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Abstract 
Structural similarity is one of the basic underlying principles in drug discovery 

and development. Numerous algorithms and concepts are known to search 

compound libraries for analogous compounds assuming that similar compounds 

show similar biological activity. In recent years the focus shifted towards more 

complex methods using 3D-shape similarities on one side and highly reductionistic 

approaches such as smiles substrings on the other side. Furthermore, 

pharmacological activity profiling becomes increasingly important. Within this 

review we will highlight selected new concepts and methods applying similarity 

metrics in the drug discovery and development process. 
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Introduction 
Nowadays the drug development process starts with hits obtained in HTS 

assays. Up to 1.000.000 compounds are biologically screened on a yes/no basis 

and the resulting hits are prioritised on basis of novelty, patentability, synthetic 

accessibility and data obtained in early ADMET (Absorption, Distribution, 

Metabolism, Elimination, Toxicity) profiling programs. A typical HTS library consists 

of both a so called historical collection (i.e. compounds from previous drug 

development programs) and commercially obtained substances, which are selected 
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on basis of maximum chemical diversity combined with high drug likeliness. In 

parallel, in silico screening approaches are gaining increasing importance. They are 

mainly used to select subsets of large virtual combinatorial libraries, which then 

should show a higher incidence for biological activity (or at least higher drug 

likeliness) and thus lead to increased hit rates.  

The basic underlying principle of both active subset selection and structure-

activity relationship studies assumes that compounds similar to biologically active 

ones should also be active and vice versa. This principle basically is also applied in 

bioinformatics, where proteins sharing similar sequences are considered to have 

similar structure and exhibit similar function. Thus, the calculation of similarity is 

one of the most intensively studied area and numerous methods and algorithms 

have been published. Furthermore, within the past decade also QSAR-approaches 

based on similarity measures have been reported in the literature. Most of them use 

N x N similarity matrices as input vector [1]. Very interesting in this context is the 

chemical global positioning system (ChemGPS) developed by Oprea. Selection of a 

set of satellite structures with extreme values of standard descriptors and a set of 

representative drugs (core structures) allowed developing a unique mapping device 

for the drug-like chemical space [2]. Furthermore, the combination of ChemGPS 

and VolSurf enabled a pharmacokinetically based mapping of compounds with 

respect to permeability and solubility [3]. The concept of similarity is also underlying 

the LASSOO approach of H. Villar [4]. The LASSOO algorithm intends to prioritise 

compounds that are most similar to a specified set of favourable target molecules 

(i.e. actives) and, at the same time, most different from compounds that reside in 

this set.  

With this article we do not intend to give a detailed and complete overview on 

all methods available for calculating similarity values and applying them in the drug 

discovery and development process. We rather will focus on a few selected, 

successful examples of applying similarity metrics for virtual screening and 

pharmacological profiling. With respect to all aspects related with pharmacophores 
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and pharmacophore searches we would like to refer to the excellent book edited by 

T. Langer and R. Hoffmann [5]. 

Similarity values used as Descriptors 
In a standard workflow for screening libraries, the concept of similarity is used 

as a filter criterion for classification purposes. Seri-Levy et al. used shape similarity 

as a single independent variable in QSAR equations and demonstrated higher 

predictive abilities for their approach than for multivariate analyses [6]. However, 

they restricted their method to homologous series of compounds. Ghuloum et al. 

used molecular hashkeys based on molecular surface similarity [7]. This inspired us 

to explore the concept of using similarity values as independent variables in QSAR 

equations. Within SIBAR (Similarity-based SAR), similarity values between training 

set compounds and a set of reference compounds are calculated and subsequently 

used as molecular descriptors. The approach for calculation of the SIBAR-

descriptors is outlined as follows (Fig. 1): 

 
Fig. 1. SIBAR generation process. 
1) selection of a reference compound set on basis of maximum diversity; 
additionally, it may be divided into active and inactive compounds, substrates and 
non-substrates,  
2) calculation of a set of descriptors for both the training set and the reference set  
3) calculation of similarity values for each compound of the training set to each 
compound of the reference set; this leads to a given number of similarity values 
(equal to the number of reference compounds used) for each compound of the 
training set, which are assigned as SIBAR-descriptors; similarity may be calculated 
in various ways, i.e. euclidian distances, city block distances or Tanimoto similarity  
4) MLR, PLS or SVM analysis of the training set data matrix  
5) Validation of the model using cross validation procedures and external test sets.  
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So far the approach was successfully applied for a set of 131 propafenone-

type inhibitors of P-gp. 100 compounds were used in the training set. The 20 most 

diverse compounds of the SPECS library were used as reference set. SIBAR-

descriptors were calculated using 39 physicochemical and topological descriptors 

as implemented in TSAR. Subsequent PLS analysis led to models with a predictive 

power which is significantly higher than those obtained when using the descriptors 

alone. When using a small data set for gastrointestinal absorption (19 compounds), 

predictivity equal to those when using polar surface area was obtained [8]. This 

proves the principal applicability of the approach. It has to be stressed out, that in 

both cases the reference set was not tailored and optimised for the respective 

problem (i.e. choosing a set of structurally diverse active and inactive P-gp 

inhibitors or a set of highly and low absorbed compounds, respectively). Recent 

results obtained by B. Zdrazil showed that amongst a panel of 4 different reference 

sets (A: highly diverse, drug like compounds; B: P-gp inhibitors from our in house 

library; C: P-gp substrates from the literature; D: chemicals) models derived using 

reference sets related to the target P-gp (B, C) gave highest internal (leave one out 

cross validation) and external (test set) predictivity [9]. Most strikingly, when 

applying the SIBAR concept on a small panel of P-gp inhibitors and calculating 

shape-similarity values instead of using Euclidian distances (3D-SIBAR) the results 

further improved remarkably [10]. 

 3D-Shape Similarity 
Calculating similarity values on basis of 3D-structures imposes the additional 

problem of conformational sampling. However, although computationally 

demanding, there are several reports which clearly demonstrate the advantage of 

considering the molecules as three-dimensional entities. As outlined above, 3D-

shape similarity values, as implemented in MIMIC, remarkably improve the 

performance of the SIBAR approach [10]. MIMIC is a molecular field matching 

program for quantitatively evaluating the similarity between two molecules on basis 

of steric and electrostatic field [11]. Considering the fact, that MIMIC only operates 
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with steric and electrostatic fields and that H-bonds and π-π interactions play a 

dominant role in drug receptor interactions, a further improvement of using this 3D-

SIBAR approach should be obtained when shape similarities are calculated on 

basis of molecular interaction fields utilising the full panel of probe atoms (H-bond 

acceptor, H-bond donor, hydrophobic, aromatic,…). This method is utilised in the 

software package MIPSIM, which compares 3D distribution of both molecular 

electrostatic potentials derived from quantum chemical calculations and molecular 

interaction fields of series of biomolecules [12, 13]. Obviously, the computational 

costs are by far higher than those for MIMIC and require front-end computational 

tools.  
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Fig. 2. Plot of observed vs. predicted activity (LOO) of a diverse data set of 20 P-
glycoprotein inhibitors derived from a model based on 3D-shape similarities [10]. 
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Recently, the group of A. Jain reported the successful application of the 

concept of morphological similarity, implemented in Surflex-Sim [14]. This method 

optimizes the pose of a query molecule to an object molecule in order to maximize 

3D similarity. Morphological similarity is defined as a Gaussian function of the 

differences in molecular surface distances of two molecules at weighted 

observation points on a uniform grid, thus yielding a value from 0 to 1. The function 

is dependent on the relative alignment of two molecules. Results presented assess 

the utility of the method for ligands of the serotonin, histamine, muscarinic, and 

GABAA receptors. In virtual screening runs, Surflex-Sim was able to distinguish true 

ligands from random compounds just on basis of two or three known ligands. 

Although the true positive rates are quite moderate (60%), the false positive rates 

are impressingly low (3%). In selected runs the enrichment rates might reach 150-

fold compared to random screening. The method thus is a valuable tool for in silico 

screening and also offer a competitive alternative to structure-based methods. 

ROCS (Rapid Overlay of Chemical Structures) performs shape-based overlays 

of conformers of a candidate molecule to a query molecule in one or more 

conformations. The algorithm is based on the shape comparison method described 

by Masek et al. [15] and quickly finds and quantifies the maximum overlap of the 

volume of two molecules. The overlays are based on a description of the molecules 

as atom-centered Gaussian functions. ROCS maximizes the rigid overlap of these 

Gaussian functions and thereby maximizes the shared volume between a query 

molecule and a single conformation of a database molecule. Applying this method 

to inhibitors of the ZipA-FtsZ protein-protein interaction enabled Rush et al. [16] to 

identify two new antibacterial lead compounds. In comparison to 2D-similarity 

search methods, the new lead structures retrieved showed quite diverse chemical 

structures, which further strengthens the ability of the method to perform scaffold 

hops  
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Fig. 3. Above: query structure, below: hit structure found with ROCS by Rush and 
co-workers [16]. 

Virtual Pharmacological Profiling 
Recently several interesting approaches have been published related to 

activity profiling. These mainly rely on very fast similarity calculations on basis of 

descriptors derived from topological information. Gregori-Puigjane and Mestres [17] 

developed a novel set of descriptors called SHED (Shannon Entropy Descriptors), 

which are based on the distributions of atom-centered feature pairs extracted 

directly from the topology of the molecules. The basic assumption behind follows 

the general line of this review, i.e. molecules having similar features arranged in a 

similar way should display similar SHED profiles and in consequence also exhibit 

similar activity profiles. These new descriptors have subsequently been 

successfully applied for virtual pharmacological profiling for a set of nuclear 

receptors [18]. 

Also the group of A. Jain performed a ligand-based modelling of a set of 

biological targets applying the concept of morphological similarity [19]. Using an 

annotated data base of roughly 1000 compounds and 270 targets, the authors 

computed pairwise 3D-similarity values in order to characterise both the ligand and 

the target space. Drug pairs sharing a target showed significantly higher similarity 

than the “background” of drug pairs sharing no target. Also, when comparing 
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targets on basis of their ligands those with no overlap in annotated drugs shared 

lower similarity. Furthermore, using a sub set of 22 targets, the authors achieved 

enrichment factors of up to 100 fold when using these similarity derived models for 

virtual screening of compound libraries. Finally, screening selected compounds 

over the whole panel of target models (virtual pharmacological profiling), a number 

of known side effects and drug-drug interactions were identified.  

 

 
Fig. 4. SHED Profile of 10 compounds of our in-house MDR-Database. 

Keiser et al. made an additional step in using ligand similarity to quantitatively 

group related proteins together [20]. Tanimoto index (TI) based pair wise similarity 

values of all ligands annotated to a given target were calculated and compared with 

the respective values of a large drug like chemical space. Thorough statistical 

analysis and comparison of whole sets of ligands enabled the construction of a 

minimum spanning tree. This tree, although solely based on ligand similarity, 

revealed biologically sensible clusters. Furthermore, hitherto unexpected links 

between targets and compounds were identified. This shows that the rather simple 

principle of similarity calculations based on Tanimoto indices allows a ligand-based 

description and clustering of the biological target space. Further attempts of the 



 The Similarity Principle – New Trends and Applications … 13 

group will focus on in silico activity- and selectivity profiling of compounds over a 

large set of targets. 

Similarity Metrics and beyond  
Besides the sdf-file format smiles strings are one of the most common text 

based molecular representations. Implicitly a smiles string contains all the 

information and thus may be directly used for calculation of molecular properties. 

Vidal et al. developed a method for direct use of smiles strings for calculation of 

biophysical properties without the necessity of time-consuming conversion of the 

strings into molecular graphs or 3D structures [21]. First, smiles strings are 

fragmented into overlapping substrings of a size of 4 digits, called LINGO. This 

integral set of substrings represents a hologram of the smiles representation of the 

molecule. This LINGO profile can subsequently be used as input vector for QSAR 

analysis and similarity calculations. Thus, using a set of 12831 compounds from the 

PHYSPROP database, a logP model with an r2 value of 0.93 could be derived. Also 

the calculation of aqueous solubility worked equally well. Finally, LINGO strings 

were applied to pair wise similarity calculations and revealed a statistically 

significant difference between bioisosteric compounds (average TI of 0.36) and 

random pairs (average TI of 0.07).  

Recently, the LINGO concept was expanded to the IUPAC names. Also 

IUPAC names are a unique string of characters connected to the molecular 

structure of the compounds. The principle concept stays the same, i.e. the name is 

fragmented into sub strings of 4 characters which represent a hologram of the 

chemical structure. This vector was subsequently successfully applied in QSPR 

studies predicting logP values, solvent accessible surface area, free energy of 

salvation in water and last but not least also the logarithm of the blood-brain barrier 

partition coefficient [22]. 
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Fig. 5. LINGO generation process, taken from the work of Vidal et al. 2005 [21]: 

Outlook 
Despite the methods and applications mentioned in this overview several other 

interesting approaches for utilising similarity metrics in drug discovery have recently 

been published. Among others, these include a comparison of topological, shape 

and docking methods in virtual screening [23], a combined approach using 

molecular shape and electrostatics by Nicholls et al. 2004 [24], a very recent idea of 

using 2D Pharmacophore Feature Triplet Vectors for classification by Paul Watson 

[25] and the development of an alignment-recycling method using reference shapes 

and thereby enhancing speed [26]. This clearly demonstrates the still high 

importance of similarity calculations. However, the scope shifted from similarity 

searching to pharmacological activity profiling. Considering the fact that knowledge 

about protein networks and their importance for drug efficacy and safety is steadily 

Chlorpromazine 

Canonical SMILES Code:  
CN(C)CCCN1c2ccccc2Sc3ccc(Cl)cc13 

Modified SMILES Code: 
CN(C)CCCN0c0ccccc0Sc0ccc(L)cc00 

  "CCCN"..1   

"CCN0"..1 "cc0S"….1  "0ccc"…2 

"c0cc"….2 ")cc0"…..1  "ccc0"…1 

"(C)C"…..1 "Sc0c"….1  "c(L)"…..1 

"CN0c"….1 "cc(L"…..1  "C)CC"...1 

"(L)c"……1 "L)cc"…..1  "N0c0"…1 

"CN(C"....1 ")CCC"…1  "cccc"...2 

"0c0c"….1 "cc00"….1  "0Sc0"…1 

"c0Sc"….1 "ccc("…..1  "N(C)"….1 

LINGO freq. LINGO freq.  LINGO freq. 

LINGO FRAGMENTATION 
q=4 

LINGO profile represents a holographic 
representation of the SMILES code. 
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increasing, the challenge will move towards pharmacological profiling of 

compounds in the context of dynamic protein networks. This will require front end 

Pharmacoinformatics tools and algorithms and will definitely include the use of 

similarity metrics 

 

Fig. 6. LINGO profile generation, taken from the work of Thormann et al. 2007 [22]. 
The set of four-character LINGOs are shown in red.  
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