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Abstract: Delayed cerebral ischemia (DCI) is an important contributor to poor outcomes in aneurys-
mal subarachnoid hemorrhage (SAH) patients. We previously showed that volatile anesthetics such
as isoflurane, sevoflurane and desflurane provided robust protection against SAH-induced DCI, but
the impact of a more commonly used intravenous anesthetic agent, propofol, is not known. The
goal of our current study is to examine the neurovascular protective effects of propofol on SAH-
induced DCI. Twelve-week-old male wild-type mice were utilized for the study. Mice underwent
endovascular perforation SAH or sham surgery followed one hour later by propofol infusion through
the internal jugular vein (2 mg/kg/min continuous intravenous infusion). Large artery vasospasm
was assessed three days after SAH. Neurological outcome assessment was performed at baseline
and then daily until animal sacrifice. Statistical analysis was performed via one-way ANOVA and
two-way repeated measures ANOVA followed by the Newman–Keuls multiple comparison test with
significance set at p < 0.05. Intravenous propofol did not provide any protection against large artery
vasospasm or sensory–motor neurological deficits induced by SAH. Our data show that propofol did
not afford significant protection against SAH-induced DCI. These results are consistent with recent
clinical studies that suggest that the neurovascular protection afforded by anesthetic conditioning is
critically dependent on the class of anesthetic agent.

Keywords: propofol; aneurysmal subarachnoid hemorrhage; delayed cerebral ischemia; neurovascu-
lar protection

1. Introduction

Aneurysmal subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with
very high morbidity and mortality [1]. The amount of bleeding in the brain and the sec-
ondary brain injury caused by the bleeding are the two most important determinants of
patient outcomes after SAH. The major treatable cause of secondary neurological injury
in these patient populations is delayed cerebral ischemia (DCI) [1]. DCI occurs in 30% of
patients, 4–12 days after SAH, and is characterized by large artery vasospasm and microcir-
culatory deficits [2,3]. Numerous therapies for DCI have been tried so far without success,
probably due to centering the treatments on a single element of what is now known to be a
multifaceted process. To overcome this issue, we and others applied a therapeutic strategy
called conditioning—a powerful and extremely pleiotropic neuroprotective strategy known
to provide protection against several central nervous system cell types such as neurons, glia,
and vascular cells [4]. In recent years, structurally distinct conditioning agents (e.g., anes-
thetics, hypoxia) have been shown to provide strong DCI protection leading to improved
neurologic outcomes after SAH [2,3,5].
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In our previous preclinical studies, we demonstrated that conditioning with volatile
anesthetics, specifically isoflurane, provides robust multifaceted protection against SAH-
induced DCI including large artery vasospasm, microvessel thrombosis, and short-term
neurological deficits [2,3]. Our follow-up study showed that clinically relevant doses
of commonly used volatile anesthetics such as sevoflurane and desflurane also afforded
significant neurovascular protection against SAH-induced DCI, leading to improved neu-
robehavioral outcomes [6]. Supportive of our preclinical studies, our observational clinical
studies showed that in SAH patients, receiving volatile anesthesia alone (sevoflurane or
desflurane) for aneurysm treatment (clipping/coiling) was associated with lower incidence
of angiographic vasospasm and DCI compared to SAH patients who received combined
anesthesia (volatile anesthesia and propofol infusion) or only intravenous propofol anes-
thesia [7–9]. Propofol is a commonly used intravenous anesthetic agent in the SAH patient
population, but at present, experimental studies examining the impact of propofol on
SAH-induced DCI and neurological deficits are lacking. Therefore, the aim of our current
study is to examine the effects of intravenous propofol on SAH-induced DCI.

2. Materials and Methods

Approval to conduct this study was obtained from the institutional animal care and use
committee of Washington University in Saint Louis (Protocol no. 20180080, Approval date
22 July 2019) and it was confirmed to follow the National Institutes of Health Guidelines
for the Care and Use of Animals in Research. Twelve-week-old wild-type male mice
(C57BL/6) were obtained from Jackson laboratories (Bar Harbor, ME, Strain #:000664) for
the study. Mice were placed in temperature- and humidity-controlled rooms with a 12 h
dark–light cycle. Five mice were housed in a cage with free access to laboratory chow
and water. The experimental groups were divided into sham (n = 14), SAH (n = 13), and
SAH + propofol conditioning (n = 16) groups. Mice were randomly assigned to one of the
above-mentioned experimental groups and the experiments were replicated independently
(a minimum of three times) with all three groups represented on each day. Neuroscore
and large artery vasospasm assessment and data analysis were conducted in a blinded
manner. The endovascular perforation SAH model and the internal jugular vein catheter
insertion in the mice were performed by an experienced technician from our laboratory.
All mice that underwent SAH had a brief episode of apnea, and none of the sham mice
experienced apnea. SAH induction was confirmed by the apneic episode after endovascular
perforation and by the identification of blood on the ventral surface of the brain after animal
sacrifice. Animals which died during or after the SAH procedure, and mice with improper
staining or an unclear middle cerebral artery vessel, were not included in the analysis; the
rest of the animals were included. Surgical procedures and outcome assessments were
performed during the light phase of the 12 h dark–light cycle. The overall design of the
experiment is represented in Figure 1. We followed the Animal Research: Reporting of In
Vivo Experiments guidelines for this study.
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2.1. Mouse Endovascular Perforation SAH Model

Endovascular perforation SAH was performed in mice per our previously published
methods [2,3,6]. Briefly, isoflurane (4% induction, 1.5% maintenance) in room air was
utilized to anesthetize mice. Normothermia at 37 ◦C was maintained throughout the
procedure using a thermo-regulated heating pad (mTCII micro-Temperature Controller’
by Cell Micro Controls, Norfolk, VA, USA, Accuracy: ±0.2 ◦C). Following antiseptic
precautions, a midline incision was made in the neck and the external carotid artery (ECA)
was exposed. A 5–0 nylon suture was introduced via ECA and advanced distally through
the internal carotid artery until resistance was felt at the bifurcation of anterior cerebral
artery and middle cerebral artery (MCA). In the SAH groups, the suture was advanced
further to induce SAH, and then removed, and the ECA was ligated. The sham mice
underwent similar steps except that the suture was removed without causing perforation.
Isoflurane duration for sham or SAH surgery was short and consistent across groups. Post
sham or SAH procedure, the mice were recovered in a heated incubator before returning to
their corresponding cages.

2.2. Propofol Conditioning

To facilitate intravenous (IV) propofol or saline infusion, a central line catheter was
inserted through the left internal jugular vein in all groups during the brief period of
isoflurane anesthesia. Propofol exposure was achieved by administering an IV propofol
infusion (2 mg/kg/min for one hour) beginning one hour after SAH using an automatic
injector (Stoelting, Wood Dale, IL, USA) with the mice placed inside a mouse restrainer.
To maintain normothermia during propofol infusion, the mouse restrainer was placed
above a homeothermic blanket (HTP-1500 heat therapy pump, Kent Scientific Corporation,
Torrington, CT, USA, Accuracy: ±2 ◦F). Propofol conditioning or saline infusion was
instituted twenty-four hours post central line catheter insertion. Propofol dosing in the
current study was chosen to maintain a constant brain propofol concentration, producing a
steady state of general anesthesia [10].

2.3. Cerebral Vasospasm Measurement

Middle cerebral artery (MCA) diameter, as a measure of vasospasm, was examined
on day 3 after SAH as per our published methods [2,3,6]. Briefly, mice were anesthetized
with isoflurane and a pressure-controlled cerebrovascular casting was performed with
phosphate buffered saline, 10% formalin and ROX SE (5-(and-6)-Carboxy-X-rhodamine,
succinimidyl ester) at 72 h post sham or SAH surgery. Brains were then extracted and
blood vessels in the circle of Willis were imaged under a fluorescent microscope using a
CCD camera (CoolSNAP EZ, Photometrics, Tucson, AZ, USA) and MetaMorph® software
(Universal Imaging, West Chester, PA, USA). Cerebral vasospasm was measured in the left
(ipsilateral) MCA. The average of three independent measures of the smallest width in the
first 1 mm segment of the MCA from internal carotid artery bifurcation was calculated as a
measure of vasospasm.

2.4. Neurobehavioral Assessment

Neurological outcome was evaluated based on our previously published methods [2,3,6].
Briefly, neurological function was graded based on a motor score (0 to 12) and a sensory
score (4 to 12). Components examined for motor score were spontaneous activity, symmetry
of limb movements, climbing, and balance and coordination. Components examined for
sensory score were body proprioception, vibrissa, visual, and tactile responses. Neurobe-
havioral testing was performed on day 0 right before SAH induction, and on days 1, 2, and
3 until the animals were sacrificed. The total neuroscore ranges from 4–24, with higher
numbers representing better neurologic outcomes.
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2.5. Statistical Analysis

Statistical analysis was performed using Prism software (GraphPad software, version
9.0.0, La Jolla, CA, USA). Data are expressed as mean± standard error of mean. Large artery
vasospasm was evaluated using one-way ANOVA followed by the Student Newman–Keuls
multiple comparison test. Neurological outcomes were analyzed using two-way repeated
measures ANOVA followed by the Student Newman–Keuls multiple comparison test.
Statistical significance was fixed at p < 0.05.

3. Results
3.1. Propofol Conditioning Did Not Afford Protection against SAH-Induced Large Artery
Vasospasm in Wild-Type Mice

A total of 55 wild-type mice were used for the experiment. Out of 55 mice, 9 died in
SAH groups and 3 were excluded as the MCA vessels were not clearly stained. Therefore,
our final analysis included a total of 43 mice with n = 14 in the sham group, n = 13 in
the SAH group and n = 16 in the SAH + propofol group. All animals in the SAH group
experienced apnea immediately after perforation, but none in the sham group developed
apnea. Mice in the SAH group showed significant vasospasm compared to the sham
group (p < 0.05, Figure 2). Administration of propofol did not afford protection against
SAH-induced large artery vasospasm (p > 0.05, Figure 2A,B).
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Figure 2. Propofol did not attenuate vasospasm induced by SAH in an endovascular perforation
mouse model. Wild-type male mice (WT) underwent SAH or sham surgery followed 1 h later
by intravenous propofol infusion (2 mg/kg/min) for 1 h. Vasospasm was assessed on day 3 (A).
(B) Representative images for vasospasm. The arrow mark points to the ipsilateral left middle cerebral
artery (MCA). Data indicate mean ± SEM. (A) * p < 0.05 sham vs. SAH, sham vs. SAH + Propofol,
(ns), p > 0.05 SAH vs. SAH + Propofol; ANOVA followed by Student Newman–Keuls comparison
test. ns—nonsignificant. SEM—standard error of mean. SAH—subarachnoid hemorrhage. * p < 0.05,
** p < 0.01.

3.2. Propofol Conditioning Did Not Afford Protection against SAH-Induced Neurological Deficits
in Wild-Type Mice

Mice in the SAH group showed significant neurologic deficits compared to the sham
group (p < 0.05, Figure 3). Administration of propofol did not afford protection against
SAH-induced neurologic deficits (p > 0.05, Figure 3).
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Figure 3. Propofol did not improve neurologic outcomes after SAH in an endovascular perforation
mouse model. Wild-type male mice (WT) underwent SAH or sham surgery followed 1 h later by intra-
venous propofol infusion (2 mg/kg/min) for 1 h. Neuroscore was assessed baseline and daily for three
days after SAH. Data indicate mean ± SEM. * & p < 0.05 sham vs. SAH, sham vs. SAH + Propofol,
* & p < 0.05 SAH vs. SAH + Propofol, by two-way repeated measures ANOVA followed by Student
Newman-Keuls comparison test. SEM—standard error of mean. SAH—subarachnoid hemorrhage.

4. Discussion

The main findings in our study are that the intravenous anesthetic propofol does not
provide protection against either large artery vasospasm or neurologic deficits induced
in a common mouse model of SAH. The present preclinical data confirm our previous
finding in SAH patients that intravenous propofol does not protect against angiographic
vasospasm or DCI. These findings are critical, as SAH patients are commonly exposed to
anesthetics during their early ictus period for diagnostic purposes (i.e., catheter angiog-
raphy), aneurysm treatment (clipping/coiling), and/or sedation while in the intensive
care unit. Hence, the selection of appropriate anesthetics during this critical period may
significantly impact patient outcomes.

4.1. Propofol against SAH-Induced DCI

Propofol is a commonly used intravenous anesthetic agent for induction and main-
tenance in the operating room for aneurysmal repair procedures (coiling/clipping), and
also one of the commonly used anesthetics in the intensive care unit for sedating mechan-
ically ventilated SAH patients. However, studies examining the impact of propofol on
SAH-induced DCI are lacking. A preliminary clinical study in SAH patients undergoing
aneurysmal clipping under propofol anesthesia measured the plasma concentrations of
endothelin-1(ET-1) and calcitonin gene related peptide (CGRP) and showed that intra-
venous propofol anesthesia significantly reduced CGRP levels, but had no effect on ET-1
levels. Given the fact that CGRP is a significant vasodilator, the authors speculated that
intravenous propofol may play a role on the pathogenesis of cerebral vasospasm in SAH
patients [11]. Another clinical study noted that SAH patients who received propofol as
the primary anesthetic for an intracranial aneurysm repair procedure had an increased
incidence of transcranial doppler evident vasospasm compared to patients who received
desflurane for the procedure [12]. However, no significant differences were noted between
the two anesthetic groups in relation to other outcomes such as angiographic vasospasm,
cerebral infarction, or clinical outcomes as measured using the Glasgow Coma Scale score
on day 14 after surgery, and the Glasgow Outcome Scale score at 3 months.

Complementing the previous studies, our series of clinical studies suggested that
volatile anesthetics have a robust neuroprotective effect against cerebral vasospasm and
DCI in SAH patients compared to intravenous propofol [7–9]. In a small cohort of SAH pa-
tients (157) undergoing aneurysm repair (clipping/coiling), we showed that SAH patients
who received volatile anesthetics (sevoflurane or desflurane) for anesthetic maintenance
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had a lower incidence of angiographic vasospasm compared to SAH patients who re-
ceived combined anesthetics (sevoflurane or desflurane and intravenous propofol) [7]. In
a follow-up study with a larger patient cohort (390), we provided additional evidence
showing that SAH patients receiving volatile anesthetics (sevoflurane or desflurane) had
less angiographic vasospasm and DCI [8]. Direct evidence came from our recent study
where we compared SAH patients receiving volatile anesthetics (sevoflurane or desflurane)
during aneurysm repair at one academic institution to SAH patients who received only
intravenous anesthesia (propofol) at a different academic institution. We noticed that SAH
patients exposed to volatile anesthetics were less likely to develop angiographic vasospasm
and DCI compared to SAH patients who received propofol [9]. However, no significant
difference was noted between the groups in functional outcomes at patient discharge as
measured via the modified Rankin scale or discharge disposition. To the best of our knowl-
edge, the present study is the first experimental study examining the effects of propofol on
large artery vasospasm and neurologic outcome in a murine SAH model. Supporting the
clinical findings from our group and others, we did not find that propofol provides any
protection against large artery vasospasm or the neurological deficits induced by SAH in a
mouse model of SAH.

4.2. Volatile vs. Intravenous Anesthetics for SAH-Induced DCI

The potential reasons for the neuroprotective effect of commonly used halogenated
volatile anesthetics (isoflurane, sevoflurane, desflurane) compared to intravenous propofol
in SAH-induced DCI are the following. (1) Volatile anesthetics are shown to have a direct
effect on cerebral vasculature, causing vasodilation and resulting in a dose-dependent
increase in cerebral blood flow, whereas intravenous propofol was shown to significantly re-
duce cerebral blood flow, possibly due to maintaining an intact flow–metabolism coupling
in the cerebral vasculature [13–15]. (2) An earlier experimental study elucidating the mech-
anism of volatile anesthetic conditioning-induced protection in DCI was attributed to the
upregulation of hypoxia inducible factor—1 alpha (HIF-1α) [16]. HIF-1α is a transcriptional
factor involved in regulating multiple genes that are known to affect cerebral vessel func-
tion [17,18]. Though no experimental studies have yet evaluated the impact of propofol on
SAH-induced DCI, it has been shown that propofol inhibits HIF-1α activation [19]. Another
mechanism by which volatile anesthetics may provide cerebral vessel protection is through
downregulating the potent vasoconstrictor ET-1. An in vitro study by Park et al. demon-
strated that isoflurane significantly reduced cortical microvessel vasoconstriction induced
by ET-1 in a mouse model of SAH [20]. Interestingly, a small clinical study in SAH patients
undergoing aneurysm clipping showed that the volatile anesthetic desflurane, used during
the maintenance period, significantly reduced plasma concentrations of ET-1, suggesting
that desflurane may potentially reduce acute cerebral vasospasm in SAH patients [21]. The
same group demonstrated that anesthetic maintenance with propofol did not decrease
plasma ET-1 concentration in SAH patients undergoing aneurysm clipping [11]. (3) It is
also possible that the two classes of anesthetic agents cause longer-term differential effects
on the cerebrovasculature. For example, propofol has been shown to exacerbate vascular
smooth cell and endothelial cell injury resulting in vascular dysfunction [22–24], while
isoflurane has an opposite effect [25–27].

4.3. Clinical Benefits of Volatile Anesthetics in SAH Patients

We previously demonstrated that clinically relevant doses of commonly used volatile
anesthetics such as isoflurane, sevoflurane and desflurane afforded strong protection
against SAH-induced DCI, including improved short-term neurological outcomes [2,3,6].
These findings are supplemented by our observational studies showing that volatile anes-
thetics are associated with a lower incidence of angiographic vasospasm and DCI compared
to intravenous propofol [7–9]. Validation of these findings in prospective clinical trials will
have a significant clinical impact in several ways. (1) It could provide guidance for optimiz-
ing the anesthetic management of SAH patients undergoing various intraoperative and
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neuro-interventional procedures that could ultimately improve patient outcomes. (2) Re-
cent studies have shown that volatile sedation is a safe alternative to intravenous sedation
in ICU patients [28–31]. Given the fact that a subanesthetic dose (patient is sedated but not
anesthetized) of isoflurane affords robust neurovascular protection against SAH-induced
DCI [32], it is conceivable that volatile anesthetics could replace intravenous sedation in the
ICU for SAH patients. (3) Molecular therapies could be designed to mimic the protection
provided by volatile anesthetics and could be developed as a stand-alone therapeutic strat-
egy as a means for reducing secondary brain injury and improving neurological outcomes
in SAH patients.

4.4. Strengths and Limitations

The strengths of our study are: (1) This is the first experimental study to explore
the impact of propofol on SAH-induced DCI. This information is critical to know, as
practitioners commonly utilize only intravenous anesthesia (propofol) for the management
of SAH patients for various interventions. (2) We simulated the administration of propofol
in human patients by running a continuous intravenous propofol infusion through a central
line catheter in the mice. An alternative option to run a continuous propofol infusion in
mice is via the tail vein; however, this route of administration, for prolonged infusions,
has been shown to be extremely unreliable [10]. Our study is not without limitations.
(1) Though our current mouse model of SAH reflects its features in humans, alternate
animal models of SAH should be used to confirm our findings. (2) Only male mice were
utilized in the current experiments. Future studies should include both genders to examine
the impact of propofol conditioning on SAH-induced DCI and neurologic outcomes. Finally,
(3) the impact of propofol conditioning on long-term neurobehavioral outcomes after SAH
was not examined. This information is essential for future translational studies.

5. Conclusions

Our data show that propofol, a commonly used intravenous anesthetic in SAH patients,
does not afford protection against large artery vasospasm or neurological deficits produced
by SAH. Further prospective randomized clinical studies are warranted to examine the
effects of volatile anesthetics and intravenous propofol on secondary brain injury and
neurologic outcomes in SAH patients.
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