# Effects Of 2-Methyl-3-propynylquinazolin-4-(3*H*)-one On Vascular Reactivity In Isolated Porcine Tail Arteries

Odafenkhoa Ojeikere 1, Cyril Usifoh 2 and Anthony Ebeigbe 11

<sup>1</sup>Department of Physiology, University of Benin, Benin City, Nigeria.

<sup>2</sup>Department of Pharmaceutical Chemistry, University of Benin, Benin City, Nigeria.

### **Abstract**

The vascular effects of 2-methyl-3-propynylquinazolin-4-(3H)-one (QUIN) have been studied on isolated porcine tail arteries. QUIN had no effect on resting tension but relaxed, dose-dependently, arteries precontracted with noradrenaline or high-K<sup>+</sup> in the order: NA > high-K<sup>+</sup>. Also, QUIN inhibited both intracellular (ICD) and extracellular (ECD) Ca<sup>2+</sup>-dependent contractions in the order: ICD > ECD. The results suggest that QUIN interferes with vascular Ca<sup>2+</sup> mobilization.

Key Words: Quinazolinones, Vascular Reactivity, Smooth muscle

#### Introduction

Quinazolinones are a large group of heterocyclic nitrogen compounds [1, 2] with a wide range of pharmacological activities. Different derivatives have been reported to have cardiotonic, antihypertensive, antiarrhythmic, vasodilator and lipid-lowering properties [3, 4]. In a recent study by Ryu et al [5], a 6-(substituted-phenyl)-amino-5,8-quinazolinedione was reported to have potent inhibitory effect on endothelium-dependent vasorelaxation.

In view of the paucity of information on the cardiovascular actions of quinazolones, the goal of the present study was to investigate some vascular

effects of a quinazolone derivative: 2-methyl-3-propynylquinazolin-4-(3*H*)-one (QUIN) in porcine arterial smooth muscle preparations.

## Methods

# Synthesis of 2-Methyl-3-propynylquinazolin-4-(3H)-one (QUIN)

The method employed for the synthesis of QUIN is essentially as described previously [1, 2]: briefly, the *o*-amino-*N*-propynylbenzamide was obtained from the ring opening of isatoic anhydride and cyclocondensed in a blanket of nitrogen using triethyl orthoacetate to give the desired compound 2-methyl-3-propynylquinazolin-4-(3H)-one (QUIN) m.p 91-92°C (Lit. [2] 91-93 °C).

# Preparation of Arteries:

Segments of pig tails were obtained from a local slaughter house and immediately, placed in physiological salt solution (PSS) of the following composition (mM/l): NaCl, 119.0; KCl, 4.7; KH<sub>2</sub>PO<sub>4</sub>, 1.2; MgSO<sub>4</sub>, 1.2; NaHCO<sub>3</sub>, 24.9; CaCl<sub>2</sub>, 1.6; CaNa<sub>2</sub>EDTA, 0.03; Glucose, 11.5. In the laboratory, the tail arteries were carefully dissected out, cleaned of adhering connective tissues and cut into rings (2-3mm). Each arterial ring was suspended between a stainless steel hook and an isometric force transducer (Grass FT.03), in a 20ml organ bath containing PSS. Contractions were displayed on a Grass Model 7 4-channel polygraph.

The PSS was maintained thermostatically at 37°C, pH 7.4 and bubbled continuously with 95% O<sub>2</sub>, 5% CO<sub>2</sub> gas mixture, under an initial tension of 1g. The rings were allowed to equilibrate for 1 hour before the start of experiment. Following the equilibration period, the rings were stimulated twice using 80mM K<sup>+</sup> PSS (with rinses and recovery in-between the stimulations). Subsequent contractions during the experiment, were compared with this initial 80mM K<sup>+</sup> contraction. The following experimental protocols were examined: (a) Effect of QUIN on baseline tension (b) Relaxant effect of QUIN on noradrenaline or potassium-induced precontraction (c) Effect of Pharmacologic antagonists on QUIN-induced relaxation and (d) Effect of QUIN on intra- and extra-cellular Ca<sup>2+</sup>-dependent contractions.

# **Protocols**

#### Effect of QUIN on baseline tension:

Arterial rings were exposed to cumulative concentrations of QUIN, to examine the possible effect on baseline tension.

## Relaxant Effect of QUIN:

Arterial rings were precontracted using 2.3x10<sup>-5</sup>M noradrenaline or 40mM K<sup>+</sup> (EC<sub>70</sub>: concentration producing 70% of maximun contraction). When the contractions were stable, QUIN was added to the bath, cumulatively (a higher

concentration of QUIN was added when the response to the previous concentration was steady).

# Effect of QUIN on Intra- and Extracellular Ca2+-dependent Contractions

The procedure employed to assess the effect of QUIN on NA-induced phasic (intracellular) and tonic (extracellular) calcium-dependent contractions is as previously described [6,7,8]: maximum contractions to NA (1x10<sup>-4</sup>M) were obtained in normal PSS and following 30 min exposure to a nominally calcium-free PSS. Following the phasic (intracellular Ca-dependent) contraction, restoration of calcium in the PSS resulted in a tonic (extracellular Ca-dependent) contraction. To assess the influence of QUIN on both components of contraction, varying concentrations of QUIN were applied simultaneously with the change to Ca-free PSS and maintained throughout the duration of both components of contraction.

# Effect of drugs on QUIN-induced relaxation:

The influence of various pharmacologic antagonists on QUIN-induced relaxation was examined by estimating the magnitude of the relaxation response induced by  $5x10^{-3}M$  QUIN first, in the absence and following application of a particular antagonist 20min prior to  $2.3x10^{-5}M$  NA precontraction (the antagonist remained in the bath for the duration of the response to QUIN).

The following drugs were used: Noradrenaline bitartrate (Levophed, Stirling Drug Inc.); Cimetidine, Indomethacin, Propranolol, Ouabain (Sigma, UK). The drugs were prepared freshly by dissolving in distilled water. Ca-free PSS contained no added CaCl<sub>2</sub> with or without 1.0mM EGTA. High-K<sup>+</sup> PSS was prepared by equimolar substitution of NaCl with KCl. All chemicals were of analytical reagent grade.

#### **Statistics**

Values are presented as means  $\pm$  standard error of the mean (S.E.M.) and n represents the number of rats from which tissues were obtained. Comparisons were made where appropriate, by using the Student's t-test ('Microcal Origin' software). A p value less than 0.05 was taken to denote statistical significance in all cases.

## Results

#### Effect of QUIN on baseline tension:

Cumulative addition of QUIN (10<sup>-7</sup>-10<sup>-3</sup>M) had no significant effect on baseline tension in all experiments (n=12).

# Relaxant Effect of QUIN:

Following pre-contraction induced by  $2.3 \times 10^{-5} M$  noradrenaline or 40mM K<sup>+</sup>, QUIN elicited concentration-dependent relaxation responses. The magnitudes of the contractile responses induced by  $2.3 \times 10^{-5} M$  noradrenaline or 40mM K<sup>+</sup> were:  $865.4 \pm 33.5$  (n=10) and  $882.5 \pm 29.4 mg$  (n=10), respectively. The relaxant effect of QUIN was significantly greater in arterial rings pre-contracted with NA (Fig. 1): the IC<sub>50</sub> values for QUIN-induced relaxation were  $5.0 (\pm 0.2) \times 10^{-5}$  and  $8.0 \pm (0.3) \times 10^{-4} M$  (respectively) for NA- and K<sup>+</sup>-pre-contracted rings.

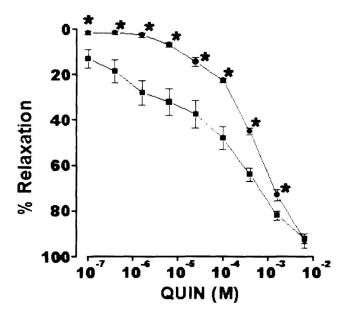
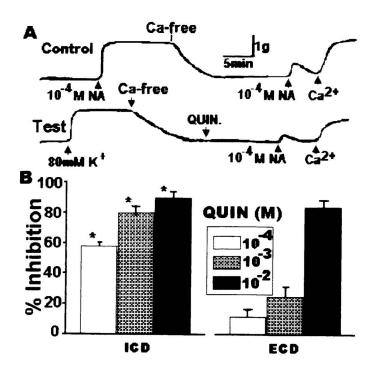




Fig. 1
Relaxation response to QUIN in porcine tail artery rings following precontraction induced by 2.3x10<sup>-5</sup>M noradrenaline (■ ) or 40mM K<sup>+</sup> (●). Means ± SEM; n=10. Asterisks denote statistical significance (p<0.05).

# Effect of QUIN on Intra- and Extracellular Ca2+-dependent Contractions:

The magnitudes of the phasic and tonic components of 1x10<sup>-4</sup>M NA contraction were: 742.5±22.1 and 1625.3±17.9mg, respectively. QUIN (10<sup>-4</sup>-10<sup>-3</sup>M) significantly inhibited both components of NA-induced contractions presumed (respectively), to be Intra- and extracellular Ca-dependent. The inhibitory effect of QUIN was significantly greater on Intracellular Ca-dependent contractions (Fig. 2).



# Fig. 2

Representative tracings (A) in a porcine arterial ring preparation, showing the inhibitory effect of QUIN on the phasic (intracellular Ca-dependent) and tonic (extracellular Ca-dependent) noradrenaline-induced contractions. Histogram (B) shows the inhibitory effects of varying concentrations of QUIN on the intracellular (ICD) and extracellular (ECD) Ca-dependent contractions. Means  $\pm$  SEM; Asterisks denote significant difference (P<0.05) from ECD values.

# Effect of drugs on QUIN-induced relaxation:

 $5x10^{-3}M$  QUIN elicited relaxation of  $2.3x10^{-5}M$  NA-precontracted rings by  $87.2\pm5.4\%$  (n=14). The magnitude of this relaxation response was not significantly altered by exposure of the rings to  $1x10^{-4}M$  indomethacin (n=6),  $1x10^{-3}M$  ouabain (n=5),  $1x10^{-6}M$  propranolol (n=4) and  $4x10^{-5}M$  cimetidine (n=5).

## **Discussion**

We have observed, in the present study, that 2-methyl-3-propynylquinazolin-4-(3H)-one (QUIN) has no contractile effect on resting vascular smooth muscle of porcine tail arteries; however, following precontraction by noradrenaline or high-K<sup>+</sup>, a concentration-dependent relaxation response results. The relaxation response induced by QUIN, if present in vivo, may provide a basis for the blood pressure lowering effect of this compound.

The observation that QUIN caused greater relaxation in NA-precontracted rings appears useful in defining its cellular mode of action. NA and high K<sup>+</sup> are two agents commonly employed to study excitation-contraction coupling in vascular smooth muscle [9, 10]: whereas NA contraction involves receptor activation leading to intracellular Ca<sup>2+</sup> release and influx from the extracellular medium, high K<sup>+</sup> contraction is associated with membrane depolarization and Ca<sup>2+</sup> influx. The observation that QUIN produced greater inhibition on NA- precontracted rings

suggests a greater effect of the compound on vascular Ca<sup>2+</sup> metabolism linked to receptor activation.

The experiment represented in fig. 2 shows the influence of QUIN on the intracellular and extracellular Ca<sup>2+</sup> pools mobilizable by noradrenaline. It is well established that the phasic and tonic contractions induced by NA represent Ca<sup>2+</sup> mobilization from intracellular and extracellular pools respectively [6, 7, 11]. At all concentrations of QUIN studied, both components of NA contraction were attenuated; however, the inhibitory effect of QUIN on intracellular Ca-dependent contractions was significantly higher than for extracellular Ca-dependent contractions. This suggests a preferential action of QUIN on intracellular Ca<sup>2+</sup> release mechanisms and may also provide an explanation for the greater inhibitory effect of QUIN in NA-precontracted rings discussed earlier (Fig.1).

The lack of effect of indomethacin, ouabain, propranolol and cimetidine on QUIN-induced relaxation of NA-precontracted arterial rings suggests the non-involvement of cyclooxygenase stimulation,  $Na^+-K^+$  ATPase enzyme activation,  $\beta$ -adrenergic stimulation and histamine  $H_2$ -receptor activation as possible mechanisms of QUIN action.

In conclusion, we report that 2-methyl-3-propynylquinazolin-4-(3*H*)-one (QUIN) elicits relaxation of vascular smooth muscle of the porcine tail artery by mechanisms associated with interference with Ca<sup>2+</sup> supply, particularly, from the intracellular pool.

## **Acknowledgements**

This study was supported, in part, by the University of Benin (URPC) Research grants to A.B. Ebeigbe and C.O. Usifoh. We are grateful to Industrial Gases Nigeria (Ltd.) for a gift of the 95% O<sub>2</sub>, 5% CO<sub>2</sub> gas mixture used in this study.

#### References

[1] Reisch J, Usifoh C O, Oluwadiya J O.

Synthesis Oxazoles and Oxazolo-quinazolinones from o-Amino-N-(1,1-disubstitutedpropynyl)-benzamide.

J. Heterocyclic Chem. 1989; 26:1495-8.

- [2] Reisch J. Usifoh C O, Oluwadiya J O. Acetylenic amides as Precursors for the synthesis of 3-Propynylquinazolines. J. Heterocyclic Chem. 1990; 27:1953-6.
- [3] Chen G S, Kalchar S, Kuo C.W, Chang C. S, Usifoh C. O, Chern J. W. Studies on Quinazolines 11. Intramolecular Imidate-Amide Rearrangement of 2-Substituted-4-(Chloroalkoxy)-quinazoline Derivatives.1,3-O→N Shift of Chloroalkyl Groups via cyclic 1,3-Azaoxonium Intermediates.

  J. Org. Chem. 2003; 68: 2502-5.
- [4] Sinha S, Srivasta V A. (Ed. E. Jucker).In: Progress in Drug Research Vol 43. Birkhauser Verlag, 1994:143-227.
- [5] Ryu C K., Shin K H., Seo J H., Kim H J. 6-Arylamino-5,8-quinazolinediones as potent inhibitors of endotheliumdependent. Eur. J. Med.Chem. 2002; 37: 77-82.
- [6] Ebeigbe A B, Cabanie M. In vitro vascular effects of cicletanine in pregnancy-induced hypertension. Brit. J. Pharmacol. 1991; 103:1992-6.
- [7] Olele N E., Ehigiegba A E., Ebeigbe A B. Vasorelaxant effect of thiopentone in isolated human epigastric arteries Exper. Physiol. 1998: 65: 461-.
- [8] Ebeigbe A B, Aloamaka C P. Mechanism of hydralazine-induced relaxation of arterial smooth muscle. Cardiovasc. Res. 1985; 19: 400-5.
- [9] Bolton T B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev.1979; 59: 606-718.
- [10] Ebeigbe A B.
   Calcium pools for noradrenaline and potassium-induced contractions of rat portal vein.
   Can J. Physiol Pharmacol 1982; 60: 1225-7.
- [11] Dube G. Baik Y K., Van Breemen C. Effect of isosorbide dinitrate and diltiazem on Ca flux and contraction in artery.

Eur. J. Pharmacol. 1987; 13: 39-47