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Abstract 
The aim of this study is to enhance the predictivity power of CoMFA and 
CoMSIA models by means of different variable selection algorithms. The 
genetic algorithm (GA), successive projection algorithm (SPA), stepwise 
multiple linear regression (SW-MLR), and the enhanced replacement method 
(ERM) were used and tested as variable selection algorithms. Then, the 
selected variables were used to generate a simple and predictive model by the 
multilinear regression algorithm. A set of 74 histamine H3 antagonists were split 
into 40 compounds as a training set, and 17 compounds as a test set, by the 
Kennard-Stone algorithm. Before splitting the data, 17 compounds were 
randomly selected from the pool of the whole data set as an evaluation set 
without any supervision, pretreatment, or visual inspection. Among applied 
variable selection algorithms, ERM had noticeable improvement on the 
statistical parameters. The r2 values of training, test, and evaluation sets for the 
ERM-MLR model using CoMFA fields were 0.9560, 0.8630, and 0.8460 and 
using the CoMSIA fields were 0.9800, 0.8521, and 0.9080, respectively. In this 
study, the principles of organization for economic cooperation and development 
(OECD) for regulatory acceptability of QSARs are considered. 
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Introduction 
One of the most frequently used QSAR techniques is the comparative molecular field 
analysis (CoMFA) [1–5]. The CoMFA method was developed to take into account the 
effect of steric and electrostatic interactions, which are involved in blocking a molecule 
from its receptor. In CoMFA, each molecule is located within grid-spacing through a grid-
box dimension, and a probe calculates the energy fields between it and other aligned 
molecules. In this method, we assume that the whole molecule interacts with the receptor 
in all directions and the energy fields are then calculated for all of the grids. As a result, 
thousands of interactions participate in the model. These variables consist of two types: 
some of them have a correlation with biological activity and the others are noisy variables, 
which are poorly informative and irrelevant to the biological activities [5]. However, we 
know from the results of X-ray crystallography of a protein-ligand complex that only some 
parts of the molecule interact with the receptor [6, 7]. 

In the literature, there are some solutions to address this problem. First, series are 
methods that try to improve the quality of CoMFA models by discriminating between 
informative and meaningless variables. The genetic algorithm and GOLPE are two 
variable selection algorithms that have been used previously to extract meaningful 
variables from the large pool of calculated interactions [8, 9]. It is also possible to select a 
cluster of variables, rather than a single variable, by a smart region definition (SRD) 
procedure, which is as advanced as the GOLPE algorithm [10]. The prediction-weighted 
partial least-squares regression algorithm (PWPLS) selects predictor variables and weight 
them to create a model that is more robust than the CoMFA model [11]. CoMFA region 
focusing (CoMFA-RF) is another similar attempt to weight the lattice points in a CoMFA 
region to enhance or attenuate the contribution of these points to the PLS model [12]. In 
contrast to the first series, there are some methods such as Compass [13], SURFCOMP 
[14], or CoMSA [15] AFMoC [16] that try to generate variables that are more effective and 
reduce non-predictive variables. One of the differences between CoMFA and these 
methods is that they try to sample CoMFA-like fields on the molecular surface or near such 
a surface. Therefore, the amount of noisy variables decreases. In addition, there are some 
methods which use receptor information to avoid generation of non-informative variables.  

CoMSIA (comparative molecular similarity indices analysis), is developed based on 
similarity indices. Unlike CoMFA, CoMSIA applies a Gaussian-type distance-dependent 
function to calculate steric, electrostatic, hydrophobic, and hydrogen bonding donor and 
acceptor fields [17, 18]. Like CoMFA, CoMSIA uses an atomic probe at regularly spaced 
grid points around the aligned molecules. Then, the probe experiences a large number of 
noisy and parametric interactions. On the other hand, it has been proven that variable 
selection and outlier detection are related. Then the molecules that are chosen as outliers 
by a set of descriptors may be within the model when described by a different set of 
descriptors, and also the regression model will be distorted toward the outliers. In addition, 
as the number of descriptors increases, the risk of chance correlation may increase 
19, 20]. An intelligence variable selection with true judgment between informative and 
noisy variables could generate an ideal model, which is predictive, robust, and has no 
molecule labeled as an outlier with it. In this study, GA, SPA, SW-MLR, and ERM were 
applied on the CoMFA and CoMSIA fields. Then the selected variables were modeled by 
the MLR algorithm to generate a simple and predictive model. The performance of the 
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different CoMFA and CoMSIA models were evaluated by modeling a data set of histamine 
H3 antagonists. 

Histamine is a biogenic amine neurotransmitter, which interacts with four types of G 
protein-coupled receptors (GPCR)s i.e. H1, H2, H3, and H4 [21]. The GPCRs contain three 
common parts: seven α-helices that span the cell membrane, an extracellular N-terminus 
part and a cytoplasmic C-terminus part with variable length. The third and fifth 
transmembrane (TM) regions of receptors are involved in ligand-drug interactions, while 
the third intracellular loop is responsible for a signaling pathway connection [22, 23]. The 
Histamine H3 receptor (HH3R) was initially identified on a pharmacological basis by Arrang 
et al in 1983 [24]. In 1999, Lovenberg et al cloned this receptor (GPCR97, Uniport ID: 
Q9Y5N1). GPCR97 has (31%) homology with the a2-adrenergic and muscarinic 
M1receptors, whereas 22% and 21.4% are homologous with the H1 and H2 receptors, 
respectively. The sequence of GPCR97 has a 445-amino acid coding region with a notable 
aspartic acid residue in transmembrane region 3, which is a putative binding site for the 
interaction of receptors with primary amines [25]. 

The new generations of HH3R antagonists are non-imidazole based. They contain at least 
one basic amine, either a piperidine or pyrolidine, which is connected by an alkyl linkage to 
an aromatic ring. However, antagonists with a second basic site show significantly better 
activity, such as the ligands in this study [26]. The interaction of the negatively charged 
carboxylic group of Asp114 on the third helix of the HHR3 and a protonated amine group 
of an antagonist, is the common point in all of the docking results of HHR3 antagonists by 
different homology modelling [27–31]. 

HHR3 antagonists act on both the histaminergic and non-histaminergic neurons. On the 
histaminergic neurons, they regulate the release of histamine and its synthesis and on the 
non-histaminergic neurons, they presynaptically inhibit the release of a number of other 
neurotransmitters such as dopamine [32], GABA [33], acetylcholine [34], noradrenaline 
[35], and serotonin [36]. The H3 receptor antagonists are involved in cognition, sensory 
gating, food intake, sleep, the waking state, and pain perception. Thus, this could be a 
potential target for the treatment of numerous diseases, disorders affecting cognition (e.g., 
attention deficit and hyperactivity disorder [ADHD], Alzheimer’s disease, and 
schizophrenia), sleep (e.g., hypersomnia and narcolepsy), and energy homeostasis (e.g., 
obesity), myocardial ischaemia, migraine, and inflammatory diseases [37–40]. 

Results and Discussion 
Comparison and validation of the models (Goodness-of-fit, robustness, predictivity) 
The CoMFA model which was built by PLS in SYBYL showed very poor statistical 
parameters (e.g. q2~0.1). In addition, its results were sensitive to the orientation and 
placement of the compounds in the box. Therefore, the all-orientation search (AOS) and 
the all-placement search (APS) strategies [41] applied on the aligned compounds to 
improve the q2 value. Using the AOS algorithm, all of the possible samplings of the 
molecular field are tested by systematically rotating and translating the molecular 
aggregate within the grid, and subsequently the one with the highest q2 value can be 
picked out. The AOS algorithm was run in 30, 10, 5, 1, and even 0.1º intervals (Fig. 1), in 
such a way that the result of each AOS run was fed to the next run. In APS, aligned 
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molecules moved in the box in all three dimensions of space and the best placement was 
selected according to the highest q2. The best APS results did not represent significant 
changes in the q2 value by 1.00, 0.50, 0.10, and 0.05 Å movements of the aligned 
compounds. 

One of the most important aspects of a QSAR model is its predictivity. It is so important 
that the OECD member countries adopted it as a separate and critical principle for an ideal 
model [42]. Tropsha et al have emphasized that having such a high value for goodness-of-
fit and cross-validated correlation coefficient r2 (q2) is insufficient for judging about the 
predictivity power of a model. Although a high q2 value is vital, it cannot guarantee the 
predictivity power of a model [43, 44]. Therefore, an external test set is necessary. An 
ideal QSAR model must also have accurate predictivity on the external set [45]. Therefore, 
we selected 17 of 74 compounds in a fully blind sampling for the independent or evaluation 
set and the remaining 57 compounds were divided into 40 compounds as the training set, 
and 17 compounds as the test set by the Kennard-Stone algorithm [46]. The Kennard-
Stone algorithm tries to guarantee uniform selection of objects for the training and test 
sets. The r2 and q2 values of the CoMFA model on the AOS-aligned compounds were 
0.9780 and 0.6040, respectively (Table 1). The CoMFA-RF algorithm improved the q2 
value to 0.6530 by weighting CoMFA fields. Although it improved the statistical parameters 
of the CoMFA model to some extent, satisfactory results were still not obtained. Hence, 
the raw fields were extracted from SYBYL. The zero columns were removed. Then 
different variable selection algorithms were applied to the rest of 3331 CoMFA fields to 
filter out the noisy variables. Variable selectors have more of a tendency to sterically clash 
with CoMFA fields than electrostatic ones, because of their variance contribution. Then 
CoMFA standard scaling was applied to the CoMFA fields to avoid swamping the 
electrostatic fields with steric ones. This is a block-scaling and in the case of CoMFA and 
CoMSIA fields, this is the best one. 

 
Fig. 1.  The aligned compounds based on the most active compound (51) in the 

orientation achieved by AOS 
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Fig. 2.  Predicted versus experimental bioactivities for (a) CoMFA model, (b) ERM-MLR 
model based on the CoMFA fields, (c) CoMSIA model and (d) ERM-MLR model 
based on the CoMSIA fields; The molecules in the training, test set, and 
Evaluation sets are presented in stars, triangles, and circles respectively. The 
dotted lines indicate the ±2S margins 

Tab. 1.  Statistical parameters for comparing of different models constructed by CoMFA 
fields 

 

The PLS algorithm performs regression on the latent variables which do not have physical 
meanings, but the MLR algorithm is simpler and more interpretative than the PLS 

Parameter Traditional 
CoMFA 

Region 
Focusing 
CoMFA 

SPA-MLR GA-MLR SW-MLR ERM-MLR 

Da 6 6 13 21 15 16 
r2 Training set 0.9780 0.9740 0.8610 0.8620 0.9059 0.9560 
r2 LOO-CV 0.6040 0.6530 0.6770 0.3660 0.6071 0.8810 
r2 LMO-CV (10group) 0.5470 0.5920 0.6612 0.3630 0.5670 0.8700 
r2 Test set 0.4431 0.4470 0.3740 0.1177 0.7527 0.8630 
r2 Evaluation set 0.3471 0.4420 0.4590 0.4020 0.6547 0.8460 
RMSEP 0.5378 0.5524 0.5715 0.7351 0.3324 0.2258 
(r0

2−r2) / r2  −1.241 −0.002 −0.267 −1.086 −0.008 0.000 
(r2−r'02) / r2 0.536 1.313 0.585 9.803 0.215 0.028 
r0

2−r'02 0.67 0.59 0.12 1.02 0.16 0.02 
k 1.04 0.96 0.96 0.94 1.08 0.99 
k' 0.96 1.04 0.16 1.06 0.70 1.01 
Predictive No No No No Yes Yes 
a No. of latent variables or fields. 
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algorithm. However, due to the collinearity between the CoMFA or CoMSIA fields, MLR 
disables to generate a successful model especially from a huge amount of variables. Then 
using a variable selector to extract informative variables with multiple linear regression for 
building a simple and easy to interpret model, will be useful. Among the variable selectors, 
which were applied on the extracted CoMFA fields, the results of SW-MLR were 
significantly better than SPA and GA, and the results of the SPA algorithm were better 
than GA to some extent (Table 1). In spite of improving the predictivity power of the 
models by these variable selectors, they could not give acceptable predictivity power 
according to following measures: 

r2 CV > 0.5 
r2 Pred > 0.6  
(r0

2−r2)/r2 < 0.1 and 0.85 < k < 1.15 or (r2−r'02)/r2 < 0.1 and 0.85 < k'< 1.15 

r0
2−r'02< 0.3 

The ro
2 and r'o2 are the correlation coefficients of predicted versus observed activities for 

regressions through the origin and vice versa. The k and k´ values are their corresponding 
slopes, respectively [43]. 

The SW-MLR model does not meet all the above measures because the k´ value for this 
model is smaller than 0.85. However, the statistical parameters for this model, especially 
its r2 value for the evaluation set, are acceptable. This model with 15 variables had an r2 
value of 0.9059, a q2 value greater than 0.5 (0.6071), and a fair r2 value of 0.7527 for the 
test set. Therefore, we considered this model as a predictivity model (Table 1). The ERM 
algorithm donates such a priority to the subsequent MLR model, which distinguishes it 
from the other models. The goodness-of-fit value (0.9560) for this model with 16 variables 
is as high as this value for traditional CoMFA or CoMFA-RF models, which have the 
advantage of the PLS algorithm. In addition, the high q2 values of leave-one-out (LOO) 
and leave-many-out (LMO) cross validation (10 groups) for this model (i.e. 0.8810 and 
0.8700, respectively) emphasize that this model is very close to an ideal predictive 3D 
QSAR model. The considerable improvement of about 0.4 and 0.5 units, respectively, in 
the r2 values of the test and evaluation sets over the traditional CoMFA model were 
obtained for the ERM-MLR model. In addition, ERM-MLR passes all of the predictivity 
measures successfully (Table 1). Figure 2(a) and (b) show predicted versus experimental 
biological activities for the traditional CoMFA and ERM-MLR model based on the CoMFA 
fields. For the traditional CoMFA model, some of the predicted y values show a clear bias 
from the experimental ones, and two objects detect as outliers because their predictions 
are located beyond the ±2S boundary lines. However, in Fig. 2b all predicted y values are 
located within ±2S boundary lines. Then in the ERM-MLR model, no molecule is labeled 
as an outlier. These results, besides the low RMSEP value (0.2258) for the ERM-MLR 
model, show that among all variable selector algorithms, ERM is the most effective 
algorithm and acts as a semi-full search tool. Figure 3 shows that with 16 variables, the 
built MLR model, besides simplicity, has remarkable statistical parameters and the r2 
values for the training, test, and evaluation sets are the highest. The generated ERM-MLR 
model is a combination of the selected CoMFA fields:  
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Biological activity = 0.2993S876 + 0.4488S521 + 0.9246S142 − 0.3553S1067 − 0.2996E1087 + 
0.3724E2727 + 1.3755S986 − 0.5288S1087 − 0.9670E2836 + 0.3130S842 − 0.5613S670 + 
4.2289E2389 − 3.5361S1221 − 0.3647S1130 − 1.0753E2849 − 1.2007S795 
Thirteen of the sixteen selected fields are steric and the rest of them are electrostatic, i.e. 
the contribution of steric fields is more than that of electrostatic ones (Figure 4a). In the 
MLR algorithm, coefficients of the fields and their signs appear in the equation. As a result, 
their results are easier to interpret than those of the PLS algorithm. However, the nature of 
the CoMFA fields is energy and they are calculated by the summation of steric and 
electrostatic interactions over the whole of the compound. Hence, calculation of energy in 
different grids may result in identical or similar values. In addition, information from atoms 
and molecular features are convoluted in fields. Therefore, in practice the interpretation 
and suggestion of functional groups for various positions on a given scaffold or 
reconstructed molecule from fields is difficult. Figure 4a illustrated the ERM-selected steric 
and electrostatic CoMFA fields. These points are to a great extent in agreement with 
CoMFA (not shown here for simplicity) or CoMFA-RF contour maps (Fig.5). By this 
similarity, we can say that the interpretation of these fields is very similar and/or the same 
with what we can say for that of CoMFA-RF. 

 
Fig. 3.  Using 16 CoMFA fields result in simultaneously maximization on the ERM-MLR 

model features (the r2 values of the training, LOO-CV, test, and evaluation sets) 

Figure 5 shows the contours of CoMFA-RF for the steric and electrostatic maps. Greater 
values of bioactivity correlate with more bulk near green; less bulk near yellow; more 
positive charge near blue and more negative charge near red. The contour map of the 
steric fields has two separate parts: a green part near the backbone and a yellow part far 
from it. By replacing each compound with another in the space of contours, we can see 
that the chain substitute, or five and six-membered monocycle substitutes, usually oriented 
toward the green contours and most of the fused or bridged bicycle substitutes directed 
toward the yellow areas. The green contour near the backbone indicates that more bulky 
groups are favorable. It explains why the activity of compound 22 (pIC50=9.25) with two 
methyl groups is higher than that of 23 (pIC50= 8.74) with a bromide branch. The same 
reason is acceptable for higher activity of 21 (pIC50=9.72) compared to 22 (pIC50=9.25) or 
33 (pIC50=8.60) rather than 32 (pIC50=8.29), which in these pairs a smaller oxygen atom 
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was replaced by a more bulky sulfur atom. The bi-cyclic fused substitute in 78 (pIC50=8.44) 
is located near the green contour, therefore replacing it with a bulky three-cycle substitute 
in 79 (pIC50=9.00) which has increased the activity. The COOEt group in compound 24 
increases the activity (pIC50=8.15) but this group decreases the activity in compound 25 
(pIC50=7.46); this shows that the attachment position of a substitute to the backbone is 
also important, because it results in a different direction of a substitute toward the yellow or 
green contours. In compound 24, the bulky COOEt substitute oriented toward the green 
contours, but in 25 oriented toward the yellow contours. The bulkiness of substitutes along 
the yellow contours causes unfavorable effects on the pIC50 values. This is due to the fact 
that the activity in compound 36 is less than 35 (or 43 < 44, 64 < 63, 69 < 67 < 68). More 
examples can be found in the data set. It must be noted that, since Figure 5 illustrates the 
contour maps that were achieved from all of the compounds, then some cases can be 
found that have incomplete adaptation to the contour maps.  

  

Fig. 4.  The selected fields by ERM algorithm. a) The selected CoMFA steric (favored 
green points and unfavored yellow points) and electrostatic fields (favored blue 
points and unfavored red point); b) The selected CoMSIA steric (favored green 
points and unfavored yellow points), electrostatic (favored blue points), 
hydrogen-bond acceptor (favored magenta points and unfavored orange points) 
and hydrogen-bond donor (unfavored white point) 

  

Fig. 5.  Contour maps of CoMFA-RF based on compound 51: (a) steric, (b) electrostatic 
fields. (Contours for traditional CoMSIA model not shown here) 



 Improvement of the Prediction Power of the CoMFA and CoMSIA Models on Histamine H3 … 555 

Sci Pharm. 2012; 80: 547–566 

The electrostatic contours of compounds also have two parts. The first part consists of 
blue contours that are enclosed or are near to the quinoline ring and the second part 
consists of red contour maps far from the backbone (Fig. 5b). The electronegative groups 
that oriented toward the red region increase the activity. Therefore compound 14, which 
has a CN group near the red contour, has higher activity (pIC50=9.16) than compound 15 
(pIC50=8.13), in the same way 35 > 34 and 43 > 42. Again, the attachment-position of a 
substitute to a compound is important because different attachment-positions change the 
orientation of the attached group toward the red or blue contours. In such a way, 
compound 31 has a higher pIC50 (9.08) than compound 32 (8.29), because two nitrogen 
atoms in compound 31 oriented toward the red region, but the oxygen atom in compound 
32 oriented toward the blue contour, which by even rotating around the sp3 band, its 
orientation does not differ. Compound 45 has the lowest pIC50 value in the set, because its 
three electronegative fluorine atoms and the oxygen atom of the OH branch directed 
toward the blue contours. In general, bulky and electropositive groups near the backbone, 
and small and electronegative groups far from the backbone are favorable in increasing 
bioactivity. 

Tab. 2.  Statistical parameters for comparing of different models constructed by CoMSIA 
fields 

Parameter Traditional 
CoMSIA SPA-MLR GA-MLR SW-MLR ERM-MLR 

Da 6 9 14 14 17 
r2 Training set 0.9360 0.6930 0.5820 0.8789 0.9800 
r2 LOO-CV 0.3440 0.2737 0.2850 0.5900 0.8970 
r2 LMO-CV (10group) 0.2920 0.2832 0.2850 0.6341 0.8930 
r2 Test set 0.5350 0.2043 0.1360 0.7218 0.8521 
r2 Evaluation set 0.3920 0.5834 0.0540 0.6884 0.9080 
RMSEP 0.5587 0.5814 0.6682 0.4035 0.2276 
(r0

2−r2) / r2  0.004 0.078 1.593 0.004 0.002 
(r2−r'02) / r2 0.579 8.010 5.000 0.089 0.014 
r0

2−r'02 0.31 1.62 0.46 0.06 0.01 
k 0.95 0.96 0.96 0.97 0.99 
k' 1.05 −1.43 1.04 1.03 0.84 
Predictive No No No Yes Yes 
a No. of latent variables or fields. 

 

Table 2 contains the statistical parameters for the traditional CoMSIA and the other 
models, which benefit variable selections before using MLR. CoMSIA analysis was 
performed by six components at a column filtering of 1 kcal/mol and grid spacing of 2 Å. 
To select the optimal CoMSIA results, different combinations of CoMSIA fields were tested 
(Fig. 6). The combination of steric (S), electrostatic (E), hydrogen bond donor (D), and 
acceptor (A) fields generated the highest q2 (0.3440) and a non-cross-validated r2 of 
0.9360. Because of these poor statistical results, the CoMSIA fields (SEDA) were 
extracted from SYBYL. Then zero variables were removed. Block (CoMFA) scaling applied 
to the rest of the 3478 variables. Finally, different stochastic and systematic variable 
selectors were applied to them. The selected variables were used in different MLR models. 
Among these variable selectors, GA and SPA did not have satisfactory results. The r2 
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values of the training, test, and evaluation sets for the stepwise algorithm were 0.8789, 
0.7218, and 0.6884, respectively. These results, besides a q2 value greater than 0.5 units 
(0.5900), show that the stepwise algorithm is effective on the quality of the MLR model. 
Although, these results were statistically acceptable; however, the results of the ERM-MLR 
model were excellent and dramatically better than those of other models. ERM selected 
six steric, three electrostatic, one hydrogen bond donor, and seven acceptor fields. The 
combination of these fields in MLR algorithm results in: 

Biological activity = −0.0523 A3366 − 2.5960 A2541 + 0.4903S762 + 0.2354A2978 − 0.2096A3089 
− 0.2765D2232 − 1.5016S428 − 0.4413A2952 − 0.4516S523 + 4.4938S104 + 0.8839E1649 − 
2.0127A2822 + 0.2209E2067 + 0.2052E1997 + 3.1509S555 + 0.1573A3203 − 0.5170S 914 

The r2 values of the training, test, and evaluation sets and the q2 value of LOO-CV for this 
model were 0.9800, 0.8521, 0.9080, and 0.8970, respectively. Then the ERM-MLR model 
has a 0.3-unit increase in the q2 value over the traditional CoMSIA model. Here an 
effective variable selector improved a non-predictive model (traditional CoMSIA) to a 
predictive one (Table 2). In addition, ERM is a powerful variable selector by participating 
with the informative variables in the model, which are highly correlated by y, causing all of 
the molecules to fall in the model space. Hence, the ERM-MLR model does not label any 
molecule as an outlier, and decreases dispersion in the predicted values (Fig. 2(c) in 
comparison with 2(d)). Figure 4 (b) is a visualization of the selected CoMSIA variables. 
Greater values of bioactivity are correlated with more bulk near green points and less bulk 
near yellow points. Magenta colored points indicate points where hydrogen-bond acceptor 
groups increase activity; orange points represent the orientation that inserting hydrogen-
bond acceptor groups decreases activity. The blue and red points show the locations 
where electropositive and electronegative groups are favored and unfavored, respectively. 
The greater contribution of the orange-magenta points (0.41% of total selected fields that 
selected by ERM) and the green-yellow points (35%) compared to the blue points, show 
that steric and hydrogen bond acceptor fields are more important in the model than 
electrostatic fields (18%). Since using 17 CoMSIA fields results in simultaneously 
increasing the r2 values of the training set, LOO-CV, test, and evaluation sets, then these 
number of fields were regarded as the optimum number of variables, which must 
participate in model building (Fig. 7). 

 
Fig. 6.  The distribution of q2 values that were obtained from 31 different combinations 

of CoMSIA fields 



 Improvement of the Prediction Power of the CoMFA and CoMSIA Models on Histamine H3 … 557 

Sci Pharm. 2012; 80: 547–566 

 
Fig. 7.  Using 17 CoMSIA fields result in simultaneously maximization on the ERM-MLR 

model features (the r2 values of the training, LOO-CV, test, and evaluation sets) 

The Applicability Domain (AD) 
The domain of applicability is a space that is generated by the descriptors of the training 
set and corresponding biological values. If the predicted biological activity for a compound 
falls within this domain, it is not extrapolated by the model and then is reliable [47]. A 
William plot is a useful tool for the simultaneous investigation of AD and outlier detection. It 
is a visualization of predictivity (standardized cross-validated residuals) versus reliability 
(leverages). In this plot, moving from the origin toward the x direction will increase the 
unreliability of the predicted values, and moving toward the y direction will decrease the 
predictivity of the model (Fig. 8). These figures show that the selected variables were so 
successful that no molecule labeled as an outlier in the ERM-MLR models were based on 
the CoMFA and CoMSIA fields. 

  

Fig. 8.  The domain of Applicability of ERM-MLR on the CoMFA fields (a) and the 
CoMSIA fields (b). The vertical lines indicate warning leverage 

Progressive scrambling analysis (PSA) 
Progressive scrambling analysis is a test for investigating the robustness of a QSAR 
model and its sensitivity to chance correlations. In a large data set, some members may 
be twins together. Then in leave-one-out cross validation, a near twin of each left-out 
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compound may remain in the training set. Hence, LOO-CV is not a good criterion for the 
robustness of a model. In addition, instead of shuffling the responses through the whole 
rang such as what the y-randomization algorithm does, PSA scrambles responses only 
within the blocks across the range. Then PSA is sensitive even to small perturbations in 
the data set [48]. In our study, PSA is run more than 30 times to decrease its dependency 
on the random number seed. The minimum and maximum of bins were two and 10, 
respectively, and the critical point was set to 0.85. The q2 values of scrambled y for 
traditional CoMFA, ERM-MLR (based on CoMFA fields), and ERM-MLR (based on 
CoMSIA fields) models were 0.4056, 0.1683, and 0.1590, respectively, and their 
calculated cross-validated standard error (cSDEP) values were 0.6452, 0.7691, and 
0.7748 for 30 PSA runs, respectively. The low q2 values show that models that were 
constructed after variable selection algorithms do not suffer chance correlation. 

Experimental and Methods 
A defined end point (biological activity) 
The first item of the EOCD principles states that for having an ideal QSAR model, a well-
defined end point based on a standardized test protocol is necessary [42]. Recently, Liu et 
al synthesized a series of quinoline compounds via the Friedlander quinoline condensation 
and assessed their binding affinities by an identical test protocol (displacement of [3H]-N-
a-methyl histamine, using cloned human H3 receptors). All of the reported values are the 
average of three independent measurements and the standard errors of the mean were 
less than 0.25 in each case (Table 3) [49]. 

Geometry Optimization, Alignment and CoMFA/CoMSIA fields’ calculations 
The IC50 values (nM) of the 74 compounds were converted to a logarithmic scale (pIC50) 
before modeling. The CoMFA and CoMSIA fields were calculated by the SYBYL 7.3 
molecular modeling package (Tripos, Inc, St. Louis, USA) running on a Red Hat Linux 
workstation 4.7. The most active compound (i.e. compound 51) was selected as a 
template and other compounds were superimposed according to their common structure. 
The accuracy of the prediction of CoMFA and CoMSIA models and the reliability of the 
contour maps depend on the structural alignment of the molecules. Rigid-body aligned 
molecules were performed using maximum common substructures defined by the Distill 
method (with included bond types in rings). Distill alignment had suitable results on this 
dataset. The aligned set of the molecules were positioned inside a 3D cubic lattice of a 2 Å 
(default distance) spacing grid box with an extension of 4 Å units in all Cartesian directions 
beyond the molecules to envelop all of them. The interaction energies for each molecule 
were calculated at each grid point using different probes i.e. C (SP3), O, N, etc. probes. 
The best results were achieved by a sp3 hybridized carbon atom with a +1 charge. The 
partial atomic charges were calculated by the Gasteiger–Hückel method and energy 
minimizations were performed using the Tripos force field with a distance-dependent diel-
ectric and the Powell conjugate gradient algorithm (convergence criterion of 0.01 kcal/mol 
Å) in order to obtain the best conformer for each molecule. Interaction of the probe with the 
molecules on a 2 Å grid provided 1800 explanatory variables for each field per compound. 
The uninformative values were removed by an optimized column filtering value equal to 
1.8 kcal/mol for CoMFA and 1.0 kcal/mol for CoMSIA models. For applying variable 
selection and MLR algorithms, fields’ entries were extracted from SYBYL by two separate 
SPL scripts for CoMFA and CoMSIA fields. All other parameters were set as defaults. 



 Improvement of the Prediction Power of the CoMFA and CoMSIA Models on Histamine H3 … 559 

Sci Pharm. 2012; 80: 547–566 

Tab. 3.  Structure of 74 human HH3R antagonists  
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Tab. 3.  (Cont.)  
Cpd. Structure pIC50 Cpd. Structure pIC50 Cpd. Structure pIC50 
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Variable selection strategies 
Genetic algorithm 

The genetic algorithm was inspired by a natural process. It tries to select the best-fitted 
variable with the higher fitness function through exploitation (natural selection) and 
exploration (evaluation) process. It benefits genetic operators (mutation and 
recombination) to enhance the new generation of variables with a higher fitness value and 
avoid trapping in local minima [50]. 

Stepwise multiple linear regression 

Stepwise regression is based on systematically adding new variables to the model. In 
each step a variable, which has the largest correlation with the properties vector, adds to 
the model or removes from it to decrease its standard deviation. Based on improvement of 
the regression, a partial F test judges in favour of retaining or removing this new candidate 
variable [50]. 

Successive projections algorithm (SPA) 

The main goal of SPA is the selection of variables with the lowest collinearity. It starts with 
a candidate variable in the search space and calculates its orthogonal sub-space. Its 
strategy for selecting the next candidate variable is based on selecting the variable that 
has the maximum projection value on the sub-space of the previous selected variable(s). 
The procedure is repeated for all of the variables, and for each variable a set of N desired 
numbers of variables are selected. The final step is construction of forward selection MLR 
models. The best model is the MLR model with lowest RMSEP value [51].  
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Enhancement replacement method 

The replacement method (RM) is an evolved form of the stepwise algorithm. The first time 
it was formulated by Duchowicz et al for the QSPR study on normal boiling points of some 
organic molecules [52]. It searches the pool of D (N×D) descriptors, according to the MLR 
procedure systematically, to find d optimal descriptors that minimize standard deviation 
(S): 

Eq. 1. S = 1
(N-d-1)

 ∑ resi
2N

i=1  

where N is the number of molecules in the training set and resi is the difference between 
the experimental and the predicted properties. The RM first chooses a vector of d 
descriptors at random and does a linear regression [52, 53]. Then among these 
descriptors, each time a descriptor with the greatest standard deviation in its coefficient is 
substituted with all of the remaining D-d descriptors, one by one (without considering the 
one(s) changed previously). This procedure is repeated until the standard deviation value 
does not decrease by more replacements. Then the final optimal sets of d descriptors that 
have the smallest value of S (in equation 1) are kept. In the modified replacement method 
(MRM), the descriptor with the largest error is substituted even if that replacement is not 
accompanied by a smaller value of S. The sequence of RM-MRM-RM is called ERM. It 
judiciously filters the noisy variables from informative ones in a semi-full search manner 
[54–56]. 
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