
Sci  Pharm  www.scipharm.at 

Research article Open Access 
An Alternative Approach to Isoganciclovir:  

A Prominent Impurity in  
the Antiviral Drug Ganciclovir 

Dhanraj T. S. S. SUNDARAM * 1,2, Anand G. KAMAT 1,  
Koilpillai Joseph PRABAHAR 1, Peruri Badarinadh GUPTA 1,  

Battula VENKATESWARA RAO 2, Sanasi PAUL DOUGLAS 2 

1 Chemical Research and Development, APL Research Centre-II, Aurobindo Pharma Ltd., Survey No. 71 & 
72, Indrakaran (V), Medak District-502 329, Andhra Pradesh, India. 

2 Department of Engineering Chemistry, Andhra University College of Engineering (A), Andhra University, 
Visakhapatnam-530003, Andhra Pradesh, India. 

* Corresponding author. E-mail: drajchem2002@rediffmail.com (D. T. S. S. Sundaram) 

Sci Pharm. 2015; 83: 233–241    doi:10.3797/scipharm.1409-15 

Published:  November 11th 2014   Received:  September 27th 2014 
Accepted:  November 11th 2014 

This article is available from: http://dx.doi.org/10.3797/scipharm.1409-15 

© Sundaram et al.; licensee Österreichische Apotheker-Verlagsgesellschaft m. b. H., Vienna, Austria. 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original work is properly cited. 

Abstract 
A simple and efficient process for the preparation of (±)-9-[(2,3-dihydroxy-
propoxy)methyl]guanine (isoganciclovir) is described. The synthesis features 
the preparation of a kinetically and thermodynamically controlled acyclic side 
chain using masked glycerol and methoxymethyl acetate. The unwanted 
regioisomers were separated through selective crystallization, which upon 
deprotection yielded isoganciclovir in good yield. The present work explains the 
preparation of the acyclic side chain in a simple manner without the aid of any 
preparative column purification or separation technique. 
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Introduction 
Acyclic nucleoside analogues are well-known for their antiviral activities. Some of them are 
very promising towards the chemotherapy of HSV (herpes simplex virus) infections. 
Ashton et al. were the first to report the anti-herpes properties of (±)-9-[(2,3-dihydroxyprop-
oxy)methyl]guanine 1 (Fig. 1) and its R & S isomers towards HSV type I and type II [1]. 
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Fig. 1.  Structures of isoganciclovir (1) and ganciclovir (2)  

Later works have shown that the S-isomer of 1 is more potent than acyclovir 3 (Fig. 2.), but 
substantially less effective than ganciclovir 2. This higher efficacy of 2 is due to its higher 
degree of solubility in water as well as its bioavailability [2, 3]. Further improvement has 
been reported where 2 was converted into its prodrug, valganciclovir hydrochloride 4, an 
L-valyl ester of ganciclovir that exists as a mixture of two diastereomers. Recently, both of 
them (2 and 4) were approved as effective antiviral drugs for the prevention and treatment 
of cytomegalovirus (CMV) infections in humans with weak immune systems [4–7]. 

NH

N N

N

O

NH2

O
OH

ClH

NH

N N

N

O

NH2

O
O

OH

O
NH2

3 4  
Fig. 2.  Structures of acyclovir (3) and valganciclovir hydrochloride (4) 

In general, the synthetic strategy of all acyclic nucleoside analogues involves a convergent 
synthesis using two synthons such as an acyclic side chain and purine or pyrimidine 
derivative. In a similar way, the synthesis of the acyclic side chains of 2 and 4 are 
prepared from a three-carbon synthon such as epichlorohydrin. The undesired ring 
opening of the epoxide moiety in epichlorohydrin during the preparation of 2 leads to the 
formation of regioisomers 1. Such formation of 1 during the manufacturing process of 2 
may contaminate the drug substance. The presence of such an impurity in an active 
pharmaceutical ingredient (API) can have an impact on the quality based on its toxicology. 
Therefore, it is important to study the formation of such an impurity followed by its control 
and elimination. The International Conference on Harmonization (ICH) guidelines 
recommend the identification of such impurities that are present in the API at a level 
≥ 0.05% w/w [8]. The pharmacopoeial monograph of ganciclovir specifies the limit of 1 as 
< 0.5% in US pharmacopoeia and < 0.15% in British and European pharmacopoeia [9–11]. 
Since 1 is a prominent impurity of ganciclovir, we were interested in exploring a simple and 
efficient synthetic route for its preparation. Furthermore, the procedures described earlier 
have certain disadvantages such as (a) a lengthy work-up procedure involving preparative 
HPLC for the isolation of the acyclic side chain [1], (b) usage of the expensive 
hydrogenation catalysts for deprotection [13–15], and (c) the reaction with highly corrosive 
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and moisture-sensitive chemicals such as trimethylsilyl chloride [1, 12]. In our present 
work, we describe a simple approach towards the preparation of 1 without using any 
harmful or expensive chemicals.  

Results and Discussion 
The synthesis of 1 involved two major steps: (i) the preparation of the acyclic side chain 
and (ii) the condensation of the acyclic side chain with diacetyl guanine. 

The route of synthesis of the acyclic side chain is shown in Scheme 1. The selective 
protection of glycerol was achieved by treating glycerol with cyclohexanone in the 
presence of a catalytic amount of concentrated sulfuric acid to give ketal 4 [16]. The 
reaction of 4 with methoxymethyl acetate in the presence of a catalytic amount of p-
toluenesulfonic acid (p-TSA) at room temperature resulted in a mixture of two products. 
These two products were anticipated in this reaction as 2-[(methoxymethoxy)methyl]-1,4-
dioxaspiro[4.5]decane 5 and [(1,4-dioxaspiro[4.5]decan-2-yl)methoxy]methyl acetate 6. As 
the product obtained at room temperature was a mixture, the reaction was planned at a 
lower temperature to get one exclusive product. Surprisingly, at a lower temperature, i.e. -
10°C, the only product was 5. Since the reaction produced exclusively 5 at a lower 
temperature and a mixture at 25°C, we presumed that 5 may have formed due to the 
kinetically controlled reaction and 6 could have formed due to the thermodynamically 
controlled reaction. 
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Sch. 1. Preparation of acyclic side chains 5 and 6 

To confirm this postulate, the reaction of 4 with methoxymethyl acetate was carried out at 
different temperatures such as −10°C, 10°C, 25°C, 40°C, 60°C, and at reflux. The 
products obtained from these reactions were analyzed by 1H-NMR to quantify the 
percentages of 5 and 6 (Fig. 3). 
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It was clearly seen that the reactions at 25°C, 40°C, 60°C, and at reflux have resulted in 
nearly 1:1 ratios of 5 and 6. It was observed that the kinetically controlled product was 
formed exclusively at low temperature (< −10°C) and converted into the thermos-
dynamically controlled product at higher temperature. However, repeated experiments 
have shown that 5 converted into 6 only till the equilibrium was attained and thereafter, 
further conversion did not take place even upon continuous heating at reflux temperature. 
This equilibrium was expected due to the retention of the by-product (methanol) in the 
reaction mixture which prevented the forward reaction. Hence, to facilitate the forward 
reaction to obtain 6, the by-product (methanol) had to be distilled out from the reaction 
mixture. A continuous increase in the percentage of 6 was observed when the reaction 
was carried out at reflux while distilling the by-product along with the solvent. The product 
obtained after such an exercise contained the major product 6 with 5 as a minor 
contaminant. This result has clearly shown an incomplete conversion of 5 into 6. Among 
the two leaving groups present in the methoxymethyl acetate, the acetyl group could be 
protonated easier than the methoxy group and facilitate the formation of kinetic product 5. 
We presumed that the thermodynamic product 6 may not have formed directly from the 
reaction of 4 with methoxymethyl acetate; rather, first the kinetic product forms 
instantaneously and further, the methoxy group of the kinetic product 5 gets protonated to 
yield the thermodynamic product 6. This postulate was confirmed by carrying out a 
reaction of 4 with methoxymethyl acetate at −10°C and an aliquot was analyzed by 
1H-NMR to confirm the absence of 6. Further, the reaction temperature was raised to 
reflux and the by-product, methanol, was removed simultaneously. The product obtained 
by this reaction contained ~81.8% of 6 and ~18.2% of 5. In order to obtain 6 exclusively, 
the reaction was carried out while adding methoxymethyl acetate at 60°C and at reflux 
temperature with simultaneous distillation to remove the by-product. The product obtained 
after 6 h showed ~81.9% of 6 and ~18.1% of 5. However, prolonged heating has resulted 
in the degradation with the formation of tarry mass. Further, the reaction was attempted in 
toluene at reflux temperature where degradation of the product was observed within 1 h, 
thus failing to give any product. Since the present approach failed to provide the desired 
results, we changed our strategy by adding a requisite amount of acetic acid into the 
reaction mixture while removing the by-product to push the reaction in the forward 
direction. On doing such an exercise, this has resulted in a complete degradation at higher 
temperature, whereas no reaction at room temperature occurred. Finally, a mixture of 6 
and 5 containing ~18.5% of 5 was taken for the next reaction. Both the products 5 and 6 
could be used as the acyclic side chain synthons for the preparation of isoganciclovir. 

The reaction of acyclic side chain compounds 5 and 6 with diacetyl guanine is shown in 
Scheme 2. The reaction was started with kinetic product 5 in DMF due to the poor 
solubility of 7. The reaction was studied at different conditions and we observed a slower 
and an incomplete reaction at lower temperature (< 110°C). However, at 110°C, the 
reaction had taken longer for completion, which upon further optimization, was reduced by 
adding a catalytic amount of p-TSA. As anticipated, the residue obtained after the work-up 
of the reaction contained a mixture of two regioisomers. These two regioisomers were 
successfully separated by a selective crystallization technique rather than by column 
chromatography. The regioisomers were identified as (±)-N2-acetyl-7-[(1,4-dioxaspiro[4.5]-
dec-2-yl-methoxy)methyl]guanine 8 and (±)-N2-acetyl-9-[(1,4-dioxaspiro[4.5]dec-2-yl-
methoxy)methyl]guanine 9, respectively. The required regioisomer 9 was obtained with 
32% isolated yield. 
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Fig. 3.  Effect of temperature on the formation of kinetic product 5 and thermodynamic 

product 6 

Similarly, a reaction with thermodynamically controlled product 6 was also performed. 
Since the thermodynamic reaction yielded predominantly 6 (~81.5%), we have used it as 
such for the condensation reaction with 7. We observed a comparatively better yield of 9 
(44.2%) after the work-up and crystallization from toluene.  
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Sch. 2.  Preparation of isoganciclovir 1 
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This improvement in the yield was anticipated due to the presence of a better leaving 
group –O(C)OCH3 in 6 rather than –OCH3 in 5. The filtrate mainly contained the 
N7-guanine derivative 8 and was isolated and characterized as well. The structures of both 
regioisomers were confirmed by spectral techniques. These two regioisomers were 
distinguished by 1H-NMR from the downfield shift of H-8 (δ 8.36 ppm) and N-CH2-O 
(δ 5.68 ppm) protons in 8 with respect to 9. The slight difference in the downfield chemical 
shift (~0.20 ppm) of 8 was expected due to the close proximity with the neighbouring 
carbonyl carbon. These chemical shift values were in agreement with the known N9 and 
N7, N2-acetyl-(alkoxymethyl)guanines [3]. The deprotection of the cyclohexylidene ring in 9 
was carried out with dilute hydrochloric acid in aqueous methanol at 25–30°C to yield 
N2-acetyl isoganciclovir 10. The formation of 10 was confirmed by analysing the reaction 
mixture by mass spectrometry. The intermediate 10 was not isolated and introduced into 
the next stage. Finally, the deacetylation of 10 was done in methanol under basic 
conditions using aqueous ammonia at 25–30°C to obtain the desired 1. 

Conclusion 
A convenient synthesis of 1 was accomplished using acyclic side chain compounds 5 and 
6. The thermodynamic and the kinetic behaviour of 5 and 6 were explained and their 
impact on the yield was demonstrated.  

Experimental 
All reagents were obtained commercially and used as received unless otherwise stated. 
Solvents were dried as per the standard procedures. Melting points were determined on 
the Reichert thermopan melting point apparatus. The 1H- and 13C-NMR spectra were 
recorded on the Bruker Avance 300 MHz and Varian 500 MHz spectrometers using TMS 
as the internal standard in DMSO-d6 and CDCl3. The FTIR spectra were recorded on a 
Perkin-Elmer Spectrum One Fourier transform FTIR spectrophotometer. High-resolution 
mass spectral analyses were performed using the electrospray ionization (ESI) method on 
the Xevo G2 QTOf mass spectrometer. HPLC analyses were carried out as described in 
the European Pharmacopoeia for ganciclovir related substances.  

2-[(Methoxymethoxy)methyl]-1,4-dioxaspiro[4.5]decane (5) 
2-Hydroxymethyl-1,4-dioxaspiro[4.5]decane (4) (100.0 g, 0.58 mol), p-TSA.H2O (2.0 g) 
and methoxymethyl acetate (302.3 g, 2.90 mol) were taken in hexane (500 mL) at −10°C 
and the reaction mixture was stirred for 2 h at −10°C. After the completion, the reaction 
mixture was washed with a saturated solution of aqueous sodium carbonate (2 x 100 mL) 
and saturated aqueous sodium chloride solution (100 mL). The organic layer was 
concentrated at 35–40°C under reduced pressure to afford 5 as viscous brown oil. Yield: 
98.6 g (78.5%); 1H-NMR (300 MHz, CDCl3): δ 1.37–1.41 (m, 2H), 1.56–1.67 (m, 8H), 3.36 
(s, 3H), 3.54–3.63 (m, 2H), 3.72-3.77 (dd, J1 = 6.0 Hz and J2 = 6.0 Hz, 1H), 4.04–4.09 
(dd, J1 = 6.3 Hz and J2 = 6.3 Hz, 1H), 4.27–4.32 (m, 1H), 4.66 (s, 2H); 13C-NMR (DEPT, 
125 MHz, DMSO-d6): δ 110.0, 96.5, 74.2, 68.7, 66.3, 55.1, 36.4, 34.8, 25.1, 23.9, 23.7; 
FTIR (neat) cm−1: 3054, 2862, 1670, 1607; HR-MS (ESI, QTOF) for C11H20O4Na [M + Na]+: 
m/z calcd: 239.1259; found: 239.1265. 

 



 An Alternative Approach to Isoganciclovir 239 

Sci Pharm. 2015; 83: 233–241 

(1,4-Dioxaspiro[4.5]decan-2-ylmethoxy)methyl acetate (6) 
2-Hydroxymethyl-1,4-dioxaspiro[4.5]decane (4) (60.0 g, 0.35 mol) was dissolved in hexane 
(120 mL) and heated to 60°C under a nitrogen atmosphere. Thereafter, p-TSA.H2O (2.0 g) 
and methoxymethyl acetate (180.0 g, 1.73 mol) were added at 60°C. The reaction mixture 
was refluxed for 6 h and methanol was removed by distillation during the reaction. The 
reaction volume was maintained by adding fresh hexane to the reaction mixture. After the 
completion of the reaction, the reaction mixture was washed with 5% w/v aqueous sodium 
carbonate solution (120 mL) and the organic layer was separated. The aqueous layer was 
extracted with hexane (60 mL) and further, the combined organic layer was washed with 
5% w/v aqueous sodium carbonate solution (60 mL). The organic layer was concentrated 
at 35–40°C to afford 6 as viscous pale yellow oil. Yield: 58.8 g (containing ~18.5% of 5); 
1H-NMR (300 MHz, CDCl3): δ 1.37–1.47 (m, 2H), 1.59–1.62 (m, 8H), 2.10 (s, 3H), 3.66–
3.76 (m, 3H), 4.02–4.07 (m, 1H), 4.27 (m, 1H), 5.30 (s, 2H); 13C-NMR (DEPT, 125 MHz, 
DMSO-d6): δ 170.4, 109.9, 89.2, 73.9, 71.1, 66.1, 36.4, 34.8, 25.1, 23.8, 23.7, 20.9; FTIR 
(neat) cm−1: 2936, 2862, 1748; HR-MS (ESI, QTOF) for C12H20O5Na [M + Na]+: m/z calcd: 
267.1209; found: 267.1207. 

(±)-N2-acetyl-9-[(1,4-dioxaspiro[4.5]decan-2-yl-methoxy)methyl]guanine (9) 
To a stirred suspension of diacetyl guanine 7 (30.0 g, 0.13 mol) in dimethylformamide  
(150 mL), [(1,4-dioxaspiro[4.5]decan-2-yl)methoxy]methyl acetate (6) (62.3 g, 0.25 mol, 
containing ~18.5% of 5) and p-TSA.H2O (1.20 g) were added. The reaction mixture was 
stirred at 110°C for 6 h. Thereafter, the reaction mixture was cooled to 25–30°C and water 
(150 mL) was added. The product was extracted with ethyl acetate (2 x 150 mL). The 
organic layer was washed with 20% w/w brine (100 mL) and concentrated at 45–50°C 
under reduced pressure. The residue was dissolved in toluene (120 mL) at 55–60°C and 
cooled to 25–30°C. The precipitated mass was filtered and washed with ice-cold isopropyl 
alcohol (30 mL) to obtain 9 as an off-white solid. Yield: 21.3 g (44.2%); Mp: 186–188°C; 
1H-NMR (300 MHz, DMSO-d6): δ 1.25–1.33 (m, 2H), 1.37–1.57 (m, 8H), 2.18 (s, 3H), 
3.51–3.55 (m, 3H), 3.89–3.95 (dd, J1 = 6.5 Hz and J2 = 8.1 Hz, 1H), 4.10–4.14 (m, 1H), 
5.48 (s, 2H), 8.14 (s, 1H), 11.78 (s, 1H), 12.07 (s, 1H); 13C-NMR (PENDANT, 75 MHz, 
DMSO-d6): δ 173.5, 154.8, 148.8, 148.0, 140.0, 120.2, 109.0, 73.5, 72.8, 69.6, 65.4, 35.9, 
34.4, 24.6, 23.7, 23.5, 23.4; FTIR (KBr) cm−1: 3239, 3168, 2935, 1691, 1607; HR-MS (ESI, 
QTOF) for C17H23N5O5 [M+H]+: m/z calcd: 378.1778; found: 378.1777.  

(±)-N2-acetyl-7-[(1,4-dioxaspiro[4.5]decan-2-yl-methoxy)methyl]guanine (8) 
The N7-isomer was isolated from the filtrate, containing ~20% of 9 (slightly lower Rf on 
TLC; CHCl3-MeOH, 4:1). 1H-NMR (300 MHz, DMSO-d6): δ 1.28–1.32 (m, 2H), 1.37–1.56 
(m, 8H), 2.18 (s, 3H), 3.47–3.55 (m, 3H), 3.90–3.94 (dd, J1 = 6.5 Hz and J2 = 8.1 Hz, 1H), 
4.10–4.12 (m, 1H), 5.68 (s, 2H), 8.37 (s, 1H), 11.62 (br s, 1H), 12.16 (br s, 1H); 13C-NMR 
(PENDANT, 75 MHz, DMSO-d6): δ 173.4, 157.5, 152.4, 147.2, 145.0, 111.0, 109.0, 75.3, 
73.6, 69.5, 65.4, 35.9, 34.5, 24.6, 23.7, 23.5, 23.4; HR-MS (ESI, QTOF) for C17H23N5O5  
[M + H]+: m/z calcd: 378.1778; found: 378.1780.  

(±)-9-[(2,3-dihydroxypropoxy)methyl]guanine (1) 
To a stirred solution of 9 (5.0 g, 0.01 mol) in methanol (25 mL), dilute hydrochloric acid 
(10% w/w, 15 mL) was added at 25–30°C. The reaction mixture was stirred for 3 h, 
thereafter concentrated under reduced pressure at 45–50°C. The residue contained the 
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intermediate 10, which was further stirred into a mixture of aqueous ammonia (15 mL) and 
methanol (20 mL) for 20 h at 25–30°C. The suspension was concentrated under reduced 
pressure and crystallized from aqueous methanol to get 1 as an off-white solid. Yield: 3.1 g 
(91.7%); Purity by HPLC: 93.95%; Mp: 242–246°C; 1H-NMR (300 MHz, DMSO-d6): δ 
3.26–3.32 (t, J = 5.7 Hz, 2H), 3.44–3.49 (m, 2H), 4.49-4.53 (t, J = 5.7 Hz, 1H), 4.74 (d, J = 
4.8 Hz, 1H), 5.34 (s, 2H), 6.50 (br s, 2H), 7.81 (s, 1H), 10.63 (s, 1H); 13C-NMR 
(PENDANT, 75 MHz, DMSO-d6): δ 156.9, 153.8, 151.4, 137.9, 116.4, 72.3, 70.8, 70.4, 
62.8; FTIR (KBr) cm−1: 3387, 3157, 2933, 2881, 1694; HR-MS (ESI, QTOF) for C9H13N5O4 
[M + H]+: m/z calcd: 256.1047; found: 256.1054. 
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