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Abstract 
A quantitative structure-activity relationship model was developed on a series of 
compounds containing oxadiazole-ligated pyrrole pharmacophore to identify key 
structural fragments required for anti-tubercular activity. Two-dimensional (2D) 
and three-dimensional (3D) QSAR studies were performed using multiple linear 
regression (MLR) analysis and k-nearest neighbour molecular field analysis 
(kNN-MFA), respectively. The developed QSAR models were found to be 
statistically significant with respect to training, cross-validation, and external 
validation. New chemical entities (NCEs) were designed based on the results of 
the 2D- and 3D-QSAR. NCEs were subjected to Lipinski’s screen to ensure the 
drug-like pharmacokinetic profile of the designed compounds in order to 
improve their bioavailability. Also, the binding ability of the NCEs with enoyl-
ACP (CoA) reductase was assessed by docking. 

Keywords 
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Introduction 
Tuberculosis caused by Mycobacterium tuberculosis has become a global threat due to 
the emergence of resistant mycobacterium strains resulting in multiple drug-resistant 
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tuberculosis (MDR-TB), extensive drug-resistant tuberculosis (XDR-TB), as well as total 
drug-resistant tuberculosis (TDR-TB) [1–3].  

Of the different targets being explored in Mycobacteria for antitubercular activity, fatty acid 
synthesis inhibition is an attractive target for the rational design of new antitubercular 
agents. Mycolic acid is the major component of the M. tuberculosis cell wall. Enzymes that 
are responsible for fatty acid biosynthesis are considered as ideal targets for designing the 
new antimycobacterial agents. Fatty acid synthesis is catalyzed by fatty acid synthase 
enzymes-FAS-I and FAS-II. In mammals, the synthesis is catalyzed by FAS-I, whereas in 
Mycobacterium it is catalyzed by FAS-I and FAS-II. This difference renders FAS-II  
an attractive target for antitubercular discovery. The enoyl-ACP (CoA) reductase 
(FabI/ENR/InhA.) is an important enzyme in the FAS-II system [4]. In the M. tuberculosis 
inhA structural gene, (InhA) is the primary target of isoniazid, the most preferred anti-
tubercular agent. InhA was identified as an NADH-dependent enoyl-ACP (CoA) reductase 
specific for chain elongation in precursors of mycolic acids [5]. 

Heterocycles possessing pyrrole are known to possess different biological activities like 
antibacterial, antitumor, analgesic, and anti-inflammatory along with antitubercular activity 
[6–11].  

Some of the pyrrole derivatives are known to act as antitubercular by inhibiting the 
enzyme, FabI involved in fatty acid synthesis in Mycobacterium [4, 12–13]. 

Computational methods are an important tool in designing newer potent molecules [14]. 
These techniques have also been used to study pyrrole derivatives [15, 16].  

As a continuation of our ongoing work on drug design and antimycobacterial studies [17], 
and to further explore the structural requirement for competitive inhibitors of enoyl-ACP 
(CoA) reductase, we herein report the molecular modeling studies on a series of pyrrole-
ligated oxadiazole compounds synthesized by Rane et al [13].  

Two-dimensional (2D) and three-dimensional (3D) quantitative structure-activity relation-
ship (QSAR) studies were carried out. New chemical entities (NCEs) were then designed 
based upon the results of the 2D- QSAR and 3D-QSAR studies. Also, docking studies 
provided insight of the interaction of the compounds with the enzyme. 

Results and Discussion 
Uni-Column Statistics revealed the observations (Tab. 1.): 

1. The mean in the test set was found to be higher than the mean in the training set, 
indicating the presence of relatively more active molecules as compared to inactive ones. 

2. A higher standard deviation in the training set indicates a wide distribution of activity of 
the molecules as compared to the test set molecules. 
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Tab. 1.  Uni-Column statistics for the training set and test set. 

 

Descriptors that have shown either direct or indirect correlation with activity by more than 
0.30 and intercorrelation less than 0.8 generated for the selected series of compounds 
have been considered (Tab.2.). 

Tab. 2.  Correlation matrix 

 

Interpretation of 2D-QSAR 
Of the different methods carried out for 2D- QSAR, one of the best models was with 2D 
multiple linear regression (MLR) QSAR models and it showed the following statistical 
parameters: r2= 0.9827, cross-validated r2 i.e. q2= 0.5754 and parameter to assess 
external validation i.e. pred_r2= 0.8392 (Tab. 3). Descriptors such as chiV3Cluster, 
XKAverage, T_O_O_5, Rotatable Bond Count, SdsCHE-index were generated using the 
MLR method.  

pMIC = + 6.6224 (chiV3Cluster) − 3.1570 (XKAverage) + 1.6748 (T_O_O_5) − 0.2851  
(RotatableBondCount) + 0.0873 (SdsCHE-index)  

Tab. 3.  Statistical results of 2D- QSAR generated by MLR 

Statistical  
Parameter 

2D- QSAR MLR  
analysis values 

Contributing  
descriptors 

n 16 chiV3Cluster 
r2 0.9827 XKAverage 
r2 se 0.1134 T_O_O_5 
q2 0.5754 RotatableBondCount 
q2 se 0.3615 SdsCHE-index 
F test 113.3738  
pred_r2 0.8392  
pred_r2se 0.2757  

Model-1 Column name Average Max Min Std.dev. Sum 
Training pMIC −1.1986 −0.1761 −2.1638 0.7035 −19.1770 
Test pMIC −1.6286 −0.9542 −2.0719 0.4754 −6.5146 

Descriptor chiV3Cluster XKAverage T_O_O_5 Rotatable Bond  
Count 

SdsCHE-
index 

chiV3Cluster 1 −0.4728 −0.61661 −0.63246 0.3423 
XKAverage −0.4728 1 0.71216 0.726289 0.444362 
T_O_O_5 −0.61661 0.71216 1 0.729458 0.553539 
Rotatable Bond  
Count −0.63246 0.726289 0.729458 1 0.5 

SdsCHE-index 0.3423 0.444362 0.553539 0.5 1 
pMIC 0.9387 0.6475 −0.1257 0.2749 0.4148 
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The above-mentioned descriptors showed the highest correlation with activity and also 
showed a proper distribution of data points (Fig. 1b). To increase the predictive power, 
different combinations of selected descriptors were tested by keeping T_O_O_5 as a 
constant descriptor. A careful observation of descriptors in the model (Fig.1a) suggested 
that: 

T_O_O_5 is an indicator variable which positively contributes to the QSAR equation up to 
30% and signifies that the presence of an oxygen group at the R1 position of the ring is the 
most influential for ENR inhibitory activity. The descriptors like the sds CHE index indicates 
the number of –CH groups connected with one double bond and one single bond. Also, 
the chiV3 cluster signifies the valence molecular connectivity index of a third-order cluster. 
The other descriptors, XKAverage, Rotatable Bond Count, which are inversely proportional 
to activity, show that the average hydrophobicity value and rotatable bond count may be 
detrimental to biological activity. 

  
a b 

Fig. 1. a: Contribution plot of selected descriptors.  
b: Plot of Actual versus predicted Activity 

Interpretation of 3D- QSAR Model:  
3D-QSAR was used to optimize the electrostatic, steric, and hydrophobic requirements 
around the oxadiazole-ligated pyrrole pharmacophore. 3D data points were generated that 
contributed to the simulated annealing k-nearest neighbor molecular field analysis (SA 
kNN–MFA) 3D-QSAR model. The data points generated by 3D-QSAR are shown in Fig. 2.  

The best model generated by the SA kNN-MFA method showed a q2, pred_r,2 and  
k-nearest neighbor as 0.5124, 0.7166, and 2, respectively (Tab. 4). 

The ranges of data point values were based on the variation of the field values at the 
chosen points using the most active molecule and its nearest neighbor set. The points 
generated in the SA kNN–MFA 3D-QSAR model were S_1048, H_457,E_348, E_235 i.e. 
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steric, hydrophobic, and electronic data points at lattice points 1048, 457, 348, and 235, 
respectively. Negative steric values indicated that the less steric groups were required to 
increase activity. Similarly positive and negative values in the electrostatic field descriptors 
indicated the requirement of electropositive and electronegative electrostatic potential, 
respectively, for enhancing the biological activity of oxadiazole-ligated pyrrole pharmaco-
phore derivatives. 

Based on the results, the 2D and 3D QSAR pharmacophoric requirements for oxadiazole-
ligated pyrrole pharmacophore are compiled in Fig. 3.  

Tab. 4. Statistical results of 3D- QSAR generated by SA kNN-MFA 

Statistical parameter 3D-QSAR SA-kNN-MFA 
q2 0.5124 
q2 se 0.3647 
Pred_r2 0.7166 
Pred_r2 se 0.4207 
N 15 
K nearest neighbor 2 
Contributing descriptors S_1048,H_457, E_348, E_235 

 

 
Fig. 2.  Common template data points generated using the kNN–MFA method  

(3D-QSAR) in a 3D rectangular grid showing contributions of electrostatic, 
hydrophobic, and steric functional groups for significant antitubercular activity. 
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Fig. 3.  Pharmacophoric requirements around pyrrole-ligated oxadiazole derivatives 

Design of New Chemical Entities (NCEs) Containing Pyrrole-Ligated Oxadiazole 
Pharmacophore 
The pharmacophore optimizing of pyrrole-ligated oxadiazole and designing NCEs to have 
potent antitubercular activity was done based on the results of 2D- and 3D-QSAR studies. 
All of the designed NCEs (Tab. 5) showed a Lipinski score of 6 and the predicted activity 
was between the most potent and least potent compound of the reported series.  

Tab. 5.  Structures of designed NCEs. 

N
H

O

N N

Br

Br
R

 
Cpd. no. R Cpd. no. R 

1 3-chlorophenyl 7 3-ethylphenyl 
2 3-bromophenyl 8 3-methoxyphenyl 
3 3-iodophenyl 9 4-methoxyphenyl 
4 4-methylphenyl 10 2-methoxyphenyl 
5 4-ethylphenyl 11 2-nitrophenyl 
6 3-methylphenyl 12 3-nitrophenyl 
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Docking Studies 
Docking studies helped to sort out the designed compounds with good binding affinity 
against the enoyl-ACP (CoA) reductase enzyme (ENR). The docking score in terms of the 
GLIDE score (G-score), the results of the docking studies of the designed compounds of 
oxadiazole-ligated pyrrole series, are presented in Tab. 6. 

Tab. 6.  Results of docking studies of designed compounds of oxadiazole-ligated pyrrole 
series 
Cpd. No. G-Score Hydrogen 

bonds 
Good vdw Bad vdw ugly 

1 −7.099278 1 224 0 0 
2 −6.833546 1 226 0 0 
3 −6.538829 1 239 3 0 
4 −6.440214 1 220 7 0 
5 −6.382636 1 214 2 0 
6 −6.293452 1 197 3 0 
7 −6.146766 0 235 5 0 
8 −6.86602 1 238 9 0 
9 −6.05158 1 242 7 0 
10 −6.96048 1 246 8 0 
11 −7.09647 2 196 3 0 
12 −6.05158 1 207 1 1 
Isoniazid −7.500947 3 155 0 0 

 

G-score 
The scoring function of the GLIDE docking program is presented in the G-score form. A G-
score indicates the binding affinity of the designed compound to the receptor/enzyme. The 
G-scores of the designed NCEs 1 and 11 were found to be −7.099278 and −7.09647, 
respectively, and were comparable with the G-score of the standard drug i.e isoniazid 
(−7.500947). 

H-Bond Interactions 
The H-bond is one of the most widely used parameters for the evaluation of the docking 
results, as it is an influential parameter in the activity of the drug compound. The number 
of H-bond interactions in the standard compounds was compared with that of the designed 
NCEs. The number of H-bond contacts for the designed compounds 1–6, 8–10, and 12 
was found to be one, and compound 11 showed two hydrogen bonds as compared to the 
standard (isoniazid) which showed three hydrogen bonds. 

Contacts 
The contacts are represented in the form of van der Waals (vdw) interactions as good vdw 
interactions, bad vdw interactions, and ugly vdw interactions. 

It was found that all of the designed compounds had a higher number of good vdw, bad 
vdw, and ugly vdw interactions when compared with the standard isoniazid. However, the 
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G-scores for these molecules were lower. In conclusion, the G-score and H-bond 
interactions, and the number of good, bad, and ugly vdw contacts decided the possible 
binding affinity and in turn potency of the designed NCEs.  

Isoniazid showed three hydrogen bonds viz, nitrogen of the pyridine ring with lysine 
(Lys165, 1.858 Å), tertiary N of the hydrazide moiety with serine (Ser94, 2.32 Å), and 
primary N of the hydrazide moiety with glycine (Gly14, 2.036 Å) (Fig.4). 

Docking studies showed that the designed compounds and standard bond in the same 
binding pocket contained the amino acids Lys165 and Gly14. The bromo substituent on 
the pyrrole nucleus formed hydrophobic bonds with isoleucine (Ile 21), serine (Ser20), and 
tryptophan (Trp 222). The nitrogen of pyrrole has shown the hydrogen bond with Gly14. 

Compound 11 showed the H-bond interaction with the Lys165 residue (Fig. 4). The NO 
atom on the benzene ring of the pyrrole-ligated oxadiazole nucleus showed the H-bond 
interaction with the NH group of Lys165 (2.139 Å). 

  
a b 

Fig. 4. Docking interaction of (a) isoniazid with Enoyl-ACP (CoA) reductase and  
(b) Interaction of compound 11 with Enoyl-ACP (CoA) reductase 

Materials and Methods 
Data Set 
A data set (20 molecules) of oxadiazole-ligated pyrrole derivatives with varied chemical 
and biological activities, reported by Rajesh Rane et al. for antimycobacterial activity, was 
considered for the molecular modeling studies [13]. Biological activity expressed in 
minimum inhibitory activities (MIC) was converted into the corresponding pMIC (pMIC = -
log(MIC) values. The structures and antimycobacterial activity of the molecules are given 
in Tab. 7. 
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Tab. 7.  Selected series of oxadiazole-ligated pyrrole derivatives 

N
H

O

N N

Br

Br
R

 
Cpd. No. R MIC(µg/ml) pMIC 
5a 2-hydroxyphenyl- 36.50 −1.56229 
5b phenylacetic- 145.80 −2.16376 
5c 4-aminophenyl- 16.50 −1.21748 
5d 4-chlorophenyl- 9.50 −0.97772 
5e* 4-methoxyphenyl- 56.50 −1.75205 
5f 2,4-dichlorphenyl- 1.60 −0.20412 
5g 2-phenylethenyl 78.50 −1.89487 
5h 4-hydroxyphenyl- 25.00 −1.39794 
5i 5-flouro-2-chlorphenyl- 6.50 −0.81291 
5j* 4-nitrophenyl- 9.00 −0.95424 
5k 4,5-dibromo-1H-pyrrol-2-yl- 3.50 −0.54407 
5l phenyl- 98.70 −1.99432 
5m 2-methoxy-4-vinylphenoyl- 112.50 −2.05115 
5n Pyridine-4-yl 3.50 −0.5563 
5o 4H-chromen-3-yl-vinyl- 2.00 −0.30103 
6* -SH 54.50 −1.7364 
7a methyl-S- 89.50 −1.95182 
7b* ethyl-S- 118.00 −2.07188 
7c phenyl-S- 23.50 −1.37107 
7d acetophenone-S- 1.50 −0.17609 
* indicates test set; pMIC = −logMIC 

 

Computational Details 
All the computational studies were carried out using the V-Life sciences, MOLECULAR 
DESIGN SUITE (MDS) version 3.5 [18].  

All the computational molecules were drawn in Chem. Draw Ultra 8.0 and geometry 
optimization was done using the standard Merck molecular force field (MMFF) with 
distance-dependent dielectric function and energy gradient of 0.001 kcal/mol Å. The 
geometry of each molecule was further optimized with the MOPAC 6 package using the 
semi-empirical AM1 Hamiltonian. The initial conformations were selected and minimized 
using the Powell method until the root-mean-square deviation 0.001 kcal/mol Å was 
achieved [19, 20]. 

Experimental Design  
The dataset of 20 molecules was divided into the training and test sets using the random 
selection method. Random selection is a technique by which all compounds are divided 
into a training set and test set in a specific ratio or percentage. The training and test set 
should be representative of the entire data set, hence while dividing the test and training 
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sets the majority of the molecules should be in the training set, so usually the preferred 
percentage of molecules in the training set is above 70%. Hence in the present study, 80% 
in the training set and 20% in the test set was adopted. By the random selection method, 
20 molecules were divided into the training set (16 molecules) and test set (4 molecules). 
In an attempt to ensure the robustness of the model and increase the predictive ability of 
the QSAR model, they were subjected to a randomization test. It was ensured that 
representative points in the test set were close to those of the training set and vice versa 
and the training set showed chemical and biological diversity [18]. 

Uni-Column Statistics 
Uniform representation of the molecules in the training and test sets was confirmed 
through uni-column statistics. It was observed that the maximum value of the pMIC50 of 
the test set was less than or equal to the maximum value of the pMIC50 of the training set, 
and the minimum value of the pMIC50 of the test set was higher than or equal to the 
minimum value of the pMIC50 of the training set, indicating that the test set was 
interpolative and derived within the minimum-maximum range of the training set. Values 
for the mean and standard deviation pMIC50 of the training and test sets indicate a relative 
difference of the mean and point density distribution of the two sets [17, 21]. 

2D-QSAR 
Different models were generated for the 2D-QSAR study using MLR with simulated 
annealing as the variable selection method [21–23].  

Various 2D descriptors like topological, physicochemical, alignment-independent, and 
atom-type count descriptors were calculated after about 100 independent descriptors were 
processed by removing the invariable column. Further refinement in the selection of 
descriptors has been carried out using the correlation matrix, to obtain the most 
representative descriptors [24–26]. 

3D-QSAR MODEL 
The selected series of compounds were aligned using the template-based alignment 
method (Fig. 2) and the resulting set of aligned molecules was then used to build the 3D- 
QSAR models. In the template-based alignment method, pharmacophore is first selected 
and its template is drawn. On the chosen template, all the molecules are then subjected to 
alignment. The molecules that are not aligned due to mismatch of the template or any 
other reason are not considered for alignment [18]. 

The training and test sets were selected by random selection in the range of 80%. 
Regression was done by the SA-kNN method implementing leave-one-out (LOO) cross-
validation [21–23]. Leave-one-out (LOO) cross-validation is one of the simplest procedures 
for model validation. It consists of removing each sample once and a new model is created 
for the remaining samples. Thus if there are N number of samples, LOO is done N times, 
generating predicted values for each number of factors. The LOO approach changes the 
data structure by removing 1/Nth compound in each cross-validation turn leading to an 
increasingly smaller perturbation with increasing N. The differences between the 
experimental and estimated values from the model are used to calculate the root mean 
square error of the cross-validation (RMSECV) and the correlation coefficient of leave-one-
out cross-validation for the training set.  
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The 3D descriptors were calculated as electrostatic, steric, and hydrophobic [23, 27].  

Many models were generated, but the best model satisfied all of the following statistical 
parameters: 

n, number of molecules (>20 molecules);  
k, number of descriptors in a model (statistically n ⁄ 5 descriptors in a model);  
df, degree of freedom (n – k -1) (higher is better); 
r2, square of regression (>0.7);  
q2, cross-validated r2(>0.5);  
pred_r2 for external test set (>0.5);  
SEE, standard error of estimate (smaller is better);  
F-test, F-test for statistical significance of the model (higher is better, for the same 
set of descriptors and compounds);  
F_prob. Alpha – error probability (smaller is better);  
Z score, calculated by the randomization test (higher is better);  
best_ran_q2, highest q2value in the randomization test (as low as compared to q2); 
best_ran_r2, highest r2 value in the randomization test (as low as compared to r2);  
a- statistical significance parameter by randomization test (<0.01) 

 

In the kNN method, an unknown member is classified according to the majority of its 
k-nearest neighbors in the training set. In this method, the activity of each compound is 
predicted as an average activity of k most chemically similar compounds from that data 
set. If the residual values obtained by the subtraction of the predicted activities from the 
biological activities are toward zero, the model is said to have a good predictive ability. The 
plots of observed versus predicted activities of both training and test set molecules helped 
in the cross-validation of the kNN-QSAR model [14, 17].  

Model Validation 
To test the stability and predictive ability of the developed QSAR models, the models were 
validated using internal validation, external validation, and randomization test. The LOO 
method was used to validate all of the models generated by 2D and 3D-QSAR.  

Internal Validation 
This was carried out to check whether the training and test set molecules were properly 
distributed. All cross-validation studies were performed by considering the fact that a value 
of q2 is > 0.5 and r2 > 0.7 (r2 is an indication of training set and q2 is an indication of cross-
validated r2, i.e. test set molecules).  

External Validation 
External validation of the generated models was carried out by predicting the activity of the 
test set of the compounds. This was done by considering the value of pred_r2, which 
should be above 0.5.  

The generated models were found to have values in the required range. 
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Randomization Test 
This is the most popular tool used by researchers to prevent chance correlation. The 
models generated were compared with a random data set obtained by rearranging the 
activities in the training set. After each permutation, r2 and q2 were recorded. If in each 
case the r2 and q2 gave very low values compared to the original data, then we can say 
with some confidence that the original QSAR model was not generated by chance. The 
best_ran_q2, highest q2 value in the randomization test, was low compared to q2; 
best_ran_r2, highest r2 value in the randomization test, was low compared to r2; the 
Z-score gave the statistical significance of the model (<0.01). 

The standard error of estimate (SEE) was also considered before selecting a particular 
model [14, 17].  

Designing of New Chemical Entities (NCEs) 
Based on 2D-QSAR and 3D-QSAR, the NCEs that would follow Lipinski's rule were 
designed using the LEADGROW tool. [21, 28]. These designed NCEs were then subjected 
to docking studies. 

Docking Studies 
The molecular docking tool, Glide (Schrödinger, LLC, New York) software was used for 
studying the binding modes of the designed compounds into the binding pocket of enoyl-
ACP (CoA) reductase enzyme (ENR). 

The crystal structures of ENR were obtained from a protein databank (PDB Code2IDZ). All 
structures were prepared for docking using ‘protein preparation wizard’ in Maestro Wizard 
8.5.  

The final evaluation was done with glide score (docking score) and the single best pose 
was generated as the output for the particular ligand.  

Gscore = a x vdw + b* cow þ Lipo + H bond + Metal + BuryP + Rot B + Site 

where, vdW, van der Waal energy; Coul, Coulomb energy; Lipo, lipophilic contact term; H 
Bond, hydrogen-bonding term; Metal, metal-binding term; Bury P, penalty for buried polar 
groups; RotB, penalty for freezing rotatable bonds; Site, polar interactions at the active 
site; and the coefficients of vdW and Coul are: a = 0.065,b = 0.130. 

Conclusion 
The present study was focused on the development of the potential compound containing 
the pyrrole-ligated oxadiazole analogue with anti-TB activity using QSAR studies. 2D- and 
3D-QSAR results shed light on the electronic, steric, hydrophobic, and topological nature 
of the substitution pattern around the selected pyrrole-ligated oxadiazole pharmacophore. 
The 2D-QSAR study indicated the requirement of T_O_O_5 and the sds CHE index which 
positively contributed to the biological activity. 3D-QSAR gave information about the nature 
of the substituents like the electron-withdrawing group at the 4th and 5th position of pyrrole, 
the less steric group at meta, para, and ortho position on the benzene ring, the electron-
withdrawing group at the 4th position of benzene, and finally the more hydrophobic group 
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at para position of the benzene ring is required for good antimycobacterial activity. The 
designed compounds were subjected to Lipinski’s filter, which gave information about the 
pharmacokinetic behavior. The designed compounds also showed a good binding 
interaction with the enoyl-ACP (CoA) reductase enzyme. 

The correctness of the rationale behind these dry lab studies can be further validated by 
carrying out the synthesis and antitubercular activity of the designed NCEs.  
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