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Abstract  

Computational screening of databases has become increasingly popular in the 

pharmaceutical research. Virtual screening uses computer based methods to 

discover new ligands on the basis of biological structures. Virtual screening is 

divided into structural based screening (docking) and screening using active 

compounds as templates (ligand based virtual screening). Ligand based screening 

techniques mainly focus on comparing molecular similarity analyses of compounds 

with known and unknown moiety, regardless of the methods of the used algorithm. 

Docking is a computational tool of structure based drug design to predict protein 

ligand interaction geometries and binding affinities. In this review we provide an 

overview of the already used ligand based virtual screening and the docking with 

various databases, filters, scores and applications in the recent research in the 

pharmaceutical field. 
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Introduction 

For those engaged in drug design, such as medicinal and computational 

chemists, the research phase can be broken down into two main tasks: 

identification of new compounds showing some activity against a target biological 

receptor, and the progressive optimization of these leads to yield a compound with 

improved potency and physicochemical properties in-vitro, and, eventually, 
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improved efficacy, pharmacokinetic, and toxicological profiles in-vivo. Identification 

of leads is driven either by random screening or a directed design approach, and 

traditionally both strategies have been of equal importance, depending on the 

problem in hand. The directed approach needs a rational starting point for 

medicinal chemists and molecular modeling scientist to exploit. Examples include 

the design of analogs of a drug known to be active against a target receptor and 

mimics of the natural substrate of an enzyme. Increasingly, the three-dimensional 

structure of many biological targets is being revealed by X-ray crystallography and 

nuclear magnetic resonance (NMR) spectroscopy, opening the way to the design of 

novel molecules that directly exploit the structural characteristics of the receptor-

binding site. In recent years, this approach of structure-based design has had a 

major impact on the rational design and optimization of new lead compounds in 

those cases where the receptor structure is well characterized [1–3]. The practice 

of testing of large number of molecules for the activity in the model system that is 

representative of the human disease, known as screening, is a well-established fact 

in the pharmaceutical industry. High throughput screening technology allows for the 

testing of thousands to million of the molecules for activity against a new target 

system as a part of new drug discovery process [4–5]. Virtual screening, sometime 

also called in-silico screening, is a new branch of medicinal chemistry that 

represents a fast & cost effective tool for computationally screening database in 

search for the novel drug leads. The routes for the virtual screening go back to the 

structure-based drug design & molecular modeling [6]. 

Concept of Virtual Screening  

Virtual screening uses computer based methods discover new ligand on the 

bases of biological structure [7]. The basic goal of the virtual screening is the 

reduction of the enormous virtual chemical space of small organic molecules, to 

synthesize and/or screen against a specific target protein, to a manageable number 

of the compound that inhibit a highest chance to lead to a drug candidate [8]. In 

theory, the applicability of virtual screening is limited only by what properties of a 
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compound can be calculated computationally and the perceived relevance of those 

properties to the problem in hand. On a practical level, further considerations 

include the timescale for calculation of the properties, which may be considerable 

for a database of, say, one million compounds. The software and hardware 

required yielding a timely answer. Many drug candidates fail in the clinical trials 

because of the reasons unrelated to the potency against intended drug target. 

Pharmacokinetic & toxicity issues are blamed for more than half of the failure in the 

clinical trials. Therefore first part of the visual screening evaluates the drug likeness 

of the same molecules most independent of their intended drug target [1]. The term 

virtual screening has been used to describe a process of computationally analyzing 

large compound collections in order to prioritize compounds for synthesis or assay 

[7]. A broad range of computational techniques can be applied to the problem. In 

our work we have focused on explicit receptor–ligand molecular docking as a 

means of yielding the most detailed model of the way in which a given ligand will 

bind to a receptor, and hence the most informative basis on which to assess which 

ligands are useful candidates for synthesis or assay. Although the underlying 

methods of virtual screening have been in use in various guises for several years, it 

is worth noting the recent impact on molecular modeling made by the increased 

availability of high-performance computing platforms. Affordable multiprocessor 

workstations and PC (personal computer) clusters have enabled the modeler to 

employ computationally demanding algorithms on a routine basis. This change is 

particularly relevant in the case of virtual screening, where as in the work described 

in this paper, computationally intensive methods such as molecular docking must 

be applied to very large databases of chemical structures [6].  

Drug likeness screening [18–23] 

Many drug candidate fail in the clinical trials reasons is unrelated in the 

potency against the intended drug target. Pharmacokinetic and toxicity issues are 

blamed for more than half of all failure in the clinical trials. 
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Therefore first part of the virtual screening evaluates druglikness of small 

molecules, drug like molecules exhibit favorable absorption, distribution, 

metabolism, excretion, toxicological (ADMET) parameters. Using following types of 

method currently assesses Druglikness 

□ Simple counting method  

□ Functional group filter  

□ Topological filter 

□ Pharmacophore filter  

Counting scheme [17–22] 

Database collections of known drug are typically used to extract knowledge 

about structure properties of potential drug molecules. Molecular weight, 

lipophilicity, charge are profiled to extract simple counting rules for relevant 

description of ADMET- related parameter. 

Functional group filters [23] 

Reactive, toxics, or otherwise unsuitable compounds, such as natural product 

derivatives, are removed using specific filters. Typical reactive functional groups 

include, for the example, reactive alkyl halide peroxide, and carbazide,Unsuitable 

leads may include crown ethers, disulfide, and aliphatic methylene chain seven or 

more long and Unsuitable natural product may include quinones, polyenes, and 

cycloheximidine derivative removed by using filters. Screening out the compound 

that contain certain atom groups are associated with toxicity provide a practical and 

fast way to reduce large database. Better description of toxicity may provide 

structure-based method to assess toxicity of the compound. 

Topological drug classification [23] 

It is generally assumed that compound those having the structure similarity 

with known drug may exhibit drug like properties themselves, such as oral 

bioavailability, low toxicity membrane permeability and metabolic stability. Its first 

part is artificial neural networks and decision trees very fast filter tool in virtual 
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screening approaches. Data’s also collected to find structural motifs and 

pharmacophore features of small molecules that characterize drugs. For the 

analysis of virtual libraries according to the presence or absence of drug like 

framework, side chain or structural motifs can be used for virtual screening. 

Pharmacophore points filter [22] 

A simple pharmacophore filter has been introduced recently. It is based on the 

assumption that drug like molecules should contain at least two distinct 

pharmacophore groups four functional motifs have been identified that guarantee 

hydrogen bonding capability that are essential for the specific interaction of the drug 

molecules with its biological target. These motifs can be combined to functional 

groups that are also referred to here as pharmacophore points; they include: amine 

amide, alcohol, ketone, sulfone, sulfonamide, carboxylic acid carbamate, guanidine, 

amidine, urea, and ester. 

Pharmacophore Based Virtual Screening [24–25] 

It is the processes of matching atoms or functional group and the geometric 

relations between them to the pharmacophore in the query. Examples of the 

programs that perform pharmacophore based searches are 3D search UNITY, 

MACCS-3D and ROCS. Usually pharmacophore based search are done in two 

steps. First the software checks whether the compound has the atom types or 

functional groups required by the pharmacophore, than its checks whether the 

spatial arrangement of this element matches the query. Flexible 3D searches 

identified a higher number of hits than rigid searches do. However flexible searches 

are more time consuming than rigid ones. There are two main approaches for 

including conformational flexibility in to the search one is top generate a user 

defined number of representative conformation for each molecules when the 

database is to created, the other is to generate conformation during the search. 

ROCS is using as shape based super position for identifying compound that 

have similar shaped. Pharmacophore model provide powerful filter tools for virtual 
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screening even in case where the protein structure is not available, pharmacophore 

filter are much faster than docking approaches, and there for greatly reduce the 

number of compound subjected to the more expensive docking application. Another 

interesting aspect of pharmacophore in virtual screening is 3D- pharmacophore 

diversity. 

Introduction to pharmacophores 

The first identification of the pharmacophore formulated by Paul Ehrlich was “a 

molecular framework that carries (phoros) the essential feature responsible for a 

drug’s (pharmacon) biological activity” [26]. This definition is slightly modified by 

Peter Gund to “a set of structural features in a molecule that is recognized at a 

receptor site and is responsible for that molecule’s biological activity” [27]. 

Note that in addition distance that describes the 3D relation among 

pharmacophore points, angles, dihedrals, and exclusion volumes are also used. 

Pharmacophore hypotheses for searching can be generated using structural 

information from active inhibitors, ligands, or from the protein active site itself  

[28–29]. 

2-D Pharmacophore searching 

Searching of 2D database is of great importance for accelerating the drug 

discovery different strategies are pursued to search a 2D database to identified the 

compound of the interest Substructure search identified larger molecules that 

contain user define query irrespective of the environment in which the query 

substructure occur [30]. Biochemical data obtainable from these compounds can be 

used for generating structure-activity-relationship (SAR) even before synthetic 

plans are made for lead optimization [31]. In contrast, superstructure search are 

used to find smaller molecules that are embedded in the query. One problem that 

can arise from substructure search is that the number of the compound identified 

can reach into the thousands. One solution o this problem is raking of the 

compound based on similarity between compound in the database and in the query 
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[32–33]. Beyond structure similarity, activity similarity has also been subject of 

several studies. Similarity search can be combined with substructure for limiting the 

number of compound selected. Flexible searches are used to identify the 

compound that differs from the query structure in user-specified ways. 

3-D Pharmacophore searching [34–5] 

1. Ligand based pharmacophore generation 

Ligand based pharmacophores are generally used when crystallographic; 

solution structure or molded structure of protein cannot be obtained. When a set of 

active compound is known and it is hypothesized that all the compounds bind in the 

similar way to the protein, then common group should interact with the same 

protein residue. Thus, a pharmacophore capturing this compound feature should be 

able to identified from a database novel compounds that binds to the same site of 

the protein as the known compounds do. The process of deriving pharmacophore is 

known as pharmacophore mapping, consist of three steps (1) identifying common 

binding element that are responsible for the biological activity; (2) generating 

potential conformations that active compound may adopt; and (3) determining the 

3D relationship between pharmacophore element in each conformation generated. 

2. Manual pharmacophore generation  

Manual pharmacophore generation is used when there is an easy way to 

identify the common feature in a set of active compounds and/or there is 

experimental evidence that same functional groups should be present in the ligand 

for good activity. An example is the development of a pharmacophore model for 

dopamine-transporter (DAT) inhibitor. Pharmacophores should also have some 

flexibility built in, thus justifying the use of distance ranges.  

3. Automatic pharmacophore generation [36] 

Pharmacophore generation through conformational analysis and manual 

alignment is a very time consuming task, especially when the list of the active 
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ligands is large and the elements of the pharmacophore model are not obvious. 

There are several programs Hip Hop, Hypogen, Disco, Gaps, flo, APEX, and 

ROCS, that can automatically generate potential pharmacophore from a list of 

known inhibitors. The performance of these programs in automated pharmacophore 

generation varies depending on the training set. 

These all program use algorithms that identified the common pharmacophore 

features in the training set molecules; they scoring function to rank the identified 

pharmacophores.  

4. Receptor based pharmacophore generation  

If the 3D structure of receptor is known, a pharmacophore model can be 

derived based on the receptor active site [37]. Biochemical data used to identify the 

key residue that is important for substrate and/or inhibiting binding. This information 

can be used for binding pharmacophores targeting the region defined by key 

residue or for choosing among pharmacophore generated by automated program. 

This can greatly improve the chance of finding small molecules that inhibit the 

protein because the search is focused on a region of the binding side that is crucial 

for binding substrate and inhibitors. 

Structure Based Virtual Screening (Docking)  

High throughput screening docking and scoring techniques can be applied to 

computationally screening a database of hundreds of thousand of compound 

against a target of proteins. Computational methods that predict the 3D structure of 

a protein ligand complex are often referred to as molecular docking approaches 

[38].  

Virtual screening as a computational task can be trivially run using parallel 

computing because the protein ligand docking events are completely independent 

of each other. Although docking has initially been developed as a specialist 

modeling tool run on computer work station, now a day in expensive Linux clusters 

are distributed computing over networked PCs can be used for virtual screening. 



 Virtual Screening: A Fast Tool for Drug Design 341 
 

This increases the in-silico throughput into the realm of 100,000 compounds per 

day on a Linux clusters there by reaching the speed of today’s high throughput 

screening. Energy function that evaluates the binding free energy between protein 

and ligand sometimes employs rather heuristic terms. Therefore, those functions 

are more broadly referred to as scoring functions the necessary steps include 

protein structure preparation, ligand database preparation, docking calculation, and 

post processing. The protein has to be prepared only once for the virtual screening 

experiment unless different protein conformation are considered. The receptor site 

needs to be determined and charges have to be assigned. The protein sites have to 

be modeled as accurately as possible. Determining protein surface atoms and site 

points as well as assignment of interaction data such as marking hydrogen-bond 

donors/acceptors and so forth, are sometimes internally include in the docking 

software (e.g., in FlexX) and sometimes done separately (e.g., DOCK) [39–45]. 

Because of the large number of the molecules, manual step in the preparation 

of the ligand database obviously have to be avoided. Starting typically form 2D 

structure, bond types have to be checked protonation states must be determine 

charges must be assigned and solvent molecules removed. 3D coordination can 

generated using a program such as CORD or CORINA. "Scoring" [48] refers to the 

fact that any docking procedure must evaluate and rank the configurations 

generated by the search process. The scoring scheme most closely related to 

experiment- the “ab initio” calculation of the binding free energies, is not easily 

accessible to computation. Scoring is actually composed of three different aspects 

relevant to the docking and design: 

1. Ranking of the conformations generated by the docking search for one 

ligand interacting with a given protein; this aspect is essential to detect the binding 

mode best approximating the experimentally observed situation. 

2. Ranking different ligands with respect to the binding to one protein, that is, 

prioritizing ligands according to their affinity; this aspect is essential in virtual 

screening. 
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3. Ranking one or different ligands with respects to their binding affinity to 

different; this aspect is essential for the consideration of selectivity and specificity of 

ligands. [43-45]. 

Types of docking 

Following different types of docking have been reported [46] 

1. Flexible protein-ligand docking 

Flexible protein-ligand docking is extremely important for the discovery of new 

drugs. Through the exhaustive integration and fine tuning of different variables, the 

latest programs and algorithms are capable of predicting the behavior of chemical 

compounds and protein molecule in order to better help researchers find a more 

efficient drug leads. This method significantly reduces the necessary cost money 

and time consumed, as well as minimizing the non-specific interaction of drug 

molecule proteins; this aspect is essential for the consideration of selectivity and 

specificity [47]. 

2. Flexible protein-protein docking   

Protein-protein interactions are also extremely important, since they are 

responsible for many necessary biological functions. Prediction of such interactions 

is extremely important to the complete understanding of human physiology. 

Association of two biological macromolecules is a fundamental biological 

phenomenon and an unsolved theoretical problem. In recent years, several groups 

have developed a variety of tools in an attempt to solve the so called protein-protein 

docking problem, that is, the prediction of the geometry of a complex from the atom 

coordinates of its uncomplexed constituents. 

3. Hydrophobic docking   

In view of the higher occurrence of hydrophobic groups at contact sites, their 

contribution results in more intermolecular atom-atom contacts per unit area for 

correct matches than for false positive fits. The hydrophobic groups are also 
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potentially less flexible at the surface. Thus, from a practical point of view, a partial 

representation of the molecules based on hydrophobic groups should improve the 

quality of the results in finding molecular recognition sites, as compared to full 

representation [48]. 

Special aspects of docking 

Proteins are inherently dynamic systems [47] the average data provided by a 

crystal structure, may not be an adequate representation of the flexible structural 

characteristics of proteins, unless the system is very rigid. The actual approach 

could be the comparison of experimental protein structure in the ligand free and in 

the complexed state, this frequently exhibits conformational changes induced by or 

associated with ligand binding. The spectrum of phenomenon ranges from side 

chain rotation to the loop arrangement and movement of entire domains. The 

protein itself remains fixed but either through an adapted geometric representation 

or using a tolerant scoring function a certain amount of overlap between the protein 

and the ligand is allowed emulating some “Plasticity" of the receptor. 

An alternative, to account in principle, for an arbitrary degree of protein 

flexibility is the use of protein structure ensembles. The ensembles could be 

assembled from multiple crystal structures of a given protein, from NMR structure 

determination, or from trajectories of molecular dynamics simulations. In addition, a 

rotamer library can be used to create a minimal set of new conformations [48]. 

Three different ways to use protein ensembles for docking can be distinguished:  

The first and straightforward way is to carry out docking sequentially with each 

member of the ensemble using rigid-receptor docking [49–52]. 

Another way is to use a weight-average representation of the ensemble. 

Knegtel et al followed this approach by generating composite grids that were used 

for scoring within the DOCK program [53]. Recently, it has also been tested with 

Autodock [55]. Broughton has developed another method by combining statistical 

analysis of a conformational ensemble from short MD simulations with grid –based 

docking protocols [55]. 
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The third and most sophisticated approach to handle protein ensembles is 

implemented into FlexE, a variant of the FlexX program [56]. 

Assessment of docking method 

Docking methods are usually assessed by their ability to reproduce the binding 

mode of experimentally resolved protein ligand complexes, the ligand is removed 

from the complex, a search area is defined around the actual binding site, the 

ligand is redocked into the protein, and the achieved binding mode is compared 

with the experimental positions usually in terms of a root mean square deviation 

(RMSD). If the RMSD is below 2 Aº it is generally considered a successful 

prediction. The obvious goal is that such a "near native" solution is ranked best 

amongst the set of ligand poses generated. Virtually any introduction of a new 

docking method has been accompanied by such a test. The number of complexes 

used varies as much as the reported success rates, which are between 10% and 

100%. Clearly, success rates of 100% are rather a consequence of the limited test 

set size than a reflection of the mere quality of the docking method [57–61]. 

Docking and QSAR 

As long as the problem of accurate binding free energy prediction on the basis 

of a given complex geometry has not been resolved, computational methods 

establishing quantitative structure-activity relationships (QSARs) to estimate 

relative binding affinity differences within a set of ligands remain a pragmatic 

alternative. Both classical and 3D QSAR methods have been developed as ligand-

based approaches [62]. They rely exclusively on ligand information and try to 

correlate experimental binding data with features described by a set of relevant 

descriptors. In 3D QSAR such as CoMFA (Comparative Molecular Field Analysis) 

these descriptors are essentially virtual interaction energies calculated using an 

appropriate probe atom placed at the intersection of a regularly spaced grid 

surrounding the molecule. They can be interpreted as a surrogate representation of 

the binding site.  



 Virtual Screening: A Fast Tool for Drug Design 345 
 

Essential for the success of all 3D QSAR approaches is an appropriate 

alignment of the ligands; their relative spatial superposition must reflect the 

differences in binding geometry experienced at the binding site of the structurally 

unknown protein [61]. These methods are also applied if the receptor structure is 

known. These results in “receptor-based 3D QSAR,” a combination of a ligand- 

based 3D QSAR approach with information extracted from receptor structures. In 

case of receptor structure is known, the ligand alignment can be obtained by 

docking. Variety of studies shows that model generated with docking alignment 

could be shown to higher relevance than traditional CoMFA model based on ligand 

alignment [63–64].  

Another concept to combine docking with QSAR has recently been proposed 

by Vieth & Cummins in their DoMCoSAR approach [65]. DoMCoSAR is used for 

statistically determining the docking mode that is consistent with a structure-activity 

relationship, based on the explicit assumption that all molecules exhibit the same 

binding mode. In a first step, all molecule of a chemical series with common 

substructure are docked in an unbiased way to the protein-binding site and the 

results are clustered to establish the most favorable docking modes for the 

common substructure. Subsequently, forcing all molecules to align with the 

common substructure in the major docking modes performs constrained docking. In 

final stage, interaction-energy-based descriptors are calculated for all major 

docking modes. QSAR models are then derived to determine the statistically 

significant and most consistent with a given structure-activity relationship. 

Docking and homology modeling 

Often, the crystal structure of the therapeutic target is not available, but the 

three- dimensional structure of a homologous protein will have been determined. 

Depending on the degree of homology between the two proteins, it may be useful 

to model –build the structure of the unknown protein based on the known structure. 

So, in absence of an experimental protein structure, a homology model may 

be used for docking and structure based design. Comparative modeling based on 
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homologous proteins of known structure can generate such a model. Obviously it is 

most reliable in the regions of highest homology between the templates and the 

target protein. Using this method overall skeleton of the target protein can 

frequently be obtained with sufficient accuracy, but the structural details of the 

binding site are often not clear. In fact members of a homologous protein family 

may show considerable differences in the binding region. An approach developed 

especially for the purpose of docking ligands into approximate protein models 

generated by homology modeling is the DragHome method [72] in which the 

binding site is analyzed in terms of putative ligand interaction sites and translated 

using Gaussian function into a functional binding-site description represented by 

physicochemical properties. Similarly, ligands are translated into a description 

based on Gaussian functions and the docking is computed by optimizing the 

overlap between the two functional descriptions. The use of soft Gaussian functions 

to describe protein- ligand interaction is one possibility to take into account the 

limited accuracy of modeled structures for the purpose of docking. The method for 

generating and optimizing ligand orientation relative to the binding-site 

representation was adapted from the ligand alignment program SEAL [66–67] for a 

set of different ligands; the generated solutions are analyzed with respect to the 

mutual ligand alignment. The alignment is then used to generate 3-D QSAR 

models, which in turn can be interpreted with respect to the surrounding protein 

model.  

The docking calculation is typically done for one ligand at a time. Depending 

on optimization and sampling parameters as well as on the flexibility of the 

compound, typically between a few seconds and a few minute of CPU time is 

needed to dock a ligand. Because the individual docking events are independent of 

each other they can run on parallel hardware. Task schedulers that distribute ligand 

docking on available CPUs are used in many dockings programs. 
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Research in virtual screening 

Maxwell D. Cummings et al studied [68] the performances of several 

commercially available docking programs and compared them with context of 

virtual screening. Five different protein targets are used with several known ligands. 

For many of the known ligand crystal structure of the relevant protein-ligand 

complexes were available. For a given docking method, hits rates were improved 

versus that would be expected for random selection for most protein targets. 

However, the ability to prioritize known ligand on the basis of the docking that 

resembles known crystal structures is both method-and target-dependant. Jean-

Christophe Mozziconacci et al studied [69] to exploit available structural information 

about the cyclooxygenase enzyme for the virtual screening of large chemical 

libraries; a docking protocol was turned and validated. The screening accuracy was 

assessed using a series of known inhibitor and a set of diverse a priori inactivate 

compound that was seeded with known active ligand. Andeas Evers et al. studied 

[70] the homology modeling of the alpha 1A receptor based on the X-ray structure 

of bovine rhodopsin. They applied a hierarchical virtual screening procedure guided 

by 2D filter and three-dimensional pharmacophore model. Their finding suggest that 

rhodopsin based in homology model may be used has the structural bases for 

GPCR lead finding and compound optimization. Maria J. Duart et al studied [71] the 

utility of the virtual combinatorial chemistry coupled with computational screening. A 

library of amine and urea derivatives was designed by virtual combinatorial 

synthesis and eventually computationally screened by a mathematical topological 

model as antihistaminic compounds. The results reveal that virtual combinatorial 

synthesis and virtual screening together with molecular topology is a powerful tool 

in the design of new drugs.  

Liqin Zhao et al studied [72] that ERβ has been associated with estrogen-

induced promotion of memory function and neuronal survival. Based on the 

optimized complex structure of human ERβ LBD bound with genistein, computer-

aided structure-based virtual screening against a natural source chemical database 
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was conducted to determine the occurrence of the plant-based ERβ-selective 

ligands. Twelve representative hits derived form database screenings were 

assessed for their binding profile to both ERs, three of which displayed over 100-

fold binding selectivity to ERβ over ERα. 

Simone Sciabola et al studied [73] Ligand- (GRIND) and structure 

(GLUE/GRIND) 3D-QSAR approach were compared for 55 (aryl-) bridged 2-

aminobenzonitriles inhibiting HIV –1 reverse trancriptase (HIV-I RT) the ligand-

based model was build form confirmers selected by in vacuo minimization. The 

available X-ray structure of 3D in complex with HIV-1 RT allowed comparative 

structure based calculation using the new docking software GLUE for conformer 

selection. Both models were validated via statistics and via virtual receptor site 

(VRS) considering pharmacophore regions and mutual distance, which are also 

compared with experimental evidence. The statistics show slight superiority of the 

structure-based approach in terms of fitting and prediction. By encoding relevant 

molecular interaction field (MIF) into pharmacophoric region, 10 such regions were 

derived from both models; they all fit the real receptor except HBD2. Also mutual 

distances highly agree between the real site and both VRS although distance from 

the structure based approach are closer to the real receptor; present data prove the 

validity of the ligand-based GRIND approach. Timega Polar and Gyorgy Keseru 

studied [74] Virtual screening for β-Secretase (BACE1) inhibitors reveale the 

important c at Asp32 and Asp228. A comparative virtual screening for β-Secretase 

(BACE1) inhibitors using different docking methods (FlexX and Flex-pharm), 

scoring function (Dock, Gold, Chem PMF, FlexX), protonation states (default and 

calculated), and protein conformation (apo and ligand bound) has been performed. 

12HMarco Scarsi et al studied [75] that sulfonylureas and glinides additionally bind to 

PPARgamma and exhibit PPARgamma agonistic activity. This activity was 

predicted in silico by virtual screening and confirmed in vitro in a binding assay. 

Szewczuk LM [76] et al used a structure-based computational approach to identify 

the first druglike and selective inhibitors of AANAT (arylalkylamine N-

acetyltransferase). Approximately 1.2 million compounds were virtually screened by 
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3D high-throughput docking into the active site of X-ray structures for AANAT, and 

in total 241 compounds were tested as inhibitors. Cavasotto CN [77] et al studied A 

ligand-steered homology modeling approach has been developed (where 

information about existing ligands is used explicitly to shape and optimize the 

binding site) followed by docking-based virtual screening. Top scoring compounds 

identified virtually were tested experimentally in an MCH-R1 (Melanin-concentrating 

hormone receptor 1) competitive binding assay, and six novel chemotypes as low 

micromolar affinity antagonist "hits" were identified. Jie-Fei Cheng [78] et al 

conducted virtual docking studies using GLIDE with modified LXRβ ligand-binding 

domain (LBD) on internal compound collection followed by the gene profiling with 

ArrayPlate mRNA assay. A total of 69 compounds were found to upregulate LXRα 

and certain LXR regulated genes from 1308 compounds selected by virtual screen 

(hit rate: 5.3%). 

Future prospective 

Virtual screening, especially the structure-based virtual screening, has 

emerged as a reliable, cost-effective and timesaving technique for the discovery of 

lead compounds. This review focuses on the generation and use of virtual 

compound libraries, and also on studies in which chemical feature-based 

pharmacophore models and docking are used in combination with in silico 

screening. These procedures are generally used to obtain hits (or leads) that are 

more likely to give successful clinical candidates. Virtual screening of virtual 

libraries (VSVL) is a rapidly changing area of research. Great efforts are being 

made to produce better algorithms, selection methods and infrastructure. It is a fact 

that these tools remain quite daunting for the majority of scientists working at the 

bench. The routine use of these methods is not simply a matter of education and 

training. The authors are confident that the synergy of these technologies will bring 

great benefit to the industry, with more efficient production of higher quality clinical 

candidates. The future is bright. The future is virtual focused assessment of 
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corporate databases by virtual screening using well validated pharmacophore 

models will yield to a significant improvement in lead structure determination. 

Tab.1. Available Software for Virtual Screening 

Target Software 
Package 

Ligand Data Set 

Thymidylate synthase DOCK 153000ACD compounds [8] 
FK506-binding protein SANDOCK ACD and Cambridge  

Crystallographic Database[9]  
Retinoic acid receptor ICM 153000ACD compounds [10]  
HIV-1 RNA  
transactivation 
response element 

ICM 153000 ACD compounds[11]  

Farnesyl transferase EUDOC 67928 ACD compounds[12]  
DNA gyrase LUDI, CATALYST 350000 ACD + in-house 

compounds[13]  
Kinesin DOCK 110000 ACD compounds [14] 
Hypoxanthine-guanine-
xanthine 
Phosphoribosyl 
transferase 

DOCK 599 compound virtual library [15] 

Thrombin; factor Xa; 
estrogen receptor 

PRO_LEADS 10000 ChemBridge compounds [16] 

 

References  

[1] Greer J, Erickson JW, Baldwin JJ, Varney MD.  
Application of the three-dimensional structures of protein target molecules in 
structure-based drug design. 
J Med Chem.1994; 37:1035–1054.  
[13Hdoi:10.1021/jm00034a001] 



 Virtual Screening: A Fast Tool for Drug Design 351 
 

[2] Bohacek RS, McMartin C, Guida WC. 
The art and practice of structure-based drug design: A molecular modeling 
perspective.  
Med Res Rev. 1996; 16: 3–50. 
[14Hdoi:10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6] 

[3] Shoichet BK, Bussiere DE. 
The Role of Macromolecular Crystallography and Structure for Drug 
Discovery: Advances and Caveats. 
Curr Opin Drug Discov Dev. 2000; 3: 408–422. 

[4] Wodak SJ, Janin J. 
Computer analysis of protein-protein interaction. 
J Mol Biol.1978; 124:323–342. 
[15Hdoi:10.1016/0022-2836(78)90302-9] 

[5] Kuntz ID, Blany JM, Oatley SJ, Langridge R, Ferrin TE. 
A geometric approach to macromolecule-ligand interactions. 
J Mol Biol. 1982; 161: 269–288. 
[16Hdoi:10.1016/0022-2836(82)90153-X] 

[6] Mugge I, Enyedy I. 
Virtual Screening. 
In Burger’s Medicinal chemistry and Drug discovery. 
6 th ed Volume 1; Verginia : Wiley Interscience , 2003: 243–279. 
[17Hdoi:10.1002/0471266949.bmc006] 

[7] Shoichet BK. 
Virtual screening of chemical libraries. 
Nature. 2004; 432:862–865. 
[18Hdoi:10.1038/nature03197] 

[8] Tondi D, Slomczynska U, Costi MP, Watterson DM, Ghelli S, Shoichet BK.  
Structure based discovery and in-parrallel optimization of novel competitive 
inhibitors of thymidylate synthase.  
Chem Biol. 1999; 6: 319–331. 
[19Hdoi:10.1016/S1074-5521(99)80077-5] 

[9] Burkhard P, Hommel U, Sanner, M Walkinshaw, MD.  
The discovery of steroids and other novel FKBP inhibitors using a molecular 
docking program.  
J Mol Biol.1999; 287: 853–858. 
[20Hdoi:10.1006/jmbi.1999.2621] 

[10] Schapira M, Raaka BM, Samuels HH, Abagyan R. 
Rational discovery of novel nuclear hormone receptor antagonists. 
Proc Natl Acad Sci U S A. 2000; 97: 1008–1013. 
[21Hdoi:10.1073/pnas.97.3.1008] 



352 V. Vyas et al.:  

[11] Filikov AV, Mohan V, Vickers TA. 
Identification of Ligands for RNA Targets via Structure-Based Virtual 
Screening.  
J Comp Aid Mol Des. 2000; 14: 561–593. 
[22Hdoi:10.1023/A:1008121029716] 

[12] Perola E, Xu K, Kollmeyer TM, Kaufmann SH, Prendergast FG. 
Successful virtual screening of a chemical database for farnesyltransferase 
inhibitor leads. 
J Med Chem. 2000; 43: 401–408. 
[23Hdoi:10.1021/jm990408a] 

[13] Boehm HJ, Boehringer M, Bur D, Gmuender H, Huber W, Klaus W, Kostrewa 
D, Kuehne H, Luebbers T, Meunier-Keller N, Mueller F. 
Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, 
hit validation by biophysical methods, and 3D guided optimization. A promising 
alternative to random screening. 
J Med Chem. 2000; 43: 2664–2674 
[24Hdoi:10.1021/jm000017s] 

[14] Hopkins SC, Vale RD, Kuntz ID. 
Inhibitors of kinesin activity from structure-based computer screening. 
Biochemistry. 2000; 39: 2805–2814. 
[25Hdoi:10.1021/bi992474k] 

[15] Aronov AM,Munagala NR,Ortiz de Montellano PR, Kuntz ID, Wang CC. 
Rational Design of Selective Submicromolar Inhibitors of Tritrichomonas foetus 
Hypoxanthine-Guanine-Xanthine Phosphoribosyltransferase. 
Biochemistry. 2000; 39: 4684–4689. 
[26Hdoi:10.1021/bi992555g] 

[16] Baxter CA, Murray CW, Waszkowycz B. 
New Approach to Molecular Docking and Its Application to Virtual Screening of 
Chemical Databases. 
J Chem Inf Comput Sci. 2000; 40: 254–262. 
[27Hdoi:10.1021/ci990440d] 

[17] Walters WP, Ajay A, Murcko MA. 
Recognizing molecules with drug-like properties. 
Curr Opin Chem Biol.1999; 3: 384–387. 
[28Hdoi:10.1016/S1367-5931(99)80058-1] 

[18] Walters WP, Murcko MA. 
Library filtering systems and prediction of drug-like properties. 
In Virtual Screening for Bioactive Molecules. 
Wiley-VCH, 2000: 10: 15–32. 
[29Hdoi:10.1002/9783527613083.ch2] 



 Virtual Screening: A Fast Tool for Drug Design 353 
 

[19] Clark DE, Pickett SD. 
Computational Methods for the Prediction of Drug-Likeness. 
Drug Discov Today. 2000; 5: 49–58. 
[30Hdoi:10.1016/S1359-6446(99)01451-8] 

[20] Podlogar BL, Muegge I, Brice LJ. 
Computational methods to estimate drug development parameters. 
Curr Opin Drug Discov Dev. 2001; 4: 102–109. 

[21] Hann M, Hudson B, Lewell X, Lifely R, Miller L, Ramsden N. 
Strategic pooling of compounds for high-throughput screening. 
J Chem Inf Comput Sci. 1999; 39: 897–903. 
[31Hdoi:10.1021/ci990423o] 

[22] Muegge I, Heald, SL, Brittelli D. 
Simple Selection Criteria for Drug-like Chemical Matter. 
J Med Chem. 2001; 44: 1841–1846. 
[32Hdoi:10.1021/jm015507e] 

[23] Ajay A, Walters WP, Murcko MA. 
Can we learn to distinguish between "drug-like" and "nondrug-like" molecules? 
J Med Chem. 1998; 27: 3314–3324. 
[33Hdoi:10.1021/jm970666c] 

[24] Van Drie JH, Weininger D, Martin YC. 
ALADDIN: an integrated tool for computer-assisted molecular design and 
pharmacophore recognition from geometric, steric, and substructure searching 
of three-dimensional molecular structures. 
J Comput-Aided Mol Des. 1989; 3: 225–251. 
[34Hdoi:10.1007/BF01533070] 

[25] Walters WP, Stahl MT, Murcko MA. 
Virtual screening: an overview. 
Drug Discov Today. 1998; 3: 160–178. 
[35Hdoi:10.1016/S1359-6446(97)01163-X] 

[26] Ehrlich P. 
Present status of chemotherapy. 
Ber Dtsch Chem Ges. 1909; 42: 17–47 
[36Hdoi:10.1002/cber.19090420105] 

[27] Gund P. 
Three-dimensional Pharmacophoric Pattern Searching. 
Prog Mol Subcell Biol. 1977; 11: 117–143. 

[28] Marshall GR, Barry CD, Bosshard HE, Dammkoehler RA, Dunn DA. 
The Conformational Parameter in Drug Design: The Active Analog Approach. 
Computer-Assisted Drug Design American Chemical Society: Washington D. 
C., 1979; Vol. ACS Symposium ll2. 



354 V. Vyas et al.:  

[29] Sufrin JR, Dunn DA, Marshall GR. 
Steric mapping of the L-methionine binding site of ATP:L-methionine S-
adenosyltransferase. 
Mol Pharmacol. 1981; 19: 307–313. 

[30] Barnard JM. 
Substructure searching methods: Old and new. 
J Chem Infor Compt Sci. 1993; 33: 532–538. 
[37Hdoi:10.1021/ci00014a001] 

[31] Enyedy IJ, Wang J, Zaman WA, Johnson KM, Wang S. 
Discovery of substituted 3, 4-Diphenyl-thiazoles as a novel class of 
monoamine transporter inhibitors through 3-D pharmacophore search using a 
new pharmacophore model derived from mazindol. 
Bioorg Med Chem Lett. 2002; 12: 1775–1778. 
[38Hdoi:10.1016/S0960-894X(02)00243-3] 

[32] Downs GM, Willett P. 
Similarity searching in databases of chemical structures.  
In Lipkowitz KB Boyd DB. Reviews in Computational Chemistry 1 edn Volume 
7 New York VCH Publishers, Inc 1996: 1–66. 

[33] Willett P, Barnard JM, Downs GM. 
Chemical similarity searching. 
J Chem Inf Comput Sci.1998; 38: 983–996. 
[39Hdoi:10.1021/ci9800211] 

[34] Hoffman BT, Kopajtic T, Katz JL, Newman AH. 
2D QSAR Modeling and Preliminary Database Searching for Dopamine 
Transporter Inhibitors Using Genetic Algorithm Variable Selection of Molconn 
Z Descriptors. 
J Med Chem. 2000; 43: 4151–4159. 
[40Hdoi:10.1021/jm990472s] 

[35] Wang S, Sakamuri S, Enyedy IJ, Kozikowski AP, Deschaux O, 
Bandyopadhyay BC, Tella SR, Zaman WA, Johnson KM. 
Discovery of a novel dopamine transporter inhibitor, 4-hydroxy-1-methyl-4-(4-
methylphenyl)-3-piperidyl 4-methylphenyl ketone, as a potential cocaine 
antagonist through 3D-database pharmacophore searching. Molecular 
modeling, structure-activity relationships, and behavioral pharmacological 
studies. 
J Med Chem. 2000; 43: 351–360. 
[41Hdoi:10.1021/jm990516x] 

[36] Guner OF. 
Pharmacophore Perception, Development, and Use in Drug Design. 
International University Line, La Jolla, CA, 2000. 



 Virtual Screening: A Fast Tool for Drug Design 355 
 

[37] Wang R, Gao Y, Lai L. 
LigBuilder: A Multiple-Purpose Program for Structure-Based Drug Design. 
J Mol Model. 2000; 6: 498–516. 
[42Hdoi:10.1007/s0089400060498] 

[38] Haraki KS, Sheridan RP, Venkataraghavan R, Dunn, DA, McCulloch R. 
Looking for Pharmacophores in 3-D Databases: Does Conformational 
Searching Improve the Yield of Actives? 
Tetrahedron Comput Methodol. 1990; 3: 565–573. 
[43Hdoi:10.1016/0898-5529(90)90159-6] 

[39] Clark DE, Willett P, Kenny PW. 
Pharmacophoric Pattern Matching in Files of Three-Dimensional Chemical 
Structures: Implementation of Flexible Searching. 
J Mol Graphics. 1993; 11: 146–156. 
[44Hdoi:10.1016/0263-7855(93)80066-Z] 

[40] Blaney JM, Dixon JS. 
A good ligand is bard to find: automated. docking methods. 
Perspect Drug Discov Des. 1993; 1: 301–319. 
[45Hdoi:10.1007/BF02174531] 

[41] Jones G, Willett P, Glen R C, Leach A R, Taylor R. 
Development and Validation of a Genetic Algorithm for Flexible Docking. 
J Mol Biol. 1997; 267: 727–748. 
[46Hdoi:10.1006/jmbi.1996.0897] 

[42] Wang R, Liu L, Lai L, Tang Y. 
SCORE: A New Empirical Method for Estimating the Binding Affinity of a 
Protein-Ligand Complex. 
J Mol Model.1998; 4: 379–394. 
[47Hdoi:10.1007/s008940050096] 

[43] Walters WP, Stahl MT, Murcko MA. 
Virtual screening: an overview. 
Drug Discov Today. 1998; 3: 160–178. 
[48Hdoi:10.1016/S1359-6446(97)01163-X] 

[44] Leach AR, Hann MM. 
The in silica world of virtual libraries. 
Drug Discov Today 2000; 5: 326–336. 
[49Hdoi:10.1016/S1359-6446(00)01516-6] 

[45] Lewis RA, Pickett SD, Clark DE.  
Computer-aided molecular diversity analysis and combinatorial library design. 
Rev Comput Chem. 2000; 16: 1–51. 
[50Hdoi:10.1002/9780470125939.ch1] 



356 V. Vyas et al.:  

[46] Goshe AK, Crippen GM. 
Quantitative Structure-Activity Relationship by Distance Geometry: 
Quinazolines as Dihydrofolate Reductase Inhibitors. 
J Med Chem. 1982; 25: 892–899. 
[51Hdoi:10.1021/jm00350a003] 

[47] Karplus M, McCammon JA. 
Dynamics of proteins: elements and function. 
Annu Rev Biochem. 1983; 52: 263–300. 
[52Hdoi:10.1146/annurev.bi.52.070183.001403] 

[48] Abagyan R, Totrov M. 
High-throughput docking for lead generation 
Curr Opin Chem Biol. 2001; 4: 375–382. 
[53Hdoi:10.1016/S1367-5931(00)00217-9] 

[49] Knegtel RM, Kuntz ID, Oshiro.CM.  
Molecular docking to ensembles of protein structures. 
J Mol Biol. 1997; 266: 424–440. 
[54Hdoi:10.1006/jmbi.1996.0776] 

[50] Osterberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS. 
Automated docking to multiple target structures: incorporation of protein 
mobility and structural water heterogeneity in AutoDock. 
Proteins. 2001; 46: 34–40. 
[55Hdoi:10.1002/prot.10028] 

[51] Pang YP, Kozikowski AP. 
Prediction of the binding sites of Huperzine A in acetylcholinesterase by 
docking studies. 
J Comput-Aided Mol Des. 1994; 8: 662–669. 
[56Hdoi:10.1007/BF00124014] 

[52] Bold G, Altmann KH, Bruggen J, Frei J, Lang M, Manley PW, Traxler P, 
Wietfeld B, Buchdunger E, Cozens R, Ferrari S, Furet P, Hofmann F, Martiny-
Baron, G, Mestan J, Rosel J, Sills M, Stover D, Acemoglu F, Boss E, 
Emmenegger R, Lasser L, Masso E, Roth R, Schlachter C, Vetterli W, Wyss 
D, Wood JM. 
New Anilinophthalazines as Potent and Orally Well Absorbed Inhibitors of the 
VEGF Receptor Tyrosine Kinases Useful as Antagonists of Tumor-Driven 
Angiogenesis. 
J Med Chem. 2000; 43: 2310–2323. 
[57Hdoi:10.1021/jm9909443] 

[53] Carlson HA, Masukawa KM, McCammon JA. 
Method for Including the Dynamic Fluctuations of a Protein in Computer-aided 
Drug Design. 
J Phys Chem. 1999; 110: 1856–1872. 
[58Hdoi:10.1063/1.477873] 



 Virtual Screening: A Fast Tool for Drug Design 357 
 

[54] Bouzida D, Rejto PA, Arthurs S, Colson AB, Freer ST, Gehlhaar DK, Larson V, 
Luty BA, Rose PW, Verkhivker GM. 
Computer simulations of ligand-protein binding with ensembles of protein 
conformations: A Monte Carlo study of HIV-1 protease binding energy 
landscapes. 
Int J Quantum Chem. 1999; 72: 73–84. 
[59Hdoi:10.1002/(SICI)1097-461X(1999)72:1<73::AID-QUA7>3.0.CO;2-O] 

[55] Broughton HB. 
A method for including protein flexibility in protein-ligand docking: improving 
tools for database mining and virtual screening. 
J Mol Graph Model. 2000; 18: 247–257. 
[60Hdoi:10.1016/S1093-3263(00)00036-X] 

[56] Carlson HA, McCammon JA. 
Accommodating protein flexibility in computational drug design. 
Mol Pharmacol. 2000; 57: 213–218. 

[57] Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ,  Mainz DT, 
Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin 
PS.  
Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method 
and Assessment of Docking Accuracy. 
J Med Chem. 47; 2004: 1739–1749.  
[61Hdoi:10.1021/jm0306430] 

[58] Kroemer RT, Vulpetti A, McDonald JJ, Rohrer DC, Trosset JY, Giordanetto F, 
Cotesta S, McMartin C, Kihlen M, Pieter FW, Stouten PF. 
Interactions-Based Accuracy Classification (IBAC) versus Crystal Structure 
Deviations. 
J Chem Inf Comput Sci. 2004; 44: 871–881. 
[62Hdoi:10.1021/ci049970m] 

[59] McMartin C, Bohacek RS. 
QXP: powerful, rapid computer algorithms for structure-based drug design. 
J Comput-Aided Mol Des. 1997; 11: 333–334. 
[63Hdoi:10.1023/A:1007907728892] 

[60] Kubinyi H. 
Molecular field analysis. 
In 3D QSAR in drug design: Theory, methods and. Applications. 
ESCOM, Leiden, the Netherlands 1993: 443–485. 

[61] Sippl W. 
Receptor-based 3DQSAR analysis of estrogen receptor ligands merging the 
accuracy of receptor-based alignments with the computational efficiency of 
ligand-based methods. 
J Comput-Aided Mol Des. 2000; 14: 559–572. 
[64Hdoi:10.1023/A:1008115913787] 



358 V. Vyas et al.:  

[62] Sippl W and Holtje HD. 
Structure-based 3D-QSAR—merging the accuracy of structure-based 
alignments with the computational efficiency of ligand-based methods. 
J Mol Struct (Theochem). 2000; 503: 31–50. 
[65Hdoi:10.1016/S0166-1280(99)00361-9] 

[63] Vieth M, Cummins DJ. 
DoMCoSAR: a novel approach for establishing the docking mode that is 
consistent with the structure-activity relationship. Application to HIV-1 protease 
inhibitors and VEGF receptor tyrosine kinase inhibitors. 
J Med Chem. 2000; 43: 3020–3032. 
[66Hdoi:10.1021/jm990609e] 

[64] Wojciechowski M, Skolnick J. 
Docking of small ligands to low-resolution and. theoretically predicted receptor 
structures.  
J Comp Chem. 2002; 23: 189–197. 
[67Hdoi:10.1002/jcc.1165] 

[65] Moro S, Li AH, Jacobson KA. 
Molecular Modeling Studies of Human A3 Adenosine Antagonists: Structural 
Homology and Receptor Docking. 
J Chem Inf Comput Sci. 1998; 38: 1239–1248. 
[68Hdoi:10.1021/ci980080e] 

[66] Kearsley SK, Smith GM. 
An Alternative Method for the Alignment of Molecular Structures: Maximizing 
Electrostatic and Steric Overlap. 
Tetrahedron Comput Methdodol. 1990; 3: 615–633. 
[69Hdoi:10.1016/0898-5529(90)90162-2] 

[67] Evers A, Klabunde T. 
Structure-based drug discovery using GPCR homology modeling: successful 
virtual screening for antagonists of the alpha1A adrenergic receptor. 
J Med Chem. 2005; 48: 1088–1097. 
[70Hdoi:10.1021/jm0491804] 

[68] Cummings MD, DesJarlais RL, Gibbs AC, Mohan V, Jaeger EP. 
Docking to five proteins of a compound set seeded with known actives using 
DOCK, DOCKVISION, GLIDE, and GOLD suggests that GLIDE and GOLD in 
general identify the most reasonable binding modes for known active 
compounds. 
J Med Chem. 2005; 48: 962–976. 
[71Hdoi:10.1021/jm049798d] 



 Virtual Screening: A Fast Tool for Drug Design 359 
 

[69] Mozziconacci JC, Arnoult E, Bernard P, Do QT, Marot C, Morin-Allory L. 
Optimization and validation of a docking-scoring protocol; application to virtual 
screening for COX-2 inhibitors. 
J Med Chem. 2005; 48: 1055–1068. 
[72Hdoi:10.1021/jm049332v] 

[70] Evers A, Klabunde T. 
Structure-based drug discovery using GPCR homology modeling: successful 
virtual screening for antagonists of the alpha1A adrenergic receptor. 
J Med Chem. 2005; 48: 1088–1097. 
[73Hdoi:10.1021/jm0491804] 

[71] Duart MJ, Anton-Fos G M, Aleman PA, Gay-Roig JB, Gonzalez-Rosende ME, 
Galvez J, Garcia-Domenech R. 
New Potential Antihistaminic Compounds. Virtual Combinatorial Chemistry, 
Computational Screening, Real Synthesis, and Pharmacological Evaluation. 
J Med Chem. 2005; 48: 1260–1264. 
[74Hdoi:10.1021/jm040877z] 

[72] Zhao L, Brinton RD. 
Structure-Based Virtual Screening for Plant-Based ERβ-Selective Ligands as 
Potential Preventative Therapy against Age-Related Neurodegenerative 
Diseases. 
J Med Chem. 2005; 48: 3463–3466. 
[75Hdoi:10.1021/jm0490538] 

[73] Sciabola S, Carosati E, Baroni M, Mannhold R. 
Comparison of Ligand-Based and Structure-Based 3D-QSAR Approaches: A 
Case Study on (Aryl-) Bridged 2-Aminobenzonitriles Inhibiting HIV-1 Reverse 
Transcriptase. 
J Med Chem. 2005; 48: 3756–3767. 
[76Hdoi:10.1021/jm049162m] 

[74] Polgar T, Keseru GM. 
Virtual Screening for β-Secretase (BACE1) Inhibitors Reveals the Importance 
of Protonation States at Asp32 and Asp228. 
J Med Chem. 2005; 48: 3749–3755. 
[77Hdoi:10.1021/jm049133b] 

[75] Scarsi M, Podvinec M, A Roth, Hug H, Kersten S, Albrecht H, Schwede T, 
Meyer UA, Biozentrum CR. 
78HSulfonylureas and Glinides Exhibit PPAR{gamma} Activity: A Combined Virtual 
Screening and Biological Assay Approach. 
Mol Pharmacol. 2006: 69: 170–178.  
[79Hdoi:10.1124/mol.106.024596] 



360 V. Vyas et al.:  

[76] Szewczuk LM, Saldanha SA, Ganguly S, Bowers EM, Javoroncov M, Karanam 
B, Culhane JC, Holbert MA, Klein DC, Abagyan R, Cole PA. 
De novo discovery of serotonin N-acetyltransferase inhibitors: 
J Med Chem. 2007; 50: 5330–5338. 
[80Hdoi:10.1021/jm0706463] 

[77] Cavasotto CN, Orry AJ, Murgolo NJ, Czarniecki MF, Kocsi SA, Hawes BE, 
O'Neill KA, Hine H, Burton MS, Voigt JH, Abagyan RA, Bayne ML, Monsma 
FJ Jr. 
Discovery of novel chemotypes to a G-protein-coupled receptor through 
ligand-steered homology modeling and structure-based virtual screening. 
J Med Chem. 2008; 51: 581–588. 
[81Hdoi:10.1021/jm070759m] 

[78] Cheng JF, Zapf J, Takedomi K, Fukushima C, Ogiku T, Zhang SH, Yang G, 
Sakurai N, Barbosa M, Jack R, Xu K. 
Combination of Virtual Screening and High Throughput Gene Profiling for 
Identification of Novel Liver X Receptor Modulators. 
J Med Chem. 2008; 51: 2057–2061. 
[82Hdoi:10.1021/jm7011326] 

Received March 13th, 2008 
Accepted (after revision) September 4th, 2008 

Available online at 0Hwww.scipharm.at September 6th, 2008 


