-
stances, complex formation with the template molecule might influence monomer reactivity.
A wide range of functional monomers with varying functionalities are commercially avail-
able. Figure 2 shows functional monomers used in noncovalent imprinting. Noncovalent
MIPs are typically common method. The functional groups on the monomers will comple-
ment to a specific compound or class of compounds. Thus, basic functional monomers are
chosen for templates containing acid groups and vice versa. Amphiphilic monomers can
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be used to imprint low polar to nonpolar templates, resulting in hydrophobic or van der
Waals forces hold monomer-template assemblies together [53,54].
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Imprinting using a multiple functional monomers has also been revealed. Rather
than the functional monomers’ self-interaction, this technique requires the production of
more durable interaction between the template and the functional monomers. In terms of
recognition and selectivity, several of these materials out-perform the similar MIP produced
with a lone functional monomer. The reactivity of the monomers should be matched to
achieve copolymerization. The MIP’s specificity is determined by the cavities form and size
which is formed by the crosslinker, as well as the chemical interactions between the template
and the functional monomer. As a result, choosing the functional monomers employed
for MIP synthesis is critical to obtaining excellent results. Noncovalent interactions like as
hydrogen bonds, dipole-dipole, ionic or hydrophobic interactions, are widely employed
to generate MIPs. Therefore, a functional monomer is chosen according to the functional
groups contained in the chemical structure of the template [55,56].

2.2.2. Templates

A template is a term given to the compound to be molded in MIP. The template is
also usually the compound to be analyzed to obtain high specificity in analytical method.
However, in its development, dummy templates or a combination of several templates
can also be used. Each of its uses has a different purpose to MIP synthesis. The use of
dummy templates is associated with template leakage from MIP particles during the sam-
ple preparation procedure [8,29]. In addition, some disadvantages of MIP are diffusion
resistance, hard eluting, low binding rate, and deeply embedded template in the internal
also predicted to be overcome by using this dummy template strategy [57]. This limitation
can affect the results of the analysis. This solution can result in better analyte recogni-
tion capability for MIP. Dummy template might be a material with a similar chemical
structure to the analyte to be isolated. For example, the use of 2-chlorophenothiazine in
MIP production for phenothiazines analysis in meat samples. Because they both have a
thiodiphenylamine ring in their chemical structure, 2-chlorophenothiazine was chosen [9].
MIP was also created using dummy templates for the detection hordenine analysis in urine
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samples [4], fluoroquinolones and sulfonamides in pig and poultry samples [8], benzimida-
zole analysis [29], caffeine analysis in wastewater samples [50], morphine analysis in urine
samples [57], polybrominated diphenyl ethers [58], bisphenol A analysis [59], ractopramine
analysis [60], and acrylamide analysis [61].

Multiple templates can be used to create MIPs. It is designed to analyze specific groups
of compounds, and this multi-template selection is more concerned with achieving MIP
selectivity for a specific class of compounds. The use of multi-templates in the manufacture
of MIP includes ibuprofen, naproxen, and diclofenac for the analysis of acidic active
pharmaceutical compounds. The results demonstrated that the multi-template MIP has
good molecular recognition properties because it can simultaneously extract all three target
compounds. In contrast, the single-template MIP can only extract one analyte [62].

Multiple templates are used in the preparation of MIP to detect nitrosamines in water
and beverage samples. The five templates employed are nitrosamine chemical derivatives
observed in water and beverage samples. As indicated by strong adsorption capacity
values and good selectivity for the five chemicals, the MIP created could evaluate five
nonpolar nitrosamine derivatives [30].

2.2.3. Crosslinkers

The crosslinker grips the functional groups within the selective binding sites for tem-
plate recognition by stabilizing the imprinted cavities. The kind and amount of crosslinker
utilized also impact the shape and stability of the structure. A high crosslinker to functional
monomer ratio results in more stiff materials with reduced swelling capacities since the
structure cannot expand. Polymers created with low molecular weight crosslinkers have
higher stiffness than those prepared with another one. It creates polymers with higher qual-
ity selectivity, affinity, and binding capacity. As a result, the kind and extent of crosslinker
utilized in the imprinting process must be selected carefully [63–69].

The ratio of crosslinkers utilized in relation to the total number of moles of functional
monomers is relatively high. A mechanically strong polymer with a persistent porous
structure and a large surface area was developed at this concentration. A low number
of crosslinkers results in sticky polymers with restricted imprinting applications. For
copolymerization, the reactivity of the functional monomers and the crosslinker must be
matched. Figure 3 depicts a range of crosslinkers often employed in molecular imprinting.
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2.2.4. Initiator

MIP is typically produced by free radical polymerization (FRP) either thermally or
photochemically generated. This process has three stage i.e., initiation, propagation, and
termination. The rate of polymerization increases during the early phases of radical
breakdown. Azo compounds, peroxo, redox systems, and photoinitiators are some of the
most often utilized initiators in free radical polymerization. Azo initiators can produce free
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radicals when exposed to UV light at maximal wavelengths or when heated. The most
utilized azo initiator in MIP production at low polymerization temperatures, precisely
60 ◦C and 40 ◦C, is 2,2′-azobis(isobutyronitrile) (AIBN) [37,70–72]. Figure 3 depicts a typical
initiator used in molecular imprinting.

2.3. Rational Study of MIP Synthesis

Computational studies of MIP include molecular mechanics, quantum mechanics (ab
initio, semiempirical, and density functional theory), and molecular dynamics. It is best
explained using the Ab initio method. It explains a system’s electronic structure better to
explain noncovalent interactions between templates and monomers. However, the decision
should consider processing costs, calculation accuracy, and the amount of compatibility
between theoretical calculations and practical performance. The results obtained using
the ab initio approach will be more accurate, but the time required will be longer. Several
studies use the ab-initio method with the Hartree-Fock method basis set HF/6–31+G** [2],
HF/3–21G [73], HF/6–31G(d) [74] for calculations. Some use a combination of RHF and
DFT methods [2,75] or HF and DFT methods [76].

The semiempirical method will calculate the bond energy faster. The most widely
chosen approaches are AM1 (small atomic data) and PM3 (large molecular properties) [6].
The accuracy of the semiempirical method depends on the parameters available for the
target molecule. The results will be good if the target molecule has been contained in the
database. The density functional theory (DFT) method is preferred because it produces
balanced results between cost and accuracy. Computational studies have preceded many
studies to shorten the laboratory optimization time. Several studies using a semiempirical
approach are serotonin analysis using the PM6-DH2 method, followed by calculations
utilizing DFT approach using the B97XD/6–31++G (d,p) method [77]; PM3 methods for
MIP manufacturing of domoic acid enrichment from seawater and shellfish [78] and for
manufacturing MIP for erythromycin detection based electrochemical sensor [79]. In addi-
tion to molecular mechanics and quantum mechanics, molecular dynamics studies can also
be used for MIP computational studies. Molecular dynamics studies can simultaneously
simulate the effect of time on interacting atomic groups computationally.

The most used computational approach for rational MIP synthesis is density functional
theory. This is since DFT can bring benefits in terms of accuracy and cost. To generate
selective MIP, hybrid DFT approaches like as B3LYP are frequently utilized to determine the
binding energy between templates and functional monomers. The B3LYP method is widely
applied in various variations of the basis set, including B3LYP/6–31G(d,p) [30,70,80–86],
B3LYP/6–31G+(d,p) [4,9,59,81,82], B3LYP/6–311G [27,87,88] B3LYP/6–31+G(2d,2p) [11],
B3LYP/6–311+G* [89], B3LYP/Aug-cc-pVDZ [36], B3LYP/6–311+G (d,p) [90]. The basis set
is extensively used to find the optimum functional monomer and to compare the template
to functional monomer.

The B3LYP functional calculates the relative contributions of the different component
exchange and correlation terms using parameters. One disadvantage of the B3LYP tech-
nique is that it cannot reliably anticipate physical dispersion. Meanwhile, the DFT method
should predict the complete repulsive interaction in a dispersion bond system. Other
methods, such as M05, M05-2X, M06, M06-2X, and M07, M07-2X, perform reasonably well
for binding energies of non-covalently bonded dimers like those in the fit set [91]. Therefore,
many studies in recent years have used the M06-2X method as a better alternative than
B3LYP [20,92–94].

MD simulations are used to rationally design a molecularly imprinted system and
evaluate the molecular level process. This approach has the potential to considerably
increase the efficiency of creating molecularly imprinted materials, lowering material
costs, and minimizing experimental time. Several research have also employed molecular
dynamics approaches in MIP synthesis computational experiments. Few research, however,
have concentrated on the link between the template and the optimal monomer. The MD
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study gives information on the mechanics of template recognition in these molecularly
imprinted materials.

An example is the research of Shoravi et al. [95] conducting a molecular dynamics
test using the AMBER®, by first preparing the MIP pre-polymerization mixture. Molecular
dynamics tests were carried out to determine the best pre-polymerization composition
for the manufacture of oseltamivir MIP. Another study conducted by Kong et al. [96]
used different software and force fields to determine template (norfloxacin) interaction
mechanism with functional monomers. Madikizela et al. [64] also used the same software
and force fields to determine the intermolecular interactions of templates with functional
monomers. This method is used for computational tests on MIP manufacture for acidic
pharmaceutically active compounds using multiple templates. Bates et al. [97] perform a
molecular dynamics study on MIP’s manufacture to analyze melamine in milk samples.

2.4. MIP Application in Analytical Chemistry

MIP has been widely used for chemical analysis and drug delivery in the pharma-
ceutical industry. In analytical chemistry, MIP is used particularly for sample preparation.
In chemical analysis, sample preparation is critical. The application of MIP can improve
the analytical method’s selectivity. This is due to the MIP cavity’s ability to preferentially
attach to the same or analogous analytes as the template utilized during the fabrication
process. As a result, MIP is commonly utilized as a sorbent in solid phase extraction. This
is due to the use of less selective sorbents in solid-phase extraction. MIP may also be used
as a stationary phase in chromatographic separations, which is a sort of chemical analysis.
It may also be utilized as a chemical and biological sensor and probe.

MIP’s application as a sorbent is not confined to its usage as a sorbent for solid
phase extraction (SPE). dSPE (dispersive solid phase extraction), MSPE (magnetic solid
phase extraction), and SPME are further separation techniques that use MIP as a sorbent
(solid phase microextraction) [98,99]. The results of sample preparation using MIP are
usually followed by detection using various methods. Some of the analytical methods
that are often used are spectrophotometry [98–100], spectrofluorometry [101–104], liquid
chromatography [105,106], gas chromatography [107], Raman spectroscopy, electrophoresis,
electrochemical [108–116] methods.

3. Surface-Enhanced Raman Spectroscopy

Raman spectroscopy was invented in 1930. However, its use is restricted due to its
low sensitivity and weak Raman signal intensity. Along with the invention of the LASER
and Van Duyne’s study, which demonstrated an increase in signal related to the silver
electrode’s surface roughness induced by adsorption of tiny molecules, it developed a
signal-enhancing phenomenon known as surface-enhanced Raman scattering. Because
SERS has a high sensitivity (up to 104), it offers great promise for application in studying
and detecting single molecules [25,117].

Gold (Au), silver (Ag), and copper (Cu) are usually utilized as SERS substrates. They are
stable, give strong SERS signal enhancement, and are inexpensive. Because the size of metal
particles influences its efficacy as a substrate and SERS signal enhancer, those metals are
often utilized in the form of nanoparticles. The distance between metal nanoparticles and the
analyte (also known as hotspots) improves the SERS signal. Salt can also trigger nanoparticle
agglomeration, increasing hotspots and resulting in stronger SERS signals [25,118–120].

SERS signal enhancement may be explained by two mechanisms: electromagnetic
enhancement (EM) and chemical enhancement (CE). SERS offers various benefits in anal-
ysis, including high detection sensitivity, rapid signal creation if the target molecule is
adsorbed on the surface of the SERS-active material, and fingerprint features [121] that can
validate the chemical structure based on energy levels. SERS has applications in agricultural
chemicals [26,117], adulteration [117], biological toxins found in agricultural goods [117],
clinical diagnostics [118], veterinary drugs, food contaminants [119], environmental pollu-
tants [120,121], and biology [122,123].
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In the presence of a complex matrix, the SERS signal might be disturbed. Interfering
substances can create false-negative signal readings or fail to identify the investigated
component in complex matrix. On the other hand, interfering chemicals can result in
erroneous positive signal readings. As a result, SERS was combined with other approaches
to limit the influence of matrix interfering chemicals. Furthermore, MIP may be utilized as
a material in the adsorption process and to eliminate interfering chemicals from the matrix
(capturing the SERS substrate to get closer to the target molecule) [27,123,124].

4. Molecularly-Imprinted SERS Methods

MIP-SERS combination approach may be used to detect compounds precisely and
sensitively. It can be done by one or two-step MIP-SERS. The SERS substrate is adsorbed
onto the MIP surface in one-step MIP-SERS, allowing separation and detection to be
completed in a single step. While in two-step MIP-SERS, the separation of analyte is
distincted with the detection. The distance between the SERS substrate and MIP with the
target molecule is crucial in the one-step MIP-SERS. One-step MIP-SERS are classified into
core-shell, planar, and sandwich [117]. Some examples of the MIP-SERS application scheme
can be seen in Figure 4. Table 1 shows some of the MIP-SERS applications in analysis.

4.1. One Step MIP-SERS

Ren, et.al, developed benzimidazole analysis using the single-step MIP-SERS method.
The type used is the core-shell formation type. Ag microspheres were used as the core, and
then coated with MIP. MIP in this study was synthesized using a dummy template, namely
carbendazim. The use of carbendazim as a dummy template and reducing background
noise can also avoid the phenomenon of template leakage in MIP making. Based on
the validation results of the analytical method, this method was proven to be used for
qualitative and semi-quantitative analysis of benzimidazole on samples with complex
matrix [28].

Another study developed an analytical method for detecting Rhodamine 6G using
SiO2/Ag/MIP nanocomposites. SiO2 is used as a buffer that will adsorb Ag+ ions, which
are then reduced with ethanolamine. In this study, SiO2/Ag, which acts as a substrate
and acts as a core, was then covered with an MIP using a surface molecularly imprinting
technology (SMIT) method. The combination of SiO2/Ag with a MIP is expected to
overcome the shortcomings of MIP in the form of low binding capacity and low bond
kinetics. MIP was synthesized by the precipitation polymerization method. The thickness of
the MIP layer on the SiO2/Ag surface is regulated by adjusting the number of crosslinkers
in the pre-polymerization reaction. The thickness of this layer will affect the detection with
SERS. The ratio of monomer and crosslinker is 1:3, giving the maximum MIP layer thickness
for SERS detection, which is 40 nm. The ratio increases, the SERS signal decreases [49].

Hu et al., also developed a nanocomposite between AgNPs and MIP (AgNPs@MIP)
for the detection of caffeine residues in wastewater. This study used a dummy template,
theophylline, which is similar to caffeine. In this study, AgNPs were spread on MIP, then
the formed nanocomposite was used as an adsorbent for SPE cartridges. The one step
MIP-SERS method of this type can reduce the shortcomings of the one step MIP SERS
method with the core shell type which requires synthesis conditions that are difficult to
control and reproduce. This method can detect caffeine in river water samples with a fast
analysis time of 23 min. The same mechanism was used for the analysis of bisphenol A on
polycarbonate plastic samples. AgNPs substrates are formed in situ in MIP. The AgNPs
formed are expected to be evenly distributed to support the analyte-AgNPs interaction and
increase the hotspot effect, which can increase the signal at the time of SERS detection [50].
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Table 1. MIPSERS application in analysis.

No. Chemical/Biological
Compounds Samples Methods Noble

Metal
Functional

Monomer (FM) Template Crosslinker Rational
Study Analytical Performance Ref.

1. Bitertanol Food MIPSERS Au MAA (methacrylic
acid)

Triamedifon (dummy
template)

Trimethylolpropane
trimethacrylate (TRIM) ND

LOD
Cucumber: 0.041 mg/kg

Peach: 0.029 mg/kg
[27]

2. Benzimidazole Preliminary study MIPSERS Ag MAM Carbendazime (dummy) EDGMA ND LOD: 1.0 × 10−8 mol/L [28]

3. Caffeine Wastewatere MIPSERS Ag MAA Theophylline (dummy) EGDMA ND LOD: 100 ng/L [50]

4. 2,6-dichlorophenol Water SGA MIP SERS Au MAA and AM 2,6-dichlorophenol EGDMA ND LOD: 200 nmol/L [56]

5. Enrofloxacin
hydrochloride Water AgMIM SERS Ag AM Enrofloxacin hydrochloride EGDMA ND LOD: 10−7 mol/L [71]

6. Triazine fungicide Rice and wheats MIPSERS Au MAA Prometryn and Simetryn Trimethylopropane
trimethacrylate (TRIM) ND Recoveries: 72.7–90.0% [118]

7. Patulin Fruits MIPSERS Au 4-vinylpiridine (VP) Patulin 1,4-Diacryloylpiperazine
(PDA) ND LOD: 5.67 × 10−12 M [119]

8. Bisphenol A Tap water MIPSERS Ag 4-vinylpiridine (VP) Bisphenol A EDGMA ND LOD: 1 × 10−9 mol/L [120]

9. Rhodamin 6G Water ZOAMIPSERS Ag AM (acrylamide) Rhodamin 6G Ethyleneglycol
dimethacrylate (EDGMA) ND LOD: 10−13 mol/L [121]

10. Carcinoembryonic
antigen (CEA) Serum MIPSERS Au

4-
vinylbenzeneboronic

acid (VPBA)

Carcinoembryonic antigen
(CEA) EDGMA ND LOD: 0.1 ng/mL [122]

11. λ -Cyhalotrin Water SGA MIP SERS Ag MAA and AM Cyhalotrin EDGMA ND LOD: 3.8 × 10−10 mol/L [124]

12. Paracetamol Waste water MIPSERS Au MAA Paracetamol EDGMA ND LOD: 300 nM [125]

13. Carbamate
pesticides Tap water MIPSERS Ag Methylacrylamide

(MAM) Carbaryl and thiodicarb EDGMA
DFT B3LYP

level basis set
6–31G(d)

Recoveries
Carbaryl: 86.0–89.7%

Thiodicarb: 79.0–84.7%
[126]

14. Sulfamethazine Meat Ag-TiO2 MIP SERS Ag MAA and AM Sulfamethazine EDGMA

DFT to obtain
molecular

electrostatic
potential

(MEP)

LOD: 3.6 × 10−9 mol/L [127]

15. Histamine Liquor, vinegar, prawn MIPSERS Ag MAA Histamine dihydrochloride EDGMA ND LOD: 3.088 × 10−9 mol/L [128]
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Table 1. Cont.

No. Chemical/Biological
Compounds Samples Methods Noble

Metal
Functional

Monomer (FM) Template Crosslinker Rational
Study Analytical Performance Ref.

16. Tyrosine Aqueous medium PDA MIP SERS Ag AM Tyrosine EDGMA ND LOD: 10−9 mol/L [129]

17. p-nitroaniline Water DG/Ag-MIP SERS Ag Methacrylamide p-nitroaniline
N, N, N’, N’-

Tetramethylethylenediamine
(TEMED)

ND LOD: 1.0 × 10−14 M [130]

18. Antibiotics Water Ag/ESM SERS Ag AM Spiramycin EGDMA ND LOD: 0.027 nmol/L [131]

19. Metformin HCl and
Phenformin HCl

Hypoglycemic health
product MIP@Au-GO SERS Au MAA Metformin HCl EGDMA ND LOD: 0.1 mg/mL [132]

20. Malachite green Fish muscles Au@AgNPs MIP
SERS

Au
and
Ag

MAA Abietic acid (dummy
template) EGDMA

Optimization:
DFT M06-

2X/6–31G**
Binding

energy: Basis
set def2TZVP

with or
without

zero-point
energy

correction
(ZPEC)

LOD: 0.37–0.64 ng/g [133]

21. Malachite green Water and carp MIP@Fe3O4 SERS Ag MAA Malachite green EGDMA ND

LOD:
Tap water: 1.50 pM

Carp: 1.62 pM
LOQ

Tap water: 4.96 pM
Carp: 5.38 pM

[134]

22. Propranolol Complex samples GO-MIP SERS Ag MAA Propranolol EGDMA ND LOD: 10−11 mol/L [135]

23.
2,4-

dichlorophenoxyacetic
acid

Milk MISPE SERS Ag 4-VP 2,4-dichlorophenoxyacetic
acid EDGMA ND LOD: 0.006 ppm

LOQ: 0.008 ppm [136]

24. Chlorpyrifos Apple juice MIPSERS Ag MAA Chlorpyrifos EGDMA ND PLSR RMSEC: 0.0453
RMSECV: 0.1470 [137]

25. Thiabendazole Orange juice MISPE SERS Ag MAA Thiabendazole Divinylbenzene ND LOD: 4 ppm [138]

26. Atrazine Apple juice MIP SERS Au MAA Atrazine EGDMA ND

LOD:
L-AuNPs:

0.005 mg/L–0.01 mg/L
M-AuNPs:

0.01 mg/L–0.05 mg/L
S-AuNPs: 0.01 mg/L–0.05 mg/L

[139]

27. L-Phenylalanine Serum Au@MIP SERS Au Phenyltrimethoxysilane
(PTMOS) L-Phenylalanine Tetraethyl orthosilicate

(TEOS) ND LOD: 1.0 nmol/L [140]

28. Bisphenol A Polycarbonate plastic Ag@MIP SERS Ag MAA Bisphenol A EGDMA ND LOD: 5 × 10−8 mol/L [141]
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Table 1. Cont.

No. Chemical/Biological
Compounds Samples Methods Noble

Metal
Functional

Monomer (FM) Template Crosslinker Rational
Study Analytical Performance Ref.

29. Enrofloxacin
hydrochloride Water Fe3O4@Ag@MIP

SERS Ag Dopamine Enrofloxacin hydrochloride Dopamine ND LOD: 0.012 nmol/L [142]

30. Enrofloxacin
hydrochloride Water AGP MIM SERS Ag AM Enrofloxacin hydrochloride EGDMA ND LOD: 0.0078 nmol/L [143]

31. Lysozyme Clinical uses AgMIP SERS Ag MAA and AM Lysozyme N,N-methylene acrylamide DFT and MEP LOD: 5 ng/mL [144]

32. p-nitroaniline Water Ag@MIP SERS Ag Methylacrylamide p-nitroaniline EGDMA ND LOD: 10−12 M [145]

33.
PAH (polycyclic

aromatic
hydrocarbon)

Creek water and
seawater Au@MIP SERS Au MAA Pyren and fluoranthene Divinylvbenzene (DVB) ND LOD: 1 nM [146]

34. Cloxacillin Pig serum MMIP SERS ND MAA Cloxacillin EGDMA ND LOD: 7.8 pmol [147]

ND: Not determined.
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(b). caffeine; (c). L-Phenylalanine; and (d) Bisphenol A. Reuse with permission from 
[51,128,137,142]. 

Figure 4. Example of MIP SERS scheme application for analysis (a). 2,4-dichlorophenylacetic acid;
(b). caffeine; (c). L-Phenylalanine; and (d) Bisphenol A. Reuse with permission from [51,128,137,142].

Li et al., developed an analytical method for 2,6-dichlorophenol using SiO2/rGO/Au
composites, SGA, as SERS substrate. The composites made are expected to increase the sen-
sitivity of the SERS substrate. The combination of composites with MIP is further expected
to increase the selectivity of the SERS substrate. Through the SMIT (surface molecularly
imprinting technology) mechanism, it is hoped that specific cavities that recognize certain
compounds can freeze on the surface of the SERS substrate. In addition, in the manufacture
of MIP, a combination of two functional monomers, i.e., methacrylic acid and acrylamide,
was used to increase the potential for template recognition to the formed cavity. This is
expected to increase the selectivity and sensitivity of the MIP-SERS method. The use of SGA
MIP SERS for the detection of 2,6-dichlorphenol in river water samples, showed a good
recovery value (98.74–104.75%) and a linear range from 100–1.0 nmol/L [56].

Wu et al. conducted research to develop patulin analysis methods on fruit products.
Patulin is a secondary metabolite produced by fungi that often contaminate fruit products.
The developed method is a one-step MIP, in which AuNPs as a substrate is then coated
with MIP, which is synthesized using patulin as a template. MIP synthesis was carried out
using the free-radical polymerization method. The analysis results using the MIP-SERS
method showed the same good results as the previous method (MIP coupled with quantum
dots, MIP-EC, LC-MS, and conductometric methods). This method also provides good
selectivity in the presence of analytical confounders such as OXD (oxindole) and 5-HMF
(5-hydroxymethylfurfural) [119].

Bisphenol A analysis method was also developed using the MIP-SERS method. Ag@MIP
synthesis begins with the synthesis of silver nanoparticles (AgNPs). MIP-SERS was carried
out by a one-step method, where AgNPs as substrates acted as cores, while MIPs were
superimposed on the surface of AgNPs and acted as shells. The formed AgNPs were then
surface modified with the addition of APTES. Furthermore, MIP was synthesized by the
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non-covalent method on the surface of the modified AgNPs. The mechanism of the one-step
MIP-SERS analysis is thought to be the same as that of the Rhodamine 6G analysis, namely
through the “gate effect” mechanism. The analysis results show an excellent detection limit
value, but it has a drawback that not all BPA used in the MIP synthesis process can be
released at the binding site of MIP. Therefore, in the subsequent development, it is hoped
that dummy templates can be used to improve the performance of this method [120].

Li et al., developed the one-step MIP-SERS method. In this study, a combination of
ZnO/Ag was used as a substrate, then MIP was coated on the nanocomposite surface for
further use in the analysis of rhodamine 6G. This research involves a different mechanism
with hotspots, where the substrate must be at a certain distance from the analyte to be
analyzed. The mechanism that occurs in this study is the “gate effect”, where the substrate
coated with MIP can still detect the presence of the analyte, through a channel that connects
the analyte to the substrate. The detection response produced by using ZnO/Ag as a
substrate is better than using ZnO or Ag alone as a substrate [121].

Different mechanisms are shown by the analytical method developed by Feng et al.
This analytical method was used to detect carcinoembryonic antigen (CEA) from serum.
The single-stage MIP-SERS mechanism used is the sandwich type. This study used
nanotags composed of AuNPs that have been modified with the addition of MPBA
(4-mercaptophenylboronic acid) on the surface. The results show that further development
is needed. From the analysis results using Raman spectroscopy, it is known that template
leaks are still detected through the background of the spectrum. This causes a low value of
the signal-to-noise ratio. Therefore, this method still requires further development [122].

The exact mechanism is also suspected to occur in using SiO2/GO/Ag nanocomposite
as a substrate in the analysis of λ-cyhalothrin in water samples. SiO2/GO/Ag then acts as a
core which will be coated on the surface by MIP. Previously, the nanocomposite surface was
modified with polydopamine (pDA). MIP synthesis uses a com-bination of two functional
monomers. The results showed that using SiO2/GO/Ag (SGA) nanocomposite as a sub-
strate gave a better increase in SERS signal than using AgNPs alone. The addition of
pDA on the nanocomposite surface also led to better substrate dispersion to increase the
sensitivity and selectivity of this method [124]. Decorbie et al. using Au nanocylinder to
analyze paracetamol residues in water samples. By using the one-step MIP-SERS method,
it is known that the analytical method provides good sensitivity and selectivity and can be
used for routine analysis [125].

The one-step MIP-SERS method with core-shell type was applied by Cheshari et al.,
for the analysis of pesticide residues (carbaryl and thiodicarb) in agricultural products. The
uniqueness of this research is to compare the use of a single template and dual templates in
MIP synthesis. This research also uses a computational approach to predict intermolecular
interactions between templates and monomers using the molecular electrostatic potential
(MEP) method. The results showed that the results were synchronous between the com-
putational approach and those carried out in the laboratory. The use of dual templates in
making MIP results in better selectivity than single templates [126].

Ren, et.al, used Ag@TiO2 composite as a substrate in one-step MIP-SERS analysis for
sulfamethazine compounds. Ag@TiO2 is predicted to have the ability to clean the remnants
of the template left by a photolytic mechanism. There were still about 5% of the template
which was challenging to clean from the surface of the MIP cavity. Results showed that
Ag-TiO2@MIP could be used for routine analysis in the laboratory [127].

Chen et al., used a nanocomposite which is a combination of two semiconductors
(ZnO and TiO2) with Ag as a substrate in one-step MIPSERS analysis. This nanocomposite
is expected to improve the detection of SERS signals during analysis. The type used is the
core-shell type. The results showed that ZnO@TiO2@Ag nanocomposite can be used as a
substrate and has good sensitivity, selectivity, and accuracy for histamine analysis in food
products [128].

Hi et al., developed a tyrosine analysis method using SERS. The substrate was made
in a composite between PVDF/pDA/Ag. PVDF (polyvinylidene fluoride) was chosen
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because it has a rough surface, so it is expected to increase the “hotspot” effect which plays
a role in increasing the SERS signal. The PVDF/pDA/Ag composite formed was then
surface modified with vinyl from methacryloxypropyl tri-methoxy silane (MPS). MIP is
then printed to form a PDA/MIM on the modified surface. In this study, MIP was made
with a two-stage precipitation polymerization reaction. This tyrosine detection method
uses a sandwich type. The results show that this analytical method has a good recovery
percentage, and the detection limit is equivalent to the previous method (10−9 mol/L), but
with a shorter analysis time of only 1.0 min [129].

Analysis of p-nitroaniline in water samples can also be carried out using the MIP-SERS
combination method. Ag substrate was made in the form of nanocomposite with graphene,
then MIP was copolymerized on the surface of DG/Ag using p-nitroaniline as a template.
The use of graphene as a supporting material because of its 2-dimensional morphology
provides a large surface area, making it suitable for use in the sample preparation stage.
Graphene morphology can protect Ag from oxidation. Graphene material can also increase
the signal of Raman spectroscopy through chemical enhancement mechanism. The results
showed that the combination of the MIP SERS method could be used for the analysis of
p-nitroanaline in environmental samples [130].

Wang et al., combined the technology of imprinting, membrane separation and de-
tection with SERS for the analysis of enrofloxacin in water samples. A poly(vinylidene
fluoride) (PVDF) membrane was used as a buffer. AgNPs are then dispersed on the mem-
brane surface. MIP is then superimposed on the surface of the support and AgNPs, thus
forming a sandwich-like shape. The interaction between enrofloxacin and the substrate
was estimated based on the “gate” effect. It was suspected that on the surface of the
imprinting layer there was a channel that could connect the substrate with the compound
to be analyzed. Therefore, the detection of SERS for enrofloxacin in this study was thought
based on an electromagnetic enhancement mechanism [71]. MIP SERS application for an-
tibiotic residue analysis was also developed using Fe3O4/Ag nanocomposite as a substrate.
AgNPs are dispersed on the surface of Fe3O4, then MIP will wrap the surface of the formed
nanocomposite substrate. In this study the separation is also assisted magnetically. Poly-
dopamine was used as a functional monomer as well as crosslinkers, while enrofloxacin
was used as a template. The combination of Fe3O4/Ag is expected to increase the hotspot
area during SERS analysis. Sui et al. [131] also developed analytical methods for antibiotic
analysis with MIP SERS using AgESM MIP, utilizing eggshell as a support material while Li
et al., used GO/Ag composite as a substrate combined with PVDF membrane as a support.

The results of research by Lu et al., showed that the detection of illegal biguanide
derivatives in pharmaceutical preparations circulating in the trade could be done using the
MIP-SERS combination analysis method. This study used graphene oxide (GO) nanocom-
posites with gold nanoparticles (AuNPs) as substrates. AuNPs were immobilized on the
GO surface with the help of p-aminothiophenol. Next, the MIP was encapsulated on the
surface of the nanocomposite. The template used is metformin. The results show that
MIP@Au-GO SERS can analyze metformin HCl and phenformin HCl in the pharmaceu-
tical preparation. This method is expected to be used to analyze and detect active drug
compounds in complex matrix [132].

Two different researchers developed the analytical method for the detection of
malachite green. The difference lies in the substrate composition and the type of MIP-SERS
used. Zhang et al. used Au@AgNPs nanocomposite with single-stage MIP-SERS type [133],
while Ekmen et al., used AgNPs as substrate with two-stage MIP SERS type. Ekmen et al.,
combined MIP with magnetic nanoparticles to increase the selectivity of the assay. Based
on the study results, both methods can be used to detect malachite green on samples with
complex matrix [134].

Liu et al., developed an Ag/GO/MIP sandwich nanostructure to analyze propranolol
in complex matrix. In this structure, AgNPs are placed in the top position, and can
interact directly with the target compound molecules to produce the best increase in SERS
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signal. This method can be applied to other target molecules and is used to detect various
pollutants with high sensitivity [135].

Zhou et al., developed molecularly imprinted polymer coated gold nanoparticles
(MIP-AuNPs) as a material for detect and quantify L-Phenylalanine in one-step approach.
Gold nanoparticles were prepared by bottom up method using sodium citrate as a re-
ductor. The MIP-AuNPs hybrids were prepared by combination of sol gel method and
molecular imprinting technology. MIP was in-situ formed on AuNPs by sol gel methods.
L-phenylalanine was used as a template, TEOS as a crosslinkers and phenyltrimethoxysi-
lane as a functional monomer. The MIP-AuNPs showed a good linearity and limit of
detection. This material also can detect L-phenylalanine in the presence of its analogue,
D-Phenylalanine and bovine serum [140].

The selective and sensitive MIP-SERS detection was also developed for determination
of bisphenol A (BPA). Silver nanoparticles were synthesize by in-situ preparation inside
molecularly imprinted polymer matrix for BPA detection. The MIP was prepared by using
BPA as a template, EGDMA as a crosslinker, and AIBN as an inititator. Then amount of
silver nitrate as a AgNPs precursor were added to the mixture. After the polymerization
was complete, the rigid polymer was grounded. AgNPs were formed by add a reductor
(Sodium borohydride) to the MIP powder. The recovery of this MIP-SERS method was
calculated at 92.2% to 103.8%. According to spike sample, this method has a better recovery
and relative standard deviation than HPLC methods. This method has a better limit of
detection than HPLC methods [141].

The combination of magnetic core-shell SERS substrate was developed for antibiotics
detection in water sample. Fe3O4@Ag composites was selected as a SERS substrate. In
the end, the composites was then modified with dopamine to synthesize Fe3O4/Ag/MIP.
Fe3O4 nanoparticles were synthesized by hydrothermal reaction of dopamine and and
modified with amino. Enrofloxacin hydrochloride was chosen as a template. Dopamine
was selected as a functional monomer and crosslinkers. This material was synthesize by
pDA polymerization. This method has better performance and limit detection, compared
to another method of synthesis [142].

The detection of trace-level antibiotic was developed by using a novel composite
material, AgP/MIM. Ag/GO (graphene-oxide argentum) composite was used as a SERS
substrate. To apply into practical sample detection, molecular imprinting technique was
also introduced to improve the selectivity of the methods. Enrofloxacin hydrochloride was
used as a template. AgNPs was synthesize by bottom up using silver nitrate as a precursor
and ascorbic acid as a reductor. Ag/GO composite was synthesized by adding AgNPs into
GO dispersion. The AgP/MIM was synthesize by step two precipitation polymerization at
two different temperature. This method has better detection of limit and detection time, if
we compared it to previous method [143].

Ag@MIPs hybrid was used in lysozyme analysis. Ag@MIPs hybrids was fabricated
based on core-shell structure. Ag microsphere was synthesized by using ascorbic acid as
a reductor. Ag microsphere and a mixture of MIP component were stirred. The lowest
detection of limit concentration is 5 ng mL−1. Ag@MIPs hydrid has better performance as
a SERS substrate, comparing to Ag miscropshere itself. This method can develop into a
promising detection method for biomolecules, pathogens and living cells [144]. Ag@MIP
hybrid was also used for p-nitroaniline in aqueous environment. The results show that
this material can be used as a SERS substrate. The obtained Ag@MIP exhibit good limit
of detection, 10−12 M. Ag@MIP give better signal enhancement in SERS analysis than Ag
nanoparticle itself [145]. Another application of MIP-SERS method is analysis of PAHs
(polycyclic aromatic hydrocarbons). Au@MIPs was used as a SERS substrate. The Au@MIPs
was fabricated by two-step procedure. Pyrene and fluoranthene, were used as a template.
The combination of AuNPs and MIP solved each material’s main limitation [146]. The
detection of cloxacillin in pig serum were found to be more sensitive by using combination
of MMIP (magnetic molecularly imprinted polymer) with SERS. The limit of detection was
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7.8 pmol. The cloxacillin recoveries were found to be more 80%. This method can be used
routinely to screen antibiotic residues in food products [147].

4.2. Two Step MIP-SERS

In two-stage MIP-SERS, MIP is separated from metal nanoparticles which are used
as substrates in SERS analysis. Cao et al., analyzed the content of bitertanol, a triazide
fungicide compound, in vegetable (cucumber) and fruit (peach) samples. MIP is used in
this study to reduce interference from impurities that can interfere with the analysis results
with SERS. In the manufacture of MIP, a dummy template is used, triadimefon, to prevent
template leakage. It is expected to obtain better selectivity than using a template in the form
of the analyte to be analyzed. MIP was packaged as a sorbent in an SPE cartridge during
the analysis. The overall analysis time is 15 min. The developed method shows the same
performance when compared to the previous methods (LC-MS, GC-MS, and HPLC-DAD),
with a better analysis time [27].

Yan et al. also conducted a similar study to develop other triazine fungicide analysis
methods, prometryn and simetryn, on rice and wheat samples. However, in this study, the
same template was used with the analyte to be determined. This study’s MIP-SERS analysis
method was then compared with several previous analytical methods (GC-NPD, LC-DAD,
MIP-SPE-HPLC, Fluorescence, AgNP-SERS, GC-TSD, CNT-Au-SERS). The results show
that the newly developed Au-MIP-SERS method has the same performance as the previous
method; even some parameters show better results [118].

The pesticide residue, chlorpyrifos, was also developed using the two-step MIP-SERS
method. In this study, AgNPs were not only used as a substrate in SERS analysis but were
also developed to be used as a colorimetric detection method for the same compound.
The results showed that that method could be used to separate chlorpyrifos from apple
juice samples. The AgNPs-colorimetric method could be used to detect chlorpyrifos in
samples [136]. The analysis of herbicide residues (2,4-dichlorophenoxyacetic acid) in milk
was developed by the two-step MIP-SERS method. MIP is then packaged in an SPE
cartridge and was used to separate the residue of 2,4-dichlorophenocyacetic acid. AgNPs
as a substrate for SERS were synthesized separately using sodium citrate as a reducing
agent. The analysis time required is quite fast, only about 10 min. The resulting analytical
method is sensitive for detecting residues in dairy products [137].

The combination of MIP-SPE and SERS was also analyzed for thiabendazole in apple
juice. The analysis of thiabendazole was carried out in two stages. MIP is first synthesized
and then used as an adsorbent on the SPE cartridge. AgNPs were synthesized from silver
nitrate with trisodium citrate as a reducing agent.The total analysis time for thiabenda-
zole analysis using MIP-SPE and SERS detection was 23 min. This analysis time is much
faster than other traditional detection methods, which require complicated sample prepara-
tion [138]. The same analytical method was also developed to analyze atrazine in apple
juice samples. This method uses AuNPs as substrate for detection with SERS. The results
showed that this method can also be used to detect atrazine in other types of samples [139].

5. Conclusions and Future Prospective

Based on the explanation above, it can be concluded that the MIP-SERS is a poten-
tial method to be constantly developed for bioanalysis matrix. The analytical method
developed is not limited to analyzing compounds in biological matrix (e.g., urine, serum,
plasma), but also methods of trace analysis of compounds in agricultural product samples
and residues in the environment.

Molecularly imprinted polymer can solve the limitation regarding SERS analysis. MIP
and SERS in bioanalysis have a different function particularly in sample preparation stage.
Combination of MIP and metal nanoparticles can resolve SERS drawback. The development
of novel SERS substrate, either can be in the form of composite between MIP and metal
nanoparticles, core-shell, or in another way of modification. Combination of MIP SERS can
reduce analysis time and increase the detection limit.
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The explanation show that the research excitement towards the discovery of new
materials that can improve the performance of sample preparation in a series of analytical
methods is tremendous. Based on research data obtained from mipdatabase.com, in 2021
and 2022, research papers investigate a lot about the combination of MIP with other forms
of material to overcome the limitation in preparation of biological sample. Many studies
have also led to the use of MIP as a method of detection and diagnosis.

The use of off-label drug for COVID-19 treatment during pandemic, causes bioanalytic
methods indispensable. The bioanalytic method must be sensitive, selective, also accurate.
The combination of MIP and SERS can overcome the difficulties that occur in a bioanalysis
process, i.e., the sample preparation stage. Matrix complexity of bioanalytical sample can
reduce the ability of method to obtain sensitive and accurate results.

Remdesivir, as one of drug of choice in the treatment of COVID-19, currently does not
have an official standard analytical method established in any compendia. The analytical
method’s development is critical for clinical trials and for therapeutic drug monitoring.
The most widely used analytical method is LC-MS or LC-MS/MS [148], using liquid-liquid
extraction and/or solid-phase extraction as sample preparation methods. Developing
the MIP-SERS-based analytical method is an excellent opportunity to obtain an excellent
remdesivir analytical method for detection and quantification in biological preparations
and samples. Cases of remdesivir preparations counterfeit also encourage the development
of more sensitive and selective analytical methods.
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