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Abstract: The objectives of this study were to prepare and characterize a novel piperine–succinic acid
multicomponent crystal phase and to evaluate the improvement in the solubility and dissolution rate
of piperine when prepared in the multicomponent crystal formation. The solid-state characterization
of the novel multicomponent crystal was performed by powder X-ray diffraction (XRD), differential
scanning calorimetry (DSC), and Fourier transform-infrared (FT-IR) spectroscopy. Solubility and
dissolution rate profiles were evaluated in distilled water. The physical stability was evaluated
under high relative humidity (75% and 100% RH). The determination of the single crystal X-ray
diffraction structure revealed that this novel multicomponent crystal was a cocrystalline phase of
piperine–succinic acid (2:1 molar ratio). The differential scanning calorimetry thermogram of the
cocrystal showed a single and sharp endothermic peak at 110.49 ◦C. The cocrystal resulted in greater
solubility and a faster dissolution rate of piperine than intact piperine. This improvement was a
result of the formation of a channel structure in the cocrystal. In addition, the cocrystal was stable
under a humid condition.
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1. Introduction

Piperine is a major secondary metabolite isolated from plants of the Piperaceae family, especially
from Piper nigrum L., which is known as the king of spices. These species are cultivated in tropical
regions, such as Indonesia, Brazil, and India [1,2]. This plant has been widely used as both a
household spice and a traditional medicine [3]. Ethnopharmacologically, pepper has been used to
relieve pain and inflammation, and to improve gastrointestinal functionality [4–6]. Many studies
have showed that piperine has diverse and valuable pharmacological activities, such as analgesic,
anti-inflammatory, antibacterial, antidiabetic, and antioxidant effects [7–11]. In addition, piperine has
been used to improve cognitive function and as a protective agent against neural degeneration and
memory impairment [12]. Furthermore, piperine has been used as a bioenhancer when coadministered
with some active pharmaceutical ingredients, such as rapamycin, curcumin, domperidone, and
anti-tuberculosis drugs [13–16]. Unfortunately, the pharmaceutical application of piperine is limited by
its low solubility in aqueous medium. Poorly water-soluble drugs have low bioavailability; dissolution
is the rate-limiting step in the absorption process in the gastrointestinal tract fluid. Nearly 70 to
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80% drugs currently in development have low solubility in water [17]. A major challenge faced by
pharmaceutical manufacturers is the successful formulation of solid dosage forms that have a low
solubility and dissolution rate of the active pharmaceutical ingredients. The bioavailability of active
pharmaceutical ingredients in systemic circulation was significantly influenced by the solubility and
dissolution rate properties in aqueous medium. The solubility was notably affected by the properties
of its solid form, such as a crystalline form, amorphization, hydrophobicity, and surface area [18].
To optimize the physicochemical properties of active pharmaceutical ingredients, it is important to
explore a proper solid form in order to launch a successful drug formulation [19].

Efforts to improve the solubility and dissolution rates of piperine have been investigated, including
the development of a solid dispersion system with several polymers and water-soluble carriers [20,21],
the formation of inclusion complexes with cyclodextrin [22–24], and the reduction of the particle size to
nanoscale [25–27]. Although these methods have improved the solubility of piperine, some problems
remain. The solid dispersions with polymers may be hygroscopic [28]. In addition, polymers and
cyclodextrins have high molecular weights and low miscibility with active pharmaceutical ingredients;
thus, the final dose of the complex with polymers and cyclodextrins is also high. The inclusion complex
formation with cyclodextrin also faces some challenges when a drug is not able to form a strong
interaction within the cavity, resulting in insignificant solubility improvement [29]. Moreover, the
problem of the physical stability of the active pharmaceutical ingredient (API) during the manufacturing
process and storage is still a challenge. The amorphous state tends to recrystallize to a more stable
form, which will impact the variability of the dissolution rate of the API in the solid dosage form.
The crystalline phase is preferred in dosage forms to overcome phase transitions during processing
and storage [30,31].

To date, a popular strategy to alter physicochemical properties, such as solubility and dissolution
rate, is the formation of a multicomponent crystal phase. A multicomponent crystal with a small organic
molecule is likely to have high stability owing to its crystalline state. The final dose is also small due to
the low molecular weight of the coformer. Thus, multicomponent crystals with small organic molecules
offer significant advantages over other complex formations. Therefore, in this study, we focused
on the formation of the multicomponent crystals of piperine. In general, a multicomponent crystal
phase includes a salt, cocrystal, hydrate, and solvate [32,33]. Numerous studies have demonstrated
that the formation of a multicomponent crystal phase of API with a suitable excipient could enhance
its physicochemical properties, such as solubility and dissolution rate, permeability, bioavailability,
physical stability, compressibility, and pharmacological efficacy [34–39]. To the best of our knowledge,
only two studies on the multicomponent crystal phase of piperine have been reported: a cocrystal with
resveratrol, and a salt with a halide [40,41]. The cocrystal of resveratrol and piperine was investigated
to improve the solubility of resveratrol, and thus, a solubility study of piperine was not conducted.
Although the crystal structure of the [Piperine(H)][I3] salt was reported, its solubility was not studied.
Therefore, there has not been a study on solubility improvement obtained with the multicomponent
crystals. Piperine has three crystal forms (form I, II, and III). These crystal forms show remarkable
differences in their physicochemical properties, such as melting point and solubility. Form I is the most
stable polymorph and has a lower intrinsic dissolution rate than forms II and III; the melting point of
form I is 131.38 ◦C [42].

In the current study, we prepared a novel cocrystal of piperine with a generally recognized as safe
(GRAS) excipient as per FDA methods. It is notable that piperine does not form an inorganic salt with
commonly used reagents such as HCl or HBr (Kennedy et al., 2018); hence, we selected an organic acid
as the coformer. The piperine molecule does not have any functional groups with which to form a salt
with organic acids. Thus, for a multicomponent crystal of piperine, cocrystal formation with organic
acids is required. When piperine forms a cocrystal with resveratrol, the oxygen atom of the ketone of
piperine acts as a hydrogen bond acceptor and forms hydrogen bonds with water and the hydroxyl
group of resveratrol. Thus, piperine is expected to form a cocrystal with a molecule that has a hydrogen
bond donor group. Succinic acid was selected as the coformer to form the cocrystal; this process should
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improve the solubility and dissolution rates of piperine. Succinic acid, classified as a GRAS excipient
by the FDA, forms cocrystals with many active pharmaceutical ingredients. In addition, succinic
is a dicarboxylic acid with two hydrogen bond donor groups (COOH). After coformer screening,
the cocrystal of piperine–succininic acid (2:1 molar ratio) was prepared by the slurry technique.
The physicochemical properties of the cocrystal phase were investigated by powder X-ray diffraction
analysis, differential scanning calorimetry (DSC) thermal analysis, Fourier transform-infrared (FT-IR)
spectroscopy, and a solubility test in aqueous medium. The crystal structure of the new cocrystalline
phase was confirmed by single crystal X-ray diffraction analysis. The dissolution profile of the
piperine–succinic acid cocrystal was determined using a type II United States Pharmacopeia (USP)
dissolution test apparatus.

2. Materials and Methods

2.1. Materials

Piperine was purchased from Tokyo Chemical Industry (TCI) Tokyo, Japan. Succinic acid was
purchased from Merck, Germany. Ethanol and ethyl acetate were obtained from Merck, Germany.
All other solvents used in this research were of analytical grade.

2.2. Methods

2.2.1. Preparation of Cocrystals of Piperine–Succinic Acid

The cocrystals of piperine–succinic acid (2:1 molar ratio) were prepared by the slurry method.
Firstly, piperine (0.078 g; 0.000273 mol) and succinic acid (0.0170 g; 0.000143 mol) were weighed
accurately and placed in a mortar. Then, 0.4 mL of ethanol was added and the mixture was ground
manually by using a pestle until the solvent evaporated; this process was repeated, and the resultant
sample was referred to as the liquid-assisted grinding (LAG) sample. In a sealed glass container,
piperine (0.4491 g; 0.00157 mol) and succinic acid (0.0929 g; 0.00078 mol) were mixed with ethyl acetate.
The LAG sample (0.0125 g) was added into the glass container and stirred for more than 24 hours by
using a magnetic stirrer, which is known as the slurry method. The cocrystals obtained were filtered
and stored in a desiccator.

2.2.2. Characterization of Cocrystal Piperine–Succinic Acid

Powder X-ray diffraction analysis

Powder X-ray diffraction (PXRD) analysis was performed at room temperature by using a
Panalytical PW 30/40 X-ray diffractometer (The Netherlands). The diffractogram was recorded from
2θ = 5◦ to 40◦. The X-ray diffractometer was programmed as follows: target metal, Cu; filter, Kα;
voltage, 45 kV; and current, 40 mA.

Single Crystal X-Ray Diffraction Analysis

The piperine–succinic acid single crystal for single crystal X-ray diffraction was prepared by
solvent coevaporation from ethanol. Single-crystal X-ray diffraction data were collected in ω-scan
mode by using an R-AXIS RAPID II diffractometer (Rigaku) with a CuKα radiation (λ = 1.54186 Å)
rotating-anode source with VariMax007 optics. The integrated and scaled data were empirically
corrected for absorption effects using ABSCOR. The initial structures were solved using direct methods
with SHELXT, and then refined with SHELXL. All nonhydrogen atoms were refined anisotropically.
All hydrogen atoms were found in a different Fourier map; however, they were placed by geometrical
calculations and treated by a riding model during the refinement.
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Differential Scanning Calorimetry

The thermodynamic properties of piperine, succinic acid, and the cocrystal were measured using
a DSC apparatus (SETARAM Type EVO-131, Lyon, France), which was calibrated using indium.
Approximately 5 mg of each sample was placed in an aluminum pan, and the temperature was
increased from 50 ◦C to 250 ◦C at a rate of 10 ◦C/min.

Fourier Transform-Infrared Spectroscopy Analysis

Intermolecular interactions were studied using a FT-IR spectrophotometer (Perkin Elmer FT-IR,
USA). The sample was mixed with dry potassium bromide in a weight ratio of 1:100, and this mixture
was compressed into pellets. The absorption of samples was recorded between 4000 cm−1 and 600 cm−1.
The analysis was performed for intact piperine, intact succinic acid, and the cocrystal.

Solubility Test

The saturated solubility in CO2-free distilled water was evaluated at room temperature using
an orbital shaker. An excess amount of sample was added to 100 ml medium, equilibrated for 24 h,
and then filtered through a membrane filter. The concentration of piperine was determined from the
absorbance measurement at 341 nm by using an ultraviolet-visible light (UV-Vis) spectrophotometer
(Genesys 10S Spectrophotometer, Madison, WI, USA).

In Vitro Dissolution Rate Profiles

The in vitro dissolution profiles of intact piperine, cocrystal, and physical mixture were determined
using a type II United States Pharmacopeia (USP) dissolution testing apparatus (Hanson Research
SR08PLUS, USA). The physical mixture at the same ratio as that of the cocrystal was prepared as
comparison for dissolution rate profile study. Prior to the dissolution test, all samples were sieved
in a range of 150–250 µm particle size. The equipment was adjusted to a speed of 50 rpm in 900 mL
dissolution medium (CO2-free distilled water). The temperature was maintained at 37 ◦C ± 0.5 ◦C.
At predetermined times (5, 10, 15, 30, 45, and 60 min), an aliquot of approximately 5 mL was
collected and filtered through filter paper. The concentration of piperine dissolved in the medium
was determined by from the absorbance measurement at a maximum wavelength of 341 nm using a
UV-vis spectrophotometer (Genesys 10S Spectrophotometer, USA). The experiment was conducted in
triplicate. The data are presented as a chart (time vs. percentage of dissolved piperine).

Stability Test

Cocrystal samples which were prepared by the slurry method as described in 2.2 were tested
for their stability. The samples were placed at 40 ◦C in each humidity (75% and 100%) for one week.
The 75% RH condition was prepared with a saturated aqueous solution of NaCl.

Hydration Energy Calculation

The hydration energy was calculated using Spartan’16 V1.0.0 as described in the previous study [43]
under the conditions of SM54, B3LYP_D3, and 6-311+G**. For this calculation, API and coformer
neutral molecules used had been optimized for structure under the same software and conditions.

3. Results and Discussion

PXRD analysis is an important technique for the determination of solid-state properties such as
crystalline phase, amorphization, and solid-state reaction behavior. Multicomponent crystals (cocrystal
or salt) between two solid phases are confirmed when the PXRD pattern of the solid shows a unique
pattern that differs from its starting materials. The PXRD patterns of piperine, succinic acid, and
the cocrystal of piperine–succinic acid (2:1 molar ratio) are displayed in Figure 1. The diffraction
pattern of intact piperine showed distinct and sharp diffraction peaks at 2θ values of 14.91◦, 19.68◦,
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22.50◦, 25.85◦, and 28.25◦, indicating a solid form with a highly crystalline nature. This PXRD pattern
indicated that the piperine crystal was of form I. Furthermore, the intact succinic acid demonstrated
characteristic diffraction peaks at 2θ values of 16.09◦, 18.98◦, 20.06◦, 26.17◦, 31.53◦, 32.52◦, 38.09◦,
and 38.42◦. The diffraction pattern of the cocrystal showed a unique pattern with 2θ values of 8.56◦,
9.92◦, 12.40◦, 13.98◦, 20.91◦, 24.53◦, 28.01◦, and 29.21◦, which corresponded to the formation of a new
multicomponent crystal phase. In general, the multicomponent crystal phase can either be salt-type
or cocrystal-type. In the salt-type multicomponent crystal, proton transfers occur between the active
pharmaceutical ingredients and the coformer. Meanwhile, in the cocrystal, proton transfers cannot
occur [44]. This characterization can be confirmed by single crystal XRD structure determination.
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Figure 1. The powder X-ray diffraction pattern of (A) piperine, (B) succinic acid, and (C) the cocrystal
of piperine–succinic acid (2:1 molar ratio).

DSC analysis is a rapid and simple method to screen for the formation of the multicomponent
crystal phase between two solid materials [45,46]. The DSC thermogram of the intact piperine, intact
succinic acid, and multicomponent crystal is depicted in Figure 2. The sharp endothermic peak
at 131.38 ◦C indicates the melting point of piperine. This form is the most stable form I, and was
similar to a previous report [42]. In addition, intact succinic acid showed an endothermic peak
at 191.33 ◦C, which was attributed to its melting point. The DSC thermogram of the cocrystal of
piperine–succinic acid exhibited a single sharp endothermic peak at 110.49 ◦C. This new peak was
the melting point of the multicomponent crystal of piperine and succinic acid. Notably, the melting
point of the piperine–succinic acid multicomponent crystal was lower than that of the parent API and
its coformer. Thermodynamically, the melting point properties of the crystalline phase represent the
intermolecular bonding in the crystal structure and lattice energy, and may affect the solubility and
dissolution rate of crystalline solids in water [35,47].



Sci. Pharm. 2020, 88, 21 6 of 12
Sci. Pharm. 2020, 88, x FOR PEER REVIEW 6 of 13 

 

 
Figure 2. Differential scanning calorimetry thermogram of (A) piperine, (B) succinic acid, and (C) the 
cocrystal of piperine–succinic acid (2:1 molar ratio). 

FT-IR spectroscopy analysis is a preliminary method used to determine the solid-state 
interaction between active pharmaceutical ingredients and excipients. The formation of 
multicomponent crystals indicates a significant difference in the molecular functional group 
vibrations compared with those of the individual components, based on supramolecular hetero- and 
homo-synthons [48]. The FT-IR spectra of intact piperine, intact succinic acid, and the cocrystal are 
displayed in Figure 3. The FTIR spectrum of intact succinic acid shows various characteristic peaks: 
OH stretching at 2919 cm−1 and 2634 cm−1, carbonyl (C=O) stretching at 1678 cm−1, and C–O–H 
bending vibration at 1410 cm−1 [49]. The FTIR analysis also shows the characteristic peaks of piperine, 
including aromatic C-H stretching at 3010 cm−1 and aliphatic C-H stretching at 2928 cm−1, a carbonyl 
group (CO–N) at 1854 cm−1, and aromatic (C=C) stretching at 1585 cm−1. Furthermore, peaks at 1433 
cm−1 were assigned to CH2 bending and 1237 cm−1 to =C–O–C asymmetric stretching [50]. The FTIR 
spectrum of the cocrystal revealed several specific peaks. The peaks at 2936 cm-1 and 2600 cm−1 
indicated O–H stretching from the hydrogen bond between a hydrogen of succinic acid and the 
ketone oxygen of piperine, based on the reported cocrystals of succinic acid with carbamazepine and 
itraconazole [51,52]. The other peaks were at 1818 cm−1 (1854 cm−1 for pure piperine), 1720 cm-1, 1612 
cm−1 (1678 cm−1 for pure succinic acid), and 1562 cm−1 (1584 cm−1 for pure piperine). 
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cocrystal of piperine–succinic acid (2:1 molar ratio).

FT-IR spectroscopy analysis is a preliminary method used to determine the solid-state interaction
between active pharmaceutical ingredients and excipients. The formation of multicomponent crystals
indicates a significant difference in the molecular functional group vibrations compared with those
of the individual components, based on supramolecular hetero- and homo-synthons [48]. The FT-IR
spectra of intact piperine, intact succinic acid, and the cocrystal are displayed in Figure 3. The FTIR
spectrum of intact succinic acid shows various characteristic peaks: OH stretching at 2919 cm−1 and
2634 cm−1, carbonyl (C=O) stretching at 1678 cm−1, and C–O–H bending vibration at 1410 cm−1 [49].
The FTIR analysis also shows the characteristic peaks of piperine, including aromatic C-H stretching
at 3010 cm−1 and aliphatic C-H stretching at 2928 cm−1, a carbonyl group (CO–N) at 1854 cm−1, and
aromatic (C=C) stretching at 1585 cm−1. Furthermore, peaks at 1433 cm−1 were assigned to CH2

bending and 1237 cm−1 to =C–O–C asymmetric stretching [50]. The FTIR spectrum of the cocrystal
revealed several specific peaks. The peaks at 2936 cm-1 and 2600 cm−1 indicated O–H stretching from
the hydrogen bond between a hydrogen of succinic acid and the ketone oxygen of piperine, based on
the reported cocrystals of succinic acid with carbamazepine and itraconazole [51,52]. The other peaks
were at 1818 cm−1 (1854 cm−1 for pure piperine), 1720 cm-1, 1612 cm−1 (1678 cm−1 for pure succinic
acid), and 1562 cm−1 (1584 cm−1 for pure piperine).

The single crystal structure analysis revealed the structure of piperine–succinic acid cocrystal. This
specimen crystal was obtained from the EtOH solution by the evaporation method. The crystal data
are shown in Table 1. The crystal system was monoclinic, and the space group was P21/c. The crystal
structure showed that the ratio of piperine to succinic acid was 2:1. As the succinic acid molecule is at
the center of symmetry, the asymmetric unit comprised one piperine molecule and half of the succinic
acid molecule. As expected, the ketone oxygen atom of piperine and the carboxyl oxygen atom of
succinic formed hydrogen bonds; thus, a piperine molecule was present on each side of succinic acid,
as shown in Figure 4. The geometry of the carboxylic group is a good indicator of cocrystal or salt
formation. The C=O and C–OH distances of succinic acid were 1.210(2) Å and 1.335(2) Å, respectively,
indicating that the group was in a neutral form. In addition, significant residual electron density was
observed for the H atom position in the COOH group during the crystal structure analysis. Therefore,
this crystal was a cocrystal and not a salt crystal. Moreover, other hydrogen bonds were not observed.
In the crystal structure, two piperine and one succinic acid molecules were connected by the OH...O
hydrogen bonds to form a group of three molecules. This unit stacked to form a characteristic channel
motif, as displayed in Figure 5. This packing consists of the self-stacking of the piperine part and the
channel structure of succinic acid. This type of structure contributes to the solubility and dissolution
rate improvement.
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Table 1. Crystal data for the piperine–succinic acid cocrystal.

Parameter Piperine–Succinic Acid

Moiety formula C17H19NO3, 0.5(C4H6O4)
Crystal system Monoclinic

Space group P21/c
a (Å) 4.1459(1)
b (Å) 9.6960(3)
c (Å) 41.1214(10)
ß(◦) 92.703(2)

V (Å3) 1651.19(8)
Z/Z′ 4/1
T (K) 93

R-factor (%) 8.64
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In the current study, we reported the novel cocrystal of piperine–succinic acid (2:1 molar ratio),
which improved the solubility and dissolution rate, as shown in Table 2 and Figure 6. The solubility of
the cocrystal increased approximately 4-fold compared with that of intact piperine. Consequently, the
dissolution rate of the cocrystal also improved significantly. According to the Noyes–Whitney equation,
the dissolution rate of the solid is proportional to its solubility [53]. Furthermore, the cocrystal of
piperine–succinic acid showed a faster dissolution rate than that of intact piperine. The percentage of
piperine dissolved from the cocrystal significantly improved compared to that of intact piperine and
its physical mixture. In 60 min, 99.00% of piperine dissolved from the cocrystal, whereas only 45.30
and 62.22% of intact piperine and physical mixture dissolved, respectively. The dissolution rate of the
physical mixture of piperine–succinic acid increased slightly compared to intact Piperine. This was
due to the microenvironmental solubilizing effect of succinic acid which improves the wettability of
piperine in aqueous medium [54,55].
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Table 2. Solubility data for piperine and piperine–succinic acid in distilled water.

Compound Solubility (µg/mL) ± SD

Piperine 2.93 ± 0.04
Piperine–succinic acid 11.71 ± 0.26

Several mechanisms are involved in the enhancement of the solubility and dissolution rate in
the multicomponent crystal phase; changes in thermodynamic properties of the solid phase (melting
point) may affect the solubility properties of the solid crystal. The melting point is correlated with
the lattice energy of the crystal. A lower melting point indicates a weaker lattice energy in the
crystalline phase, conferring greater solubility and a higher dissolution rate [34,47]. As described
earlier, in the piperine–succinic acid cocrystal, succinic acid molecules formed a channel structure.
Solubility enhancements arising from a channel structure have been reported previously, and this
piperine–succinic acid cocrystal structure strongly indicated the occurrence of this improvement
mechanism [56,57]. Putra et al. explained the mechanism as follows [58]: First, the more highly soluble
coformer molecules dissolve from a cocrystal, leaving void channel structure in the crystal. As strong
inter molecular interaction between the API and the conformer disappears, it makes the stability of
the cocrystal lower. Thus, the remaining stacked API structure with only weaker inter molecular
interactions would easily break up. This leads to the dissolution of API molecules, and an improvement
in the solubility of the active pharmaceutical ingredient. In this study, the strong inter molecular
interaction was the hydrogen bonds between piperine and succinic acid in the cocrystal; the succinic
acid coformer formed the channel structure. Thus, this solubility improvement mechanism can be
applied to the succinic acid cocrystal. A hydration energy calculation confirmed that the succinic acid
molecule is calculated as more stabilized in water media than the piperine molecule. The hydration
energies of these molecules are piperine: −34.62 kJ/mol and succinic acid: −53.68 kJ/mol. Together
with the channel structure of succinic acid molecules, the solubility improvement mechanism of this
cocrystal can also be explained by the same mechanism described above.

Furthermore, the stability of the succinic acid cocrystal with respect to humidity was confirmed.
PXRD measurement revealed that the succinic acid cocrystals left for one week under high humidity
conditions (75% RH/100% RH) were stable. Moreover, the PXRD of the tested samples showed no
change during the test as seen in Figure 7.
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4. Conclusions

In this study, we successfully improved the solubility of piperine, an important constituent
of black pepper, by rational formation of a cocrystal with succinic acid, a GRAS coformer. This
was achieved despite the relatively poor propensity of the piperine molecule in forming hydrogen
bonds. The solubility improvement mechanism was explained by the presence of a channel in
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the crystal structure. Although the cocrystal has higher solubility, it was stable under a humid
condition. In addition, important properties of the cocrystal, measured by the DSC and FT-IR spectra,
were presented to support the cocrystal formation. Our findings on the solubility improvement of
poor hydrogen bond-forming compounds have provided an insight into methods to improve the
physicochemical properties of similar compounds by cocrystal formation.
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