Influence of Lipophilicity on the Antimycobacterial Activity of the Hydrochlorides of Piperidinylethyl Esters of Ortho-Substituted Phenylcarbamic Acids

K. Waisser¹, K. Dražková¹, Čižmárik J.², Kaustová J.³

 ¹Department of Inorganic and Organic Chemistry, Charles University, Faculty of Pharmacy, Heyrovského 1203, CZ-500 05 Hradec Králové, Czech Republic
²Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Commenius University, SK-832 32 Bratislava, Slovak Republic
³Department for the Diagnostics of Mycobacteria, Regional Institute of Public Health, Ostrava, Partyzánské nám. 7, CZ-728 892 Ostrava, Czech Republic

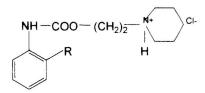
Abstract

A series of 14 hydrochlorides of piperidinylethyl esters of orthosubstituted phenylcarbamic acids were evaluated for *in vitro* antimycobacterial activity against the strains of *Mycobacterium tuberculosis*, *Mycobacterium kansasii* and *Mycobacterium avium*. *In vitro* antimycobacterial activity becomes higher with increasing hydrophobicity of the substituents. The alkoxy group is not necessary in order for the basic ethyl esters of phenylcarbamic acids to display antimycobacterial activity.

Key Words

phenylcarbamic acids, tuberculostatics, mycobacterium, M. tuberculosis

Introduction


The search for new antimycobacterially active compounds is undoubtedly one of the significant directions of current pharmaceutical chemistry. Recently, an initial study of structure-antimycobacterial activity relationships of basic ethyl esters of alkoxy-substituted phenylcarbamic acids has been published [1]. The goal of this paper was to evaluate the structure-antimycobacterial activity relationships in the series of the hydrochlorides of piperidinylethyl esters of *ortho*-substituted phenylcarbamic acids. These compounds were originally studied as local anaesthetics because of their low toxicity [2].

Experimental

Chemistry. All compounds were prepared at the Department of Pharmaceutical Chemistry, Commenius University, Bratislava.[2-4]. The structures are depicted in Scheme 1.

Microbiology. To evaluate the *in vitro* antimycobacterial activity of the substances, the following strains were used: *Mycobacterium tuberculosis* CNCTC My 331/ 88, *Mycobacterium kansasii* CNCTC My 235/ 80, *Mycobacterium avium* CNCTC My 330/ 88, obtained from the Czech National Collection of Type Cultures (CNCTC), National Institute of Public Health, Prague, and a clinical isolate of *Mycobacterium kansasii* 6 509/ 96. The antimycobacterial activities of the compounds were determined in the Šula semisynthetic medium (SEVAC, Prague). The compounds were added to the medium in Me₂SO solutions at the concentrations of 125, 64, 32, 16, 8, and 4 μ mol.l⁻¹. The minimum inhibitory concentrations (MIC, the lowest concentration of a substance, at which the inhibition of the growth of mycobacteria occurred) were determined after incubation at 37 °C for 14 and 21 days. The results are summarized in Table 1.

Scheme 1

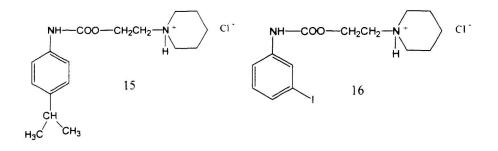
R = 1 -OMe, 2 -OEt, 3 -OPr, 4 -OBu, 5 -OPe, 6 -OHex, 7 -OHep, 8 -OOct, 9 -ONon, 10 -O-iPr, 11 -F, 12 -I, 13 -Me, 14 -Et

Results and discussion

All compounds are potential tuberculostatics. The hydrophobicity of the substituents (constants π) were taken from the literature[5,6]. For several alkoxy substituents, the hydrophobicity constants π were calculated by the method of Hansch [7], using the values of the known π constants of the most closely related alkoxy groups. The hydrophobicity substituent constants are summarized in Table 2.

Table 1. *In vitro* antimycobacterial activity (MIC, µmol/L) of the esters of phenylcarbamic acids after 14 and 21 days

Compound	M.		M.avium		M. kansasii		M. kansasii	
No.		c ulosis M y 3 31/88		330/88	My 235/80		My 6509/96	
-	14	21	14	21	14	21	14	21
1	1000	>1000	500	500	1000	>1000	500	1000


2	1000	>1000	1000	>1000	1000	>1000	1000	1000
3	250	500	500	1000	500	500	500	500
4	125	250	62,5		250	250	125	125
			62,5					
5	16	32	125	125	125	125	125	125
6	16	32	62,5		62,5		32	32
			62,5		62,5			
7	16	32	32	32	32	32	16	16
8	16	32	32	32	8	16	8	8
9	16	16	32	32	8	8	8	16
10	500	1000	1000	1000	1000	1000	1000	
							1000	
11	500	>1000	>1000	>1000	1000	>1000	500	
							1000	
12	250	500	500	1000	1000	1000	500	
							500	
13	500	1000	>1000	>1000	1000	1000	500	
							500	
14	500	1000	1000	>1000	1000	1000	500	
							1000	
15	62.5	125	125	250	250	250	125	
							250	
16	62.5	62.5	62.5	125	125	250	62.5	125
INH	2	2	250	250	250	250	8	
							8	

R	Substituents constant π	R	Substituents constant π
ОМе	-0.18	OOct	3.68
OEt	0.48	ONon	4.24
OPr	1.02	0-iPr	0.55
OBu	1.56	F	0
OPe	2.15	l I	0.93
OHex	2.62	Me	0.84
OHept	3.15	Et	1.39

Table 2. Hydrophobicity substituent constants

The results of the analysis confirm that the activity of the compounds increases with increasing hydrophobicity of the substituents (see Table 3). In the series under study, other substituents than the alkoxy group have been included as well. The value of the hydrophobicity π constant of iodine is similar to that of the propoxy group, and the respective antimycobacterial activities are also similar. Thus, we can conclude that the antimycobacterial activity is the function of hydrophobicity and, in contrast to what we had assumed before, it is independent of the size of the alkoxy group.

In order to gain insight into the behaviour of related compounds, substituted in other positions than *ortho*, we investigated two substances (15 and 16), substituted in positions *para* and *meta* on the phenyl ring. Both the compounds were antimycobacterially active, with the alkoxy group being not a part of the pharmacophore. The results will be used in the design of new antimycobacterial derivatives.

Acknowledgements

The work was supported by the Ministry of Education of the Czech Republic (project No MSM 111600001) and by the grant Kontakt (78/ČR, 237/SR).

Table 3. Correlations of antimycobacterial activity (MIC, μ mol/I) vith the hydrophobicity substituent constants

Strains of	Time of	Regresion		Statist	се	
mycobacterium	incubation	coeffici	ents			
	(d)	а	b	r	s	n
M. tuberculosis	14	-0.496	2.92	0.914	0.316	14
My 331/88		(±0.06	(±0.13)			
M. tuberculosis	21	-0.540	3.22	0.900	0.327	10
My 331/88		(±0.09)	(±0.19)			

<i>М. avium</i> Му 330/88	14	-0. 4 02 (±0.07)	3.00 (±0.16)	0.880	0.318	12
<i>М. avium</i> Му 330/88	21	-0.369 (±0.06)	2.86 (±0.15)	0.903	0.269	10
M . kansasii My 235/80	14	-0.559 (±0.05)	3.27 (±0.09)	0.959	0.236	14
<i>M. kansasii</i> My 235/80	21	-0.598 (±0.02)	3. 4 0 (±0.05)	0.995	0.083	10
M . kansasii 6509/96	14	-0.528 (±0.05)	3.05 (±0.11)	0. 94 7	0.257	14
M . kansasii 6509/96	21	-0.5 4 0 (±0.05)	3.16 (±0.11)	0. 946	0.265	14

References

- [1] Waisser K., Dražková K., Čižmárik J. (2003), Folia Mirobiol. 48: 45-50.
- [2] Čižmárik J., Borovanský A. (1975), Chem. Zvesti (Chem. Papers) 29: 119-123.
- [3] Čižmárik J., Borovanský A., Švec P. (1976), Acta Fac. Pharm. Univ. Comenianae29: 53-80.
- [4] Čižmárik J., Blešová M., Stankovičová M., Bachratá M., Bezáková Ž., Borovanský A. (1988), Pharmazie 43: 562-563.
- [5] Kuchař M., Rejholec V., Využití kvantitativních vztahů mezi strukturou a biologickou aktivitou (Use of quantitative relationships between structure and activity), Academia, Praha 1987.
- [6] Hansch C, Leo A., Hockman D., Exploring QSAR, hydrophobic, electronic, and steric constants, American Chemical Society, Washington, DC 1995.
- [7] Hansch C., Leo A., Substituent constants for correlation analysis in chemistry and biology, Wiley, New York 1979.

Received September 12th, 2003 Accepted October 13th, 2003