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Abstract: Introduction: This is a case report of a patient with neuropathic corneal pain after coro-
navirus disease 2019 (COVID-19) infection. Methods: A previously healthy 27-year-old female
presented with bilateral eye pain accompanied by increased light sensitivity 5 months after COVID-19
infection. She was diagnosed with neuropathic corneal pain based on clear corneas without fluo-
rescein staining, alongside the presence of microneuromas, dendritic cells, and activated stromal
keratocytes identified bilaterally on in vivo confocal microscopy. Results: The patient’s tear nerve
growth factor, substance P, and calcitonin gene-related peptide levels were 5.9 pg/mL, 2978.7 pg/mL,
and 1.1 ng/mL, respectively, for the right eye and 23.1 pg/mL, 4798.7 pg/mL, and 1.2 ng/mL,
respectively, for the left eye, suggesting corneal neuroinflammatory status. After 6 weeks of topical
0.1% flurometholone treatment, decreased microneuroma size, less extensive dendritic cells, and
reduced tear nerve growth factor and substance P levels were observed. The scores on the Ocular
Pain Assessment Survey showed an improvement in burning sensation and light sensitivity, de-
creasing from 80% and 70% to 50% for both. Conclusions: Neuropathic corneal pain is a potential
post-COVID-19 complication that warrants ophthalmologists’ and neurologists’ attention.

Keywords: neuropathic corneal pain; coronavirus disease 2019; corneal nerves; cornea

1. Introduction

Neuropathic pain, according to the International Association for the Study of Pain
(IASP), is defined as “pain caused by a lesion or disease of the somatosensory nervous
system” [1]. In the cornea, this is termed neuropathic corneal pain (NCP). Patients with
NCP describe their corneal pain as “dry”, “burning”, hyperalgesia (disproportionate pain
from a stimulus), or a “foreign body sensation”, which are often aggravated by light (pho-
toallodynia), extremes of temperature, and dry wind, with or without associated symptoms
such as tearing or itchiness [2]. This condition may result in disturbances in vision and
blurring, significantly affecting quality of life [3,4]. Most commonly, NCP is caused by
chronic dry eye disease but can be iatrogenic after refractive or cataract surgery [5,6] or
result from various corneal pathologies, such as infectious keratitis, chronic contact lens
wearing, or chemical injury [7]. Other causes include direct corneal nerve involvement,
such as diabetes corneal neuropathy [8] and herpes zoster [9], as well as autoimmune
conditions such as Sjogren’s syndrome [10]. The diagnosis of NCP is challenging due to the
poor understanding of NCP as well as the lack of specific clinical signs [11]. The diagnostic
workup includes the clinical assessment of pain-related symptoms, minimal or no corneal
fluorescein staining on slit lamp examination, and corneal nerve abnormalities [11]. In vivo
confocal microscopy (IVCM) has been used to reliably evaluate corneal nerve status and
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cellular morphology in ophthalmology [12], and scans of patients with NCP typically show
structural nerve changes such as decreased nerve density or length and the presence of
neuromas [13]. After an insult to the corneal nerves, subsequent nerve regeneration may
result in neuroma formation, which often has dysfunctional responsiveness and sponta-
neous discharges, causing chronic ocular pain [14]. Hence, neuroma formation has also
been described as a hallmark of neuropathic pain [15,16].

The recent coronavirus disease 2019 (COVID-19) pandemic resulted in the advent of
research on various systemic complications after COVID-19 infection, including neuro-
pathic pain in approximately 2% of patients, which may also occur in the richly innervated
cornea [17,18]. Peripheral neuropathic pain in post-COVID-19 patients has been found in
tandem with prolonged myalgia [19], and it can also manifest as trigeminal neuralgia [20]
or even Guillain–Barré syndrome [21]. Bitirgen et al. also reported post-COVID-19 patients
with neurological symptoms and significantly reduced corneal nerve fibre length (CNFL)
as well as lower corneal nerve fibre density (CNFD) and corneal nerve branch density
(CNBD) 3 months after COVID-19 diagnosis [22]. Furthermore, several review papers have
reported that neurological sequelae, such as peripheral neuropathy and neuropsychiatric
disorders, could occur months after COVID-19 infection [23].

There have been a few small studies reporting morphological changes in the corneal
nerve, such as CNFD, CNFL, and CNBD, as well as increased neuroma and dendritic cell for-
mation observed on IVCM in post-COVID-19 patients compared to healthy controls [24,25].
In addition, altered levels of neuromediators, such as nerve growth factor (NGF), substance
P, and calcitonin gene-related peptide (CGRP), have been found in COVID-19 patients [26].
Studies have shown increased serum and salivary NGF levels in the acute phase in COVID-
infected patients, suggesting its use as an early biomarker of morbidity [27,28]. A few
reports have also described higher serum levels of CGRP in acute COVID-19 infection
and have proposed CGRP antagonists as a novel therapeutic agent for COVID-19 [29,30].
These neuromediators also play an important role in maintaining corneal nerve health
and ocular surface homeostasis [31]. However, the changes in neuromediators specific to
patients with NCP or any neuropathic pain before and after COVID-19 infection have not
yet been investigated.

This report presents a case with NCP possibly secondary to COVID-19 infection. We
herein reported detailed subjective and objective ocular surface assessment and imaging of
morphological changes in the corneal nerve plexus, epithelial and stromal cells, and tear
neuromediator profiles. Changes found via the above-mentioned evaluation after topical
corticosteroid treatment are also documented.

2. Detailed Case Description

A 27-year-old female, previously healthy with no history of ocular surgery or ocular
diseases, presented to the emergency department with bilateral eye pain, with the right
eye worse than the left. The ocular pain started after her COVID-19 infection (confirmed
by polymerase chain reaction test) 5 months prior and had been worsening and becom-
ing intolerable. She denied any personal medical history of diabetes mellitus, anxiety,
depression, fibromyalgia, irritable bowel syndrome, autoimmune disease, or any other
potentially associated conditions, and was fully vaccinated for COVID-19 9 months prior
to her COVID-19 infection. An initial impression of dry eye disease was made, and the
patient was discharged with topical lubricants. As her pain symptoms had not subsided,
she sought a second opinion. Her visual acuity was 6/6 in both eyes, and the fundus
examination was unremarkable. Slit lamp examination revealed a clear cornea with no
corneal fluorescein staining for either eye (Figure 1). The lid margin and meibomian gland
openings were normal. There were no signs of conjunctivochalasis or allergic conjunctivitis,
such as conjunctival congestion, papillary reaction, or chemosis. The tear break-up time
was 4 s, and the Schirmer I test was 5 mm bilaterally. She was continued on topical lu-
bricants, and ciclosporin eyedrops (Ikervis®, Santen Pharmaceuticals, Osaka, Japan) were
added. However, the pain persisted, with worsening photosensitivity bilaterally. As the
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pain was disproportionate to the clinical ocular surface assessment, an IVCM scan was
performed to evaluate her corneal nerve status. On IVCM images, epithelial cells with
normal bright cell borders and dark cytoplasm with regular shapes were observed. Corneal
sub-basal nerves were clearly visible, with the presence of neuromas, which appeared as
irregularly shaped, hyper-reflective enlargements of terminal nerve endings. Some corneal
dendritic cells were also observed in the sub-basal and subepithelial layers. The stromal
keratocytes were hyper-reflective and had prominent cytoplasmic extensions in the stroma
(Figures 2 and 3).

Figure 1. Slit lamp biomicroscopy images. (A,B) Cornea is clear on both eyes on slit lamp examination
before treatment. (C,D) Cornea remains clear after treatment. (E,F) No fluorescein staining of the
cornea and conjunctiva before treatment. (G,H) No fluorescein staining after treatment. Scale bar:
2 mm.
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Figure 2. Representative in vivo confocal microscopy (IVCM) images of corneal neuromas and
dendritic cells. (A,B) The presence of neuromas before treatment, manifesting as irregularly shaped,
hyper-reflective enlargements of terminal nerve endings (arrows). (C,D) The size, area, and perimeter
of the neuromas decreased after treatment with topical steroids (arrows). (E,F) The presence of
dendritic cells, which appear as bright hyper-reflective cell bodies before treatment. (G,H) The
dendritic cell count and area slightly decreased after treatment. Scale bar: 50 µm.
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Figure 3. Representative in vivo confocal microscopy (IVCM) images of corneal epithelium and
stroma. (A–D) Normal, regularly shaped cells with bright cell borders and dark cytoplasm were
observed before and after treatment. (E,F) Presence of hyper-reflectivity of keratocytes and promi-
nent cytoplasmic extensions before treatment. (G,H) The reflectivity of the stroma decreased after
treatment. Scale bar: 50 µm.

Corneal nerves were further analysed and quantified by ACCMetrics (University
of Manchester, Manchester, UK) [32,33]. Corneal epithelium, neuromas, and dendritic
cells were analysed using the AIConfocal Rapid Image Evaluation System (ARIES; ADICS,
Saint-Contest, France) [34]. The detailed results are provided in Table 1.

Table 1. Analysis of corneal nerves, corneal neuromas, and dendritic cells before and after treatment.

Before After

Parameter OD OS OD OS

Neuroma parameters
Total area (µm2) 462.85 751.56 478.54 398.96

Average size (µm) 126.33 38.79 86.43 33.25
Perimeter (µm) 37.73 23.69 37.75 22.58

Dendritic cell parameters
Count 22.4 20.4 18.67 11.00

Density (/µm2) 0.022 0.022 0.023 0.022
Area (µm2) 45.27 46.39 43.48 45.46

Nerve parameters
CNFD (number/mm2) 19.53 19.14 24.34 21.71
CNBD (number/mm2) 23.44 21.87 21.71 22.83

CNFL (mm/mm2) 12.40 12.82 13.06 12.83
CTBD (number/mm2) 36.72 37.50 30.26 35.41

CNFA (mm2/mm2) 0.0057 0.0069 0.0058 0.0058
CNFW (mm/mm2) 0.021 0.021 0.022 0.020

Cfradim 1.46 1.46 1.47 1.46
CNFD = corneal nerve fibre density; CNBD = corneal nerve branch density; CNFL = corneal nerve fibre length;
CTBD = corneal nerve fibre total branch density; CNFA = corneal nerve fibre area; Cfradim = corneal nerve
fractal dimension.

Her corneal sensitivity, measured with a Cochet-Bonnet esthesiometer, was 30 cm for
both eyes (0–6 cm for each area, 0–30 cm for the central area and four quadrant areas) [35].
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In the proparacaine challenge test, the pain score (range 0–10) was reduced from 5 and
1 in her right and left eyes, respectively, to 0 bilaterally after application of 0.5% topical
Alcaine (Alcon, Geneva, Switzerland). The abolishment of pain after administration of
proparacaine suggests peripheral NCP rather than central NCP [11]. In the evaluation of
symptom severity using the Ocular Pain Assessment Survey (OPAS) questionnaire, the
scores ranged from 70% to 90% for all items. Of significance, she scored 80% for burning
sensation and 70% for sensitivity to light (Table 2). Tear samples were analysed using
enzyme-linked immunosorbent assay (ELISA) with the protocol published previously
in [36]. In brief, thin Schirmer strips with tear fluid samples were cut; submerged in 200 µL
elution buffer consisting of 0.55 M NaCl, 0.33% Tween-20, 0.55% bovine serum albumin,
and protease inhibitor; and then subjected to agitation and sonication at 450 rpm for 17 h at
4 ◦C. The eluted tear proteins were subsequently centrifuged, and the clear supernatants
were collected. ELISAs were then performed according to the manufacturer’s protocol:
substance P (6× dilution), CGRP (4× dilution), and NGF (1.5× dilution), respectively
(CGRP from Phoenix Pharmaceuticals, Runcorn, UK; Substance P and NGF from R&D
Systems, Minneapolis, MN, USA). Tear samples were subjected to analysis using enzyme-
linked immunosorbent assay (ELISA): substance P (6× dilution), CGRP (4× dilution), and
NGF (1.5× dilution), respectively (CGRP from Phoenix Pharmaceuticals, Runcorn, UK;
substance P and NGF from R&D Systems, Minneapolis, MN, USA). The levels of tear NGF,
substance P, and CGRP were 5.9 pg/mL, 2978.7 pg/mL, and 1.1 ng/mL, respectively, for
the right eye and 23.1 pg/mL, 4798.7 pg/mL, and 1.2 ng/mL, respectively, for the left eye.

Table 2. Truncated Ocular Pain Assessment Survey (OPAS) responses before and after treatment.

Before After

Aggravating factors—% increase in pain when exposed to:
Wind, dry air, heat, air conditioning 80% 60%

Volatile chemicals (cleaning agents, fumes, cosmetic fragrances) 90% 80%

Associated symptoms—% frequency that ocular pain is accompanied by:
Redness 70% 50%
Burning 80% 50%

Sensitivity to light 70% 50%
Tearing 80% 80%

Topical 0.1% fluorometholone eyedrops, twice daily, were prescribed. After 6 weeks
of topical fluorometholone treatment, the patient’s subjective symptoms improved to a
score of 50% for both burning sensation and sensitivity to light (Table 2). The average
neuroma area, perimeter, and size, as well as the dendritic cell counts and density, were
reduced bilaterally (Figures 2 and 3, Table 1). The levels of the tear neuromediators NGF,
substance P, and CGRP largely decreased after treatment to 3.2 pg/mL, 3114.4 pg/mL, and
0.8 ng/mL, respectively, for the right eye and 0.1 pg/mL, 2782.2 pg/mL, and 1.1 ng/mL,
respectively, for the left eye.

3. Discussion

While the pathophysiology of how the SARS-CoV-2 virus impacts peripheral nerves
is still unknown, Shiers et al. reported that human primary sensory neurons express the
angiotensin-converting enzyme 2 (ACE2) receptor, which is commonly found in SARS-
CoV-2 [37]. This suggests that this receptor possibly serves as the entrance pathway
of the virus into ocular nociceptor neurons, which is the first step in the generation of
pain [37,38]. Parallel infection of corneal epithelial cells through the same mechanism may
cause an inflammatory response that contributes to the damage of corneal nerve terminals,
microneuromas, and abnormal expression of ion channels in pain nerve fibres, leading to
aberrant nerve activity that causes neuropathic pain [39,40].

The IVCM findings of the presence of neuromas, increased dendritic cell counts, and
activated stromal keratocytes corroborated the morphological changes found in NCP in
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the literature, which form in response to nerve injury and inflammation [13]. Corneal
neuromas, described as enlarged terminal nerve endings, are a result of healing attempts
directed by the surviving Schwann cell tube in response to axonal injury and are highly
specific for neuropathic corneal pain [41,42]. Cytokines and growth factors secreted in
response to nerve injury and inflammation also activate the usual quiescent keratocytes,
gaining replicative, migratory, and contractile properties, which cumulatively manifest as
hyper-reflective keratocytes [42,43]. Dendritic cells are the most potent antigen-presenting
cells in the body, and increased mature dendritic cells are seen in active corneal inflamma-
tion [44,45]. Barros et al. reported that dendritic cells were found in corneas in almost 70%
of post-COVID patients, with a predilection for younger, asymptomatic patients [25]. It
was also found that several receptors, such as CD209, CD26, CD30, and CD66, found on
the SARS-CoV-2 virus were also expressed in dendritic cells, explaining their presence in
even asymptomatic COVID-19 patients [46,47].

Several IVCM studies have presented corneal nerve changes after COVID-19 infection.
However, in those reports, the nerve changes did not manifest as NCP. Mirza et al. and
Bitirgen et al. reported significantly reduced CNFL, CNFD, and CNBD in post-COVID-19
patients with neurological symptoms, which persisted after 3 months post-COVID-19
diagnosis, when compared to asymptomatic post-COVID-19 patients and healthy con-
trols [22,24]. This may explain why, aside from the well-documented anosmia and dysgeu-
sia [48], there have also been various neurological manifestations, such as ophthalmoplegia,
Millie Fisher syndrome, and trigeminal neuropathy, reported in COVID-19 patients [49,50].
Another study found neuroma-like structures, nerve beading, and the presence of abundant
dendritic cells in 21 out of 23 post-COVID-19 patients [25], which was consistent with the
findings in this case. In this case, a significant reduction in CNFL and CNFD was not
observed compared to those published values analysed with the same software [51,52].
This might be because the IVCM scan was performed in a relatively early stage in the
post-COVID-19 period compared with other studies [32,38]. This also highlights the fact
that neuropathic pain symptoms can occur in the absence of marked nerve reduction.
In fact, nerves with neuromas are hyperexcitable and can elicit spontaneous and ectopic
discharge, causing pain and pain-like symptoms such as hyperalgesia, a burning sensa-
tion, or allodynia [41,53]. At present, only one case of NCP, which was accompanied
by headache symptoms, after long-COVID-19 infection has been reported [54]. It was
treated as centralized NCP because topical oxybuprocain failed to provide an analgesic
effect, and systemic medications such as duloxetine and carbamazepine were adminis-
tered for neuropathic pain. In contrast, our patient had peripheral NCP and responded
well to topical corticosteroid treatment. Tricyclic antidepressants inhibit serotonin and
norepinephrine reuptake and block cholinergic, histaminergic, and sodium channels [55],
while anticonvulsant carbamazepine blocks sodium channels [56]. Calcium channel α 2-δ
ligands (Gabapentin and pregabalin) bind to α2-δ subunit voltage-gated calcium channels
and inhibit glutamate, norepinephrine, and substance P release, stabilizing neurons [11,57].
All these drugs have been shown to be effective in the management of NCP [58–60]. An
opioid antagonist has been suggested to reduce pain and cytokine release in NCP [61–63].
Topical administration of opioids might be more effective at avoiding potential side effects.
A few studies have revealed that topical opioids reduced pain scores and increased rate of
epithelial healing post-photorefractive keratectomy without deleterious effects [64,65]. A
phase I study indicated the tolerability to escalating doses of topical naltrexone (1–4 eye
drops at dosages up to 50 µM) in healthy individuals [66].

We investigated the concentrations of NGF, substance P, and CGRP, as they are com-
mon neuromediators that are involved in ocular surface neuroinflammation [67]. Compared
to the published concentrations of neuromediators in tears (substance P: 1926.3–2672.0 pg/mL;
NGF: 5.4–10.0 pg/mL; CGRP: 0.9–2.6 ng/mL) [36,51,68], increased tear NGF and substance
P levels were found in this case, which were suppressed after topical corticosteroid treat-
ment. These neuromediators are released in response to neuroinflammation, the patho-
physiological process that underlies NCP. Increased tear neuromediators have also been



Diseases 2024, 12, 37 7 of 10

described in chronic pain. For example, substance P has been shown to be upregulated
in the lumbar spinal cord of rat models with neuropathic pain [69], anti-NGF antibodies
have been found to alleviate chronic neuropathic pain in rat models [70], and CGRP mono-
clonal antibodies have been reported as novel biologics for the treatment of migraines and
cluster headaches [71]. Blood-derived eye drops, such as autologous serum tears (ASTs),
have been shown to be effective in alleviating pain and promoting nerve regeneration in
NCP. However, the limitations of blood derivates are the limited availability, high cost,
and the storage requirements [13,41]. Topical corticosteroids are a mainstay of treatment
for peripheral NCP, especially for acute pain relief [2]. They exert anti-inflammatory (in-
cluding anti-neuroinflammatory) effects and hence analgesic effects by inhibiting cellular
infiltration, capillary dilation, and fibroblast proliferation [72] by inhibiting inflammatory
cascades and proinflammatory molecule synthesis. Topical corticosteroids also help reverse
nerve abnormalities such as nerve thickening and tortuosity in NCP [73]. This case study
found that corneal dendritic cells decreased after topical corticosteroid treatment, which
is in line with previous reports that showed decreased dendritic cell density after topical
corticosteroid treatment compared to baseline in dry eye disease [74]. NCP remains an
ill-defined entity, and the diagnosis of NCP requires the exclusion of ocular comorbidities.
Several ocular surface assessments, such as meibography or tear osmolarity, which were
not performed in this case study, can be considered to rule out possible comorbidities.
Nonobvious obstructive meibomian gland dysfunction, in which the meibomian glands
could be normal and the eyelid margin could be without inflammation [75], should be
ruled out. Moreover, a larger cohort would be required to better understand the underlying
pathogenesis and disease course.

4. Conclusions

In conclusion, this case report presents for the first time the clinical manifestations,
nerve imaging features, and neuromediator profiles of a case of NCP after COVID-19 infec-
tion before and after treatment. NCP can be a potential post-COVID-19 complication that
warrants ophthalmologists’ and neurologists’ attention, as it poses a diagnostic challenge
and is potentially debilitating to patients’ quality of life.
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