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Abstract 
An important goal for drug development within the pharmaceutical industry is 
the application of simple methods to determine human pharmacokinetic 
parameters. Effective computing tools are able to increase scientists’ ability to 
make precise selections of chemical compounds in accordance with desired 
pharmacokinetic and safety profiles. This work presents a method for making 
predictions of the clearance, plasma protein binding, and volume of distribution 
for alkaloid drugs. The tools used in this method were genetic algorithms (GAs) 
combined with artificial neural networks (ANNs) and these were applied to 
select the most relevant molecular descriptors and to develop quantitative 
structure-pharmacokinetic relationship (QSPkR) models. Results showed that 
three-dimensional structural descriptors had more influence on QSPkR models. 
The models developed in this study were able to predict systemic clearance, 
volume of distribution, and plasma protein binding with normalized root mean 
square error (NRMSE) values of 0.151, 0.263, and 0.423, respectively. These 
results demonstrate an acceptable level of efficiency of the developed models 
for the prediction of pharmacokinetic parameters. 
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Introduction 
Many studies on pharmacokinetics report that most of the key causes of costly failures in 
drug development are because of poor pharmacokinetics and lack of efficacy (Fig. 1). It is 
therefore essential that these areas be considered as early as possible in the process of 
drug development [1, 3]. Screening through pharmacokinetic properties and toxicity is 
usually performed in vitro using animal models. These procedures are time-consuming 
and expensive. Furthermore, the pharmacokinetics of compounds tested on animals may 
not necessarily be generalized to determine human responses [4, 5]. 

 
Fig. 1.  The basic sources of failure in drug development [2]. 

Considerable research has been done on pharmacokinetic predictions for new drugs and 
these are performed without any further in vitro or in vivo experiments. Constructing 
prediction models involves taking known pharmacokinetic data from a set of drugs already 
in use that are closely related in terms of their physicochemical properties. Then, the 
model that is subsequently constructed is used to predict unknown pharmacokinetic 
parameters of the new entities. Despite recent progress in this field, more research and 
development is still needed to increase the precision of such predictions. 

Quantitative structure-pharmacokinetic relationship (QSPkR) modeling has been 
successfully used in drug discovery and development processes [6]. These studies use 
computational tools to determine the correlations between the pharmacokinetic properties 
and a set of structural descriptors of the molecules in question. 

The efficiency of a model for pharmacokinetic prediction depends on the selection of the 
most appropriate mathematical tools [7]; it also depends on a sufficiently large set of 
molecular descriptors, and a reliable set of experimental data relating to the purpose of the 
model. Simple multiple linear regression, often used in earlier QSPkR studies, has been 



 Prediction of Pharmacokinetic Parameters Using a Genetic Algorithm Combined with an Artificial … 55 

Sci Pharm. 2014; 82: 53–70 

gradually replaced by modern techniques of multivariate analysis such as the artificial 
neural network (ANN) and genetic algorithms (GA). 

A GA is an effective stochastic optimization technique that has been widely employed by 
chemists for the development of QSPkR and quantitative structure-activity relationship 
(QSAR) models [8–10]. The GA-QSPR can recognize how the modeled molecular 
properties are affected by their descriptors. Furthermore, as an optimization technique, GA 
can work with many descriptors [11]. 

GAs have often been used in combination with ANNs [12]. Genetic neural networks 
(GNNs) provide a good method for pruning works that involve large numbers of variables. 
Comparatively, GNNs have been successfully applied for descriptor selection in QSAR 
with a fast processing speed [13]. By increasing the ability of computational methods to 
acquire more descriptors from a molecular structure, GNNs are becoming a more 
commonly used tool for selecting the most relevant descriptors [14]. 

Alkaloid drugs were selected for the application in this investigation because they are an 
important class of drug [15]. Around 1,481 descriptors including zero, one, two, and three-
dimensional types, which may influence the pharmacokinetic properties were acquired 
from Dragon software [16]. A GA was used to select the key molecular descriptors from a 
wide range of descriptors and ANN was applied to construct QSPkR models. 

Experimental and Methods 
Database of Pharmacokinetic Parameters 
Human pharmacokinetic data relating to 39 alkaloid drugs were extracted from different 
books and literature including: Clarke's Analysis of Drugs and Poisons [17]; Martindale the 
Complete Drug Reference [18]; Goodman and Gilman’s the Pharmacological Basic of 
Therapeutics [19]; Lexi-Comp Program [20]; United States Pharmacopeia [21]; and 
scientific papers [22–28]. The acquired pharmacokinetic data were normalized within the 
range of 0-1.  

Structural Descriptors 
ChemDraw 8.0 Ultra (CambridgeSoft) was used to generate the molecular structure files 
from each drug’s generic terms. The files relating to the molecular structure were then 
imported to Chem3D Ultra (version 8.0; CambridgeSoft) to minimize the energy state of 
the three-dimensional structure of each molecule by using Molecular Mechanics-2 (MM2). 
The files generated by Chem3D Ultra were imported to the Dragon program (Version 2.1; 
Talete srl, Milano, Italy) to generate a total of 1,481 descriptors. Similar to pharmacokinetic 
data, the acquired descriptor values were normalized to the range of 0-1. 

Outline of Descriptor Selection and Modeling 
Among the computed descriptors, GA selected a number of zero, one, two, and three-
dimensional (1, 2 & 3D) [29] descriptors (Table 1), which had more influence on 
pharmacokinetic parameters. Outcomes of the GA were then processed by ANN. An 
overall outline of the processing is shown in Fig. 2. 
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Tab. 1.  List of molecular descriptors  

Descriptor type List of descriptor groups 
0 Dimensional Constitutional descriptor 

1 Dimensional 

Functional groups 
Atom-centered fragments 
Empirical descriptors 
Properties 

2 Dimensional  

Topological descriptors 
Molecular walk counts 
BCUT descriptors 
Galvez topol. Charge indices 
2D autocorrelations 

3 Dimensional 

Charge descriptors 
Aromaticity indices 
Geometrical  
RDF descriptors 
Randic molecular descriptors 
3D-MoRSE descriptors 
WHIM descriptors 
GETAWAY descriptors 

 

 

 

 

 

 

 

 

  
Fig. 2.  General outline of the QSPkR method 
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GA 
A GA was developed using Matlab software (MathWorks, version 7.1). GA selects the best 
subset of descriptors. A flowchart of GA processing is shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 3.  Flowchart describing the steps used in selecting the best subset of descriptors 
by GA 

Chromosome and Gene 
Each chromosome encodes a different subset of descriptors as binary strings. Each binary 
value is considered as a gene. "Zero" bit in a chromosome means that the corresponding 
descriptor is excluded from the subset, whereas "one" means that the corresponding 
descriptor is included in the subset. The length of each chromosome is equal to the total 
number of descriptors (1,481 descriptors). 

Production of Initial Chromosome 
For the first generation, a selection of 500 chromosomes was randomly generated. Each 
gene on every chromosome was randomly assigned a value of "zero" or "one".  

Crossover Function 
In the crossover procedure, new chromosomes are generated from a pair of randomly 
selected parent chromosomes. A crossover probability of one was used in this work. Many 
methods have been proposed for the crossover technique [31, 32]. Here, two 
chromosomes were considered as parent chromosomes. A random number was 
generated between one and 1,481. This number was designated as the location of 
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breaking in the chromosome. Two broken chromosomes were joined to create two new 
chromosomes. 

Mutation Function 
At this stage, a gene in each chromosome was altered with a low probability. The mutating 
gene was selected randomly. A random number was generated between zero and one 
and if it was less than 0.1, the mutation was carried out (probability 0.1). In other words, 
they were altered from zero to one or vice versa. This function could delete or add one 
descriptor from (to) the descriptor list of chromosomes [31, 32].  

Fitness Function 
A fitness function was developed to score the chromosomes and determine the survival 
probability of the chromosomes. Descriptors with more linear relations with the 
investigated pharmacokinetic parameter should be identified by the fitness function and 
grant higher scores. To calculate the overall fitness function of a chromosome, two drugs 
were randomly selected and the difference between their normalized pharmacokinetic 
parameters was calculated. Then, the differences between the normalized values of each 
descriptor (gene) in each pair of drugs were calculated individually and summed to make 
the total difference of the descriptors. It should be mentioned that only those descriptors 
that existed in the corresponding chromosome (have one value) were considered in the 
calculations. An award and penalty parameter with the value of five was considered in the 
fitness function. If the difference between the normalized pharmacokinetic parameter of 
each pair of drugs was less than 0.1 (epsilon), the award value was added to the fitness, 
and the descriptor difference between the two drugs was subtracted from the fitness value 
[30]. Otherwise, the penalty value was allocated to the fitness value. These calculations 
were done for all descriptors and for all possible combinations of drug pairs (703 
combinations for 39 drugs).  

Equ. 1.  Fitness function 

Fi,j,k=�
–Penalty                                  if �dpi – dpj� ≥epsilon

Award –�ddi,k – ddj,k�                if �dpi – dpj�<epsilon
 

 

Fitness= �     �      � Fdi,dj,descriptor

|drugs |

dj=di+1

|drugs |–1

di=1

|descriptors |

descriptor=1

 

 
In Equation 1, dpi is the normalized pharmacokinetic parameter value for ith and ddi, k is 
the kth normalized descriptor value for the ith drug. As shown in Equation 1, the fitness 
score will be decreased in cases with a larger number of descriptors. Therefore, as the 
computation proceeds, the number of genes in the chromosomes decreased for the sake 
of increasing the fitness score. To prevent the complete abolition of the genes, a limit 
number of 15 was set for the genes (descriptors) and the computation terminates after this 
limit is reached. 
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Artificial Neural Network 
After finding relevant descriptors determined by the GA, the drugs were randomly split into 
two groups: 33 drugs were allocated to training the ANN and the six remaining drugs were 
allocated to testing the ANN models (repeated random sub-sampling validation). A back-
propagation ANN model was performed using the Matlab neural network toolbox. By 
performing these operations (from step fitness evaluation to mutation function), the 
outcomes were continuously surveyed. A three-layered, feed-forward, back-propagation 
type of network, based on the Levenberg-Marquardt back-propagation algorithm, was 
used for all models, and it contained a bias neuron in each layer and a single neuron in the 
output layer. Weight adjustment was performed according to the generalized delta rule 
[33]. The epoch was set at 50 . 

In this work, the correlation coefficient model was used to evaluate efficacy. The 
correlation coefficient was calculated by Equation 2 [34]: 

Equ. 2. R=�1 – 
∑ �yi

obs – yi
pred�

2N
i=1

∑ � yi
obs – y� obs�

2N
i=1

 

Where N is the set size, yi obs is the observed value for compound i and yi predict is the 
predicted value for compound i. 

Another statistical parameter was the root mean square error (RMSE). The RMSE 
represents deviations of the predicted parameters from the experimental value and is 
calculated by Equation 3 [35].  

Equ. 3. RMSE = �
∑ �yi

obs – yi
pred�

2n
i=1

n
   

Where n is the total number of compounds; yi obs is the observed dependent value, and yi 
predict is the predicted dependent value. 

Another statistical parameter that has been used was the normalized root mean square 
error (NRMSE), which was calculated by Equation 4 

Equ. 4. NRMSE = RMSE
xmax

obs  – xmin
obs 

Wherexmax
obs  and xmin

obs are maximum and minimum values of observed values for each 
pharmacokinetic parameter, respectively. 

Results and Discussion 
GA descriptor selection is fast and flexible. Furthermore, ANN modeling is a strong and 
expert tool [36] for working with a large number of descriptors. It is known that a larger 
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data set for training ANN models leads to models with better efficiency [37]. However, the 
collection of pharmacokinetic data for a large number of drugs is limited due to a limited 
number of drugs and a lack of adequate and reliable scientific sources [38, 39]. There are 
an inadequate number of alkaloid drugs cited in the related literature, so extracting 
pharmacokinetic parameters is problematic. These conditions made it reasonable to 
choose a combined technique of GA-ANN for use in the study. By only using GA, the 
models may not have been valid when based on a training set of less than 1000 
compounds [40–42]. Besides, the models based on only ANN have the problem of over 
fitting when there are a large number of descriptors [43]. Thus, GA was applied to make 
selections for descriptors that are more relevant, and ANN was applied to make models of 
predictions. This combination could be used to compensate for the specific disadvantages 
of each method [44]. 

Homogeneity  
Results of the independent sample t-test showed no significant difference between the 
training and test sets for all examined pharmacokinetic parameters. The Levene test for 
homogeneity variance revealed no significant difference (Table 2). 

Tab. 2.  Statistical analysis 

Models  Levenea T-testb 
Systemic clearance 0.401 0.679 
Volume of distribution 0.309 0.517 
Plasma protein binding 0.644 0.330 
a Levene homogeneity of variance. 
b Independent samples T-test. 

 

Alkaloids are characterized by substantial structural diversity and there is almost no unique 
classification for this group [36–40]. Due to this diversity, there is a diverse range of 
pharmacokinetic parameters in this group [45].  

Descriptor Analysis 
The most relevant descriptors for each pharmacokinetic parameter chosen by GA are 
listed in Tables 3–5. 

These descriptors were previously reported to have significance rule in modeling 
pharmacokinetic parameters [46]. For each pharmacokinetic parameter prediction, at least 
half of the effective descriptors were of the 3D type. Previous studies have also reported 
on the key role of 3D descriptors in the predictions of pharmacokinetic parameters such as 
plasma protein binding [47, 48]. 3D conformation of biological molecules and drug 
molecules can explain the important role of these types of descriptors in pharmacokinetic 
predictions [49, 50]. 
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Tab. 3.  The most relevant descriptors for systemic clearance 

Descriptor type Symbol and meaning 

Topological VEp1: eigenvector coefficient sum from polarizability 
weighted distance metrix 

BCUT BEHv3: highest eigenvalue n.3 of burden matrix/ weighted 
by atomic van der waals volumes 

Galves topological  
charge indexes GGI5: topological charge index of order5 

2D atocorrelatione 

ATS1m: Broto-Moreau autocorrelation of a topological 
structure – lag1 / weighted by atomic masses. 

ATS2e: Broto-Moreau autocorrelation of a topological 
structure –lag2 / weighted by atomic Sanderson electro 

negativities. 
ATS5p: Broto-Moreau autocorrelation of a topological 
structure –lag5 / weighted by atomic polarizabilities. 

GATS5e: Garry autocorrelation – lag5 / weighted by atomic 
Sandeson electro negativities. 

Geometrical SPAN: span R. 
G(N…N): sum of geometrical distance between N…N 

RDF 

RDF120m: Radial Distribution Function – 12.0/ weighted by 
atomic masses. 

RDF150v: Radial Distribution Function – 15.0/ weighted by 
atomic van der Waals volumes. 

3D- MoRSE 

Mor11u: 3D-MoRSE – signal11 / unweighted. 
Mor20v: 3D-MoRSE – signal20 / weighted by atomic van der 

Waals volumes. 
Mor26v: 3D-MoRSE – signal26 / weighted by atomic van der 

Waals volumes. 

 

Topological descriptors, which are calculated from the 2D structure of molecules, are 
single-valued descriptors [51]. They are sensitive to size, shape, and branching [52, 53]. 
Systemic clearance is extensively affected by topological descriptors. The same result has 
been reported for other drugs [54]. 

Optimum Models 
The predicted and observed values for each drug in a test set were compared and results 
are represented in Fig. 4 and Table 6.  
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Tab. 4.  The most relevant descriptors for volume of distribution 

Descriptor type Symbol and meaning 

BCUT BEHe2: highest eigenvalue n.2 of Burden matrix/ 
weighted by atomic Sanderson electro negativities. 

Galves topological  
charge indexes JGI2: mean topological charge index of order2. 

2D atocorrelatione 

MATS7m: mean autocorrelation – lag7/ weighted by 
atomic masses. 

MATS8p: mean autocorrelation – lag8/ weighted by 
atomic polarizabilities. 

GATS4e: Geary autocorrelation – lag4/ weighted by 
atomic Sanderson electro negativities. 

Geometrical SPAM: average span R. 

RDF RDF155m: Radial distribution function- 15.5 / weighted by 
atomic masses. 

3D- MoRSE 

Mor30u: 3D- MoRSE – signal 30/unweighted. 
Mor30m: 3D- MoRSE – signal 30/weighted by atomic 

masses. 
Mor04p: 3D- MoRSE – signal 04/weighted by atomic 

polarizabilities. 

WHIM 

P1e: 1st component shape directional WHIM index/ 
weighted by atomic Sanderson electro negativities. 
L2p: 2nd component size directional WHIM index/ 

weighted by atomic polarizabilities. 

GETAWAY 

HATS2m: leverage-weighted autocorrelation of 
lag2/weighted by atomic masses. 

H7e: H autocorrelation of lag7/ weighted by atomic 
Sanderson electro negativities. 

 

Values determined by the correlation coefficient for the constructed models ranged from 
0.957 to 0.991 (Table 6). Correlation coefficient reports in a number of other studies 
revealed a wide range of values in different studies: 0.855 to 0.992 for predictions of 
pharmacokinetic parameters [44–56], 0.71 to 0.79 for predictions of oral bioavailability of 
diverse compounds [57], 0.78 for human oral bioavailability, 0.92 for plasma protein 
binding, 0.81 for urinary excretion [58], and 0.85 for blood-brain barrier penetration [35]. 
The correlation coefficient values of the current work were acceptable despite the limited 
number of drugs that were studied. This could be explained by the large number of 
molecular descriptors that were generated by the Dragon program, emphasizing the 
known fact that using more descriptors will improve the accuracy of the GA descriptor 
selection and ANN modeling [11, 59].  
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Tab. 5.  The most relevant descriptors for plasma protein binding  

Descriptor type Symbol and meaning 
Galves topological  
charge indexes JGI10: mean topological charge index of order10. 

2D atocorrelatione 

ATS1v: broto – oreau autocorrelation of a topological 
structure – lag1/ weighted by atomic van der Waals volumes. 
MATS1v: Moran autocorrelation – lag1/weighted by atomic 

van der waals volumes. 
MATS2e: Moran autocorrelation – lag2/weighted by atomic 

Sanderson electro negativities. 
MATS6p: Moran autocorrelation – lag6/weighted by atomic 

polarizabilities. 
GATS1m: geary autocorrelation – lag 1/ weighted by atomic 

masses. 

3D- MoRSE 

Mor29u: 3D- MoRSE – signal 29/ unweighted. 
Mor24v: 3D- MoRSE – signal 24/ weighted by atomic van der 

Waals volumes. 
Mor22e: 3D- MoRSE – signal 22/ weighted by atomic 

Sanderson electro negativities. 

WHIM E3p: 3rd component accessibility directional WHIM index/ 
weighted by atomic polarizabilities. 

GETAWAY 

H7m: H autocorrelation of lag7/ weighted by atomic masses. 
H5p: H autocorrelation of lag5/ weighted by atomic 

polarizability. 
R3u+: R maximal autocorrelation of lag3/ unweighted. 

R8m: R autocorrelation of lag8/ weighted by atomic masses. 

 

The NRMSE of every test set provides an overall view of the prediction ability of a model. 
Values for NRMSE were different for each model and indicate differences in terms of the 
ability of ANN to make predictions for each parameter [60].  

Clearance is an extremely important parameter for clinical application [61]. It is also useful 
for studying the elimination mechanism [62]. Systemic clearance is the total clearances of 
individual organs, and is very complex [63]. Drugs undergo different and stepwise 
metabolic pathways such as Phase I, Phase II, and conjugation transformations [64, 65]. 
However, the same as for other investigated pharmacokinetic parameters, the systemic 
clearance model has acceptable RMSE and NRMSE values (Table 6). Furthermore, a 
good agreement was observed between the predicted values of volume of distribution and 
plasma protein binding and hence, small RMSE and NRMSE were seen. Turner et al. 
reported that RMSE values for plasma protein binding were dependent on the extent of 
drug protein binding. They reported a higher RMSE for drugs with lower protein binding 
and a lower RMSE for drugs with higher protein binding. Note that drugs with high plasma 
protein binding are important in clinical practice. Compared to reports of Turner et al., the 
efficiency of predictions for plasma protein binding were improved by the technique applied 
in this study due to the use of GA and the inclusion of 3D descriptors in predictions [47]. 
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Fig. 4.  Predicted vs. observed experimental pharmacokinetic values for optimum ANN 

models 
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Tab. 6.  Correlation coefficient, RMSE, and NRMSE values for each model 

 Ra RMSEb NRMSEc 

Systemic clearance (mL/min/Kg) 0.972 7.03 0.151 
Volume of distribution (L/Kg) 0.957 0.995 0.263 
Plasma protein binding (%) 0.991 0.055 0.423 
a Correlation coefficient; b Root mean square error; c Normalized RMSE 

 

Conclusion 
GA and the modeling performed by ANN were effective in choosing the most relevant 
descriptors for each parameter. The prediction efficiency of the developed models was 
acceptable for the investigated pharmacokinetic parameters. Using a large number of 
descriptors, especially the 3D type, could explain the enhanced efficiency of selecting 
predictions that has been determined in this work.  

It is expected that more data will be available for testing alkaloid drugs in future literature, 
and this may lead to further improvements in future QSPkR models. 
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