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Abstract: Prostate cancer (PCa) is one of the most prevalent cancers among men in India. Although
studies on PCa have dealt with genetics, genomics, and the environmental influence in the causality
of PCa, not many studies employing the Next Generation Sequencing (NGS) approaches of PCa have
been carried out. In our previous study, we identified some causal genes and mutations specific to
Indian PCa using Whole Exome Sequencing (WES). In the recent past, with the help of different cancer
consortiums such as The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium
(ICGC), along with differentially expressed genes (DEGs), many cancer-associated novel non-coding
RNAs have been identified as biomarkers. In this work, we attempt to identify differentially expressed
genes (DEGs) including long non-coding RNAs (lncRNAs) associated with signature pathways from an
Indian PCa cohort using the RNA-sequencing (RNA-seq) approach. From a cohort of 60, we screened
six patients who underwent prostatectomy; we performed whole transcriptome shotgun sequencing
(WTSS)/RNA-sequencing to decipher the DEGs. We further normalized the read counts using fragments
per kilobase of transcript per million mapped reads (FPKM) and analyzed the DEGs using a cohort of
downstream regulatory tools, viz., GeneMANIA, Stringdb, Cytoscape-Cytohubba, and cbioportal, to
map the inherent signatures associated with PCa. By comparing the RNA-seq data obtained from the
pairs of normal and PCa tissue samples using our benchmarked in-house cuffdiff pipeline, we observed
some important genes specific to PCa, such as STEAP2, APP, PMEPA1, PABPC1, NFE2L2, and HN1L,
and some other important genes known to be involved in different cancer pathways, such as COL6A1,
DOK5, STX6, BCAS1, BACE1, BACE2, LMOD1, SNX9, CTNND1, etc. We also identified a few novel
lncRNAs such as LINC01440, SOX2OT, ENSG00000232855, ENSG00000287903, and ENST00000647843.1
that need to be characterized further. In comparison with publicly available datasets, we have identified
characteristic DEGs and novel lncRNAs implicated in signature PCa pathways in an Indian PCa cohort
which perhaps have not been reported. This has set a precedent for us to validate candidates further
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experimentally, and we firmly believe this will pave a way toward the discovery of biomarkers and the
development of novel therapies.

Keywords: prostate cancer; RNA-sequencing; differentially expressed genes; long non-coding RNAs

1. Introduction

Prostate cancer (PCa) is the fifth most common cause of cancer death in males world-
wide and the second most frequently diagnosed malignancy in many developed nations.
In the recent past, there is an increased occurrence of PCa varying among different races
and countries, particularly between Western (Caucasian) and Eastern (Asian) popula-
tions [1,2]. Notwithstanding the increased burden of PCa incidence in affluent nations,
males of African ancestry (MAA) bear a disproportionate amount of this burden. Men
living in the Caribbean and in Sub-Saharan Africa had the highest PCa mortality rates in
the world. According to the International Agency for Research on Cancer (IARC), PCa is
also anticipated to trend higher across Africa, where fatalities from the disease will rise
from about 28,000 in 2010 to just over 57,000 by 2030.

Over the last few years, there has been an increase in PCa cases across all the different
parts of and regions in India [3,4]. Next Generation Sequencing (NGS) has advanced our
understanding of the diseased phenotypes, particularly cancers with tumor heterogeneity,
and capture of large amounts of genetic architecture leading to isoforms, splice junctions,
and post-transcriptional modifications with great accuracy and sensitivity [5,6]. Although
studies have dealt with the genetics, genomics, and environmental influence in the causality
of PCa, no association of genotype and phenotype employing the NGS approaches has
been discussed in the Indian population. Recent studies from our lab using the whole
exome sequencing (WES) approach of PCa have yielded very promising results to identify
causal genes specific to PCa, with 30 causal genes and over eight genes specific to the
Indian phenotype with variable degrees of genetic disposition [7]. Whole transcriptome
shotgun sequencing (WTSS) or RNA-sequencing (RNA-seq), on the other hand, is used
to study gene expression patterns, regulation, developmental biology, and clinical and
health sectors [8]. The expected outcome of RNA-seq is the identification of differentially
expressed genes (DEGs) in different conditions (for, e.g., wild type vs. mutant or control
vs. tumor), which could provide a detailed mechanism of underlying disease [9]. The
DEGs are selected based on the cut-off and the log2 fold change that depends on p-values
obtained by statistical modeling [10]. RNA-seq generates millions of short reads that are
aligned to a reference genome using different alignment software, and based on this, the
characteristic of a particular dataset is calculated [11]. Although RNAs are labile and
unstable in alkaline conditions, they can be easily detected and quantified at very low
abundance for varying gene expression patterns; which, makes them suitable to use as
biomarkers [12]. Compared with DNA and protein biomarkers, RNA biomarkers have more
sensitivity and specificity and are very cost-effective [13]. Similarly, RNA biomarkers have
the advantage of providing dynamic insights into cellular states and regulatory processes
compared to DNA biomarkers [14]. With the advent of high-throughput sequencing
technologies, different types of non-coding RNAs (e.g., small nuclear RNA, micro-RNA,
small nucleolar RNA, long non-coding RNA, etc.) and protein-coding RNAs (i.e., mRNAs)
have been detected [15]. Interestingly, there have been lots of novel non-coding RNAs
discovered recently, out of which mRNAs, piwiRNAs, siRNAs, ceRNAs, and miRNAs have
been well-documented as diagnostic and prognostic markers in different types of cancers
(ovary, lung, breast, colorectal) [16]. In addition to small RNAs, long non-coding RNAs
(lncRNAs) previously considered as ‘transcriptional noises’ have been known to have a
diverse and significant role in various diseases, primarily cancers [17,18]. Although well-
known lncRNAs in the form of MALAT, HOTAIR, XIST have been reported in genitourinary
cancers, the increasing number of cases of PCa worldwide and as well as in the Indian
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population, warrants the need for identifying lncRNA-based biomarkers [19,20]. Further
with the advent of RNA-seq, the identification of lncRNAs will hopefully facilitate the
translational research to the bench side [21]. Therefore, with considerable data available on
the Indian population, transcriptome analysis on Indian patients supplementing strategies
in diseased phenotypes of PCa will be of great interest [22]. In the current study, we
analyzed the RNA-seq data from a cohort of six patients and identified DEGs as well as
lncRNAs which could lay emphasis as deterministic markers. Cufflinks-Cuffdiff has been
used for transcriptome analysis in a wide number of studies, e.g., Tripathi et al. [23] have
identified DEGs from breast cancer. Similarly, Kim et al. [24] have done transcriptome
analysis of sinensetin-treated liver cancer cells using the Cufflinks-Cuffdiff pipeline. There
are many more studies that corroborate the importance of these tools. We discuss the
impending results obtained from this study and attempt to further compare and validate
from our downstream analysis.

2. Materials and Methods
2.1. Patients, Clinical Samples, and Criteria

From a cohort of 60, we screened 6 patients who underwent prostatectomy (4 cases
and 2 controls) from Rukmani Birla Hospital (RBH) (Table 1). The study was carried out
through our CA Prostate Consortium of India (CAPCI; https://bioclues.org/capci last
accessed on 13 April 2023) and received approval from the Institutional Ethics Committee
(IEC) of Rukmani Birla Hospitals, Jaipur, India, and informed consent was judiciously
taken. The inclusion and exclusion criteria for selecting patients have been mentioned in
Table 2.

Table 1. Samples used for the WTSS along with their Gleason scores constituted two high-grade
tumor samples with two intermediate samples, while 2 others with less than 6 from benign cases.

Sample ID Condition Gleason Score (Primary + Secondary)

69/19 Adenocarcinoma 3 + 4

1631/H19 Adenocarcinoma 4 + 4

4226/H19 Adenocarcinoma 3 + 4

5110/H20 Adenocarcinoma 4 + 4

1374/19 Benign Nodular Prostatic Hyperplasia <6

1266/19 Benign Nodular Prostatic Hyperplasia <6

Table 2. The criteria used for inclusion and exclusion of the test subjects.

Inclusion Criteria Exclusion Criteria

Malignant (PCa)

Age > 55 years
PSA > 4 ng/mL
Gleason score > 6
Non-diabetic or any other co-morbidity

Smoking
Familial history of BPH

Normal (BPH)
Age > 55 years
PSA < 4 ng/mL
Gleason score < 6

Those with Associated
diseases/phenotypes or any
urological diseases.

2.2. Tissue Preparation and RNA Sequencing

RNA was isolated using the RNeasy FFPE kit (Qiagen, Catalog No-73504) from BPH
and malignant Formalin-Fixed Paraffin-Embedded (FFPE) blocks, and was sent for sequenc-
ing (outsourced). From approximately 0.5 mg of cross-section, the RNA was prepared
wherein the NEBNext® Ultra™ II Directional RNA Library Prep Kit was used for preparing
the libraries following the manufacturer’s protocol. While 100 ng of FFPE RNA was used
as input, it was then subjected to end repair and Illumina-specific adaptors were ligated.

https://bioclues.org/capci
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The adaptor-ligated product was then barcoded and subjected to 15 cycles of PCR. The
samples after PCR were cleaned up using AMPure XP beads with the final libraries checked
for quality using Qubit Fluorometer and Agilent Tapestation. The obtained libraries were
pooled and diluted to the final optimal loading concentration before cluster amplification
on the Illumina flow cell. Once the cluster generation is completed, the cluster flow cell is
loaded on an Illumina HiSeq X instrument to generate 60 M, 150 bp paired end reads.

2.3. Bioinformatics and Downstream RNA-Sequencing Analysis

The Cufflinks-Cuffdiff pipeline was employed to yield significant changes at the level
of transcript expression [25], as we used our benchmarked pipeline from our lab to run
through the workflow [26]. The sequences were aligned to human genome reference
(build hg38) using HISAT2 to produce the alignment results output in SAM (sequence
alignment map/file). HISAT2 aligns a set of unpaired reads (in fastq or fq format) to the
reference genome using the Ferragina and Manzini (FM)-index [27]. Cufflinks uses this
map (SAM) and assembles the reads into transcripts, estimates their abundances, and
finally examines DEGs from the samples (Figure 1). This was followed by Cuffdiff to check
the DEGs which compared the aligned reads from RNA-seq samples from two or more
conditions, and identified transcripts that are differentially expressed using a rigorous
FPKM normalization/statistical analysis [28]. In the current study, Cuffdiff was used
to perform differential analysis between the control samples and the other 4 malignant
samples, respectively [29]. A p-value cutoff of 0.05 and less was used to identify the
significantly expressed transcripts (Figure 2). We performed a real-time PCR validation for
some selected DEGs. The primers were ordered accordingly, and RT-PCR was performed
(supplementary information). We saw a significant difference in the expression of a few
genes in malignant samples compared to control ones. But some of the genes did not show
any difference which could be due to the small sample size as well as the poor quality of
FFPE blocks.
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2.4. Interaction Networks, Statistical Analysis, Gene Ontology, and Cbioportal Analyses

We generated an interaction network considering a flexible and intuitive approach to
evaluating gene lists for generating l functional studies [30]. To check this, GeneMANIA
(https://genemania.org/ last accessed on 13 April 2023) was employed which is a versatile,
user-friendly web tool for developing gene function hypotheses, reviewing gene lists,
and ranking genes for functional experiments [31]. In addition, we also used the search
tool for the retrieval of interacting genes (STRING) database (https://string-db.org/ last
accessed on 13 April 2023), and integrated DEGs into STRING to evaluate the interaction.
Experimentally valid interactions with a score of a minimum of 0.4 (40% or more) were
chosen to be ideal ones with the resulting file saved as a tab-separated values (TSV) file [32].
The raw data files from the STRING database were then imported into Cytoscape 3.5.1 and
the cytoHubba (http://hub.iis.sinica.edu.tw/cytohubba/ last accessed on 13 April 2023)
plugin was employed with clustering coefficient, betweenness, and closeness centralities to
calculate the significant modules in the PPI network [33]. Different Cytoscape plugins can
score and rank the nodes using different algorithms [34]. CytoHubba is one such plugin that
uses a simple interface to analyze the different networks. CytoHubba implements eleven
nodes such as degree, Maximum Neighborhood Component, betweenness, closeness,
clustering coefficient, stress, etc., to rank any network [35]. Each method has an F function
attached to it that gives each node v a numerical value (v). If a node’s score, or F (u), is
higher than that of another node, or F(v), then we can say that node’s ranking is higher
than that of that other node. PANTHER (http://www.pantherdb.org/ last accessed on
13 April 2023) is a gene ontology-based functional annotation tool that takes a variety of
inputs such as Gene IDs, UniProtKB IDs, Ensembl IDs, etc., and results in either functional
analysis or statistical enrichment analysis [36]. Furthermore, we deemed to check the
expression and mutational profile of some of the genes from our study in the cbioportal
(https://www.cbioportal.orglast last accessed on 13 April 2023) for cancer genomics that
provides visualization, analysis, and the download of large-scale cancer genomics data
sets [37]. We used data from TCGA, PanCancer Atlas of Prostate Adenocarcinoma where
489 samples/patients were screened [38].

3. Results
3.1. Distinct DEGs Were Obtained

Although there has been difficulty in extracting RNA from FFPE blocks from the
RNA-seq, which is usually the case [39], while checking it and downstream analyses, all
samples yielded good quality reads from FastQC with ca. 40 M transcript reads with no
exposure in tiles. With the ensuing Cufflinks-Cuffdiff pipeline, we obtained approximately
70 DEGs, among which 65 were upregulated and 5 were downregulated with inherent
p-value heuristics ≤ 0.05 and ≤−2 Log2FC and Log2FC ≥ 2 (Table 3).

https://genemania.org/
https://string-db.org/
http://hub.iis.sinica.edu.tw/cytohubba/
http://www.pantherdb.org/
https://www.cbioportal.orglast
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Table 3. List of DEGs obtained with the designated cut-off after Cufflinks-Cuffdiff analyses. Some of
the identified DEGs were PCa-specific such as APP, STEAP2, PABPC1, RPS24, etc.

Gene Id Locus log2 Fold p-Value Gene Name

CUFF.1000 chr1:12314982–12315401 3.1420 0.0254 VPS13D

CUFF.100001 chr20:53952153–53952369 2.9034 0.0366 BCAS1

CUFF.10004 chr1:151206377–151206638 4.6543 0.02435 PIP5K1A

CUFF.100042 chr20:54490801–54490981 8.8744 0.0245 DOK5

CUFF.100060 chr20:55553908–55554084 7.1775 0.0213 LINC01440

CUFF.134059 chr5:55937823–55938153 4.6464 0.0334 IL6ST

CUFF.100106 chr20:57168914–57169100 2.8468 0.02305 BMP7

CUFF.100077 chr20:56403670–56403826 2.7896 0.011 CSTF1

CUFF.100080 chr20:56412720–56412894 3.2345 0.02435 CASS4

CUFF.100086 chr20:56487111–56487297 3.1269 0.02305 RTF2

CUFF.102595 chr21:41275383–41275947 3.4149 0.0307 BACE2

CUFF.109200 chr3:43335859–43336390 3.4173 0.0307 SNRK

CUFF.109337 chr3:44926095–44926812 4.0190 0.02435 ZDHHC3

CUFF.119448 chr3:181441034–181441358 3.3563 0.0131 SOX2OT

CUFF.126886 chr4:101280781–101281251 3.0588 0.0234 PPP3CA

CUFF.131979 chr5:13991457–13991753 3.1847 0.04515 DNAH5

CUFF.13343 chr1:201898030–201898394 4.054158 0.02435 LMOD1

CUFF.141632 chr5:173034434–173034832 4.094679 0.02855 ATP6VOE1

CUFF.151326 chr6:157942571–157943399 4.254992 0.004 SNX9

CUFF.157342 chr7:90232992–90235254 3.248 0.03545 STEAP2

CUFF.100128 chr20:57648598–57649155 4.119627 0.00535 PMEPA1

CUFF.10017 chr1:151326615–151327193 3.3082 0.0272 PI4KB

CUFF.100074 chr20:56367973–56368588 4.4636 0.0028 FAM21OB

CUFF.100241 chr20:58895335–58895591 2.7206 0.0227 GNAS

CUFF.100175 chr20:58033916–58034202 5.059 0.04605 STX16

CUFF.100056 chr20:55074569–55074768 2.743 0.00795 RPL12P4

CUFF.100291 chr20:59967544–59968164 3.415 0.04675 CADHERIN 26

CUFF.100698 chr21:14084939–14085128 3.123919 0.0416 ENSG00000224905

CUFF.10107 chr1:152032497–152032839 4.3215 0.0145 ENSG00000229021

CUFF.101153 chr21:18857730–18858445 2.8043 0.04035 PPIAP22

CUFF.101277 chr21:25880415–25881777 5.6321 0.03945 APP

CUFF.101659 chr21:28672882–28673291 3.3034 0.00035 ENSG00000232855

CUFF.101853 chr21:31210389–31210838 3.2157 0.0433 TIAM1

CUFF.102028 chr21:33551193–33553146 5.4886 0.02575 SON

CUFF.102981 chr21:46003384–46005044 7.4652 0.0004 COL6A1

CUFF.115488 chr3:126861928–126865263 3. 9928 0.04385 CHCM1/CHCHD6
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Table 3. Cont.

Gene Id Locus log2 Fold p-Value Gene Name

CUFF.101498 chr8:100713839–100714204 3.23209 0.03765 PABPC1

CUFF.110085 chrX:74232840–74233182 3.23919 0.03765 FTX

CUFF.103580 chr9:14087901–14088194 3.42888 0.04005 NFIB

CUFF.2892 chr1:52416916–52417541 3.13921 0.0423 TUT4

CUFF.41953 chr17:48060789–48061102 4.18946 0.04285 NFE2L2

CUFF.36847 chr16:1699878–1700192 3.07352 0.044 HN1L/JPT2

CUFF.22947 chr12:52949238–52950383 3.04539 0.04445 KRT18

CUFF.15787 chr11:6483526–6483970 3.31699 0.04535 TIMM10b

CUFF.3812 chr1:70224556–70224999 3.31713 0.04535 SRSF11

CUFF.20358 chr11:123057501–123061280 4.93401 0.0459 HSPA8

CUFF.30773 chr14:58259607–58260234 2.96918 0.046 PSMA3

CUFF.39071 chr16:71729367–71729916 2.97406 0.046 AP1G1

CUFF.14995 chr10:118005601–118006215 3.17633 0.049 RAB11FIP2

CUFF.17593 chr11:61130859–61131197 2.90619 0.0491 VPS37C

CUFF.11546 chr10:34656519–34656811 3.1245 0.00075 PARD3

CUFF.31039 chr14:63395971–63396275 2.8375 0.00075 PPP2R5E

CUFF.110851 chrX:111699308–111699657 3.8764 0.00085 ALG3

CUFF.25323 chr12:111257228–111257830 3.8654 0.00095 CUX2

CUFF.107185 chr9:127397206–127397465 3.2564 0.00105 SLC2A8

CUFF.107177 chr9:127325581–127325969 4.3465 0.0007 GARNL3

CUFF.17462 chr11:57782675–57782947 4.93401 0.0003 CTNND1

CUFF.13238 chr10:78033882–78040677 6.18617 0.0252 RPS24

CUFF.100491 chr8:71098236–71098451 7.9462 0.00075 ENST00000647843.1

CUFF.55161 chr15:44826300–44826876 5.03278 0.0428 ENST00000558419.1

CUFF.10014 chr1:151287575–151287979 3.9867 0.01955 ZNF687

CUFF.100478 chr20:63890280–63890538 4.8968 0.0235 TPD52L2

CUFF.100559 chr21:6986631–6987286 2.9645 0.0209 ENST00000623165.3

CUFF.103593 chr22:22900959–22901440 4.6579 0.01695 IGLC2

CUFF.100039 chr8:60846260–60846506 3.8965 0.03515 CHD7

Down-regulated

CUFF.148166 chr6:109038801–109039233 −2.85649 0.0181 SESN1

CUFF.27895 chr13:71866547–71867205 −4.47892 0.03305 DACH1

CUFF.28742 chr13:102161569–102161764 −3.74264 0.00095 FGF14

CUFF.30017 chr14:37573929–37574220 −2.98346 0.001 MIPOL1

CUFF.23189 chr12:56596124–56596418 −5.36542 0.0008 RBMS2

Among the top niche-specific DEGs, collagen type VI α1 chain (COL6A1), a gene
which is located on chromosome 21, encoding the α1 (VI) chain of type VI collagen (which
is a primary extracellular matrix protein) was found which maintains the integrity of
various tissues [40]. The signaling role of COL6A1 is very important in tumors as it
increases tumor cell proliferation in osteosarcoma as well as promotes vascular invasion
and distant metastasis in pancreatic carcinoma [41,42]. Also, COL6A1 plays a role as
an oncogene in breast and lung cancer where it regulates anti-apoptosis, proliferation,
angiogenesis, and metastasis [43,44]. Catenin delta-1 (CTNND1) functions as an oncogene
and is known to be the driver of metastatic cancer progression in hepatocellular carcinoma,
breast cancer, and colorectal cancer [45–47]. A very important gene that we identified
is the six-transmembrane epithelial antigen of Prostate-2 (STEAP2), known to be over-
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expressed in aggressive PCa, which corroborates our study as it was identified in a
high-grade tumor [48]. Furthermore, we also observed that the docking protein 5 (DOK5),
a member of a subgroup of the DOK family, is known to be expressed using c-Ret in
several neuronal tissues [49]. Recent studies have implicated its role in the invasion,
progression, and metastasis of gastric cancer [50]. Amongst the lncRNAs, we identified
that SOX2-OT is mapped to the chromosome locus 3q26.3 and is highly expressed in
embryonic stem cells [51]. Deregulation of SOX2-OT is observed in various tumors,
including lung cancer [52], gastric cancer [53], esophageal cancer [54], breast cancer [55],
hepatocellular carcinoma [56], ovarian cancer [57], pancreatic [58], laryngeal squamous
cell carcinoma, osteosarcoma, nasopharyngeal carcinoma, and glioblastoma [59,60]. The
lncRNA FTX (five prime to XIST) possesses an X-inactive specific transcript and is involved
in X-chromosome inactivation [61]. FTX has been reported to act as a tumor promoter in
various types of cancer, including osteosarcoma [62], colorectal cancer [63], gliomas [64],
lung adenocarcinoma [65], and gastric cancer [66], where it was found to be closely
associated with a poor prognosis.

3.2. Protein Interactions Yielded Innate Pathways Responsible for PCa

The significant DEGs were used to build a gene interaction network using GeneMA-
NIA and were later visualized using String and Cytoscape. The network was checked for
the top-ranking genes using the expression correlation with a cut-off of 0.95 [67]. From
the input genes shown with cross-hatched circles of uniform size, GeneMANIA added
relevant genes which are shown with solid circles (hub genes are central), and their size
is proportional to the number of interactions they have (Figure 3). In addition, we have
identified several interacting partners that are co-expressed such as DZIP1, COL6A2,
TAGLN, ZBTB33, LAMP1, LAMP2, IKBKB, and DNAJB11 which act as oncogenes in differ-
ent cancers such as gastric cancer, renal cell carcinoma, and colorectal cancer, to name a
few [68–73].

Finally, the network analyzer, Cytoscape-CytoHubba plugin was used to define the
network measures, where yellow/orange (lower contrast) means the rank is lower and
red/maroon (bigger contrast) indicates the rank is greater. We further evaluated the top
network genes for clustering coefficient with the top 20 hub genes in our different malignant
samples. Some of the prominent genes we identified through the networks are DOK5, APP,
CTNND1, STX6, STX10, STX16, BACE1, and BACE2 (Figure 4A–D); which, agree with the
regulation of various cancers based on their co-expression patterns in GeneMANIA.

3.3. Validation of RNA-seq Result Using TCGA Dataset by Cbioportal

We sought to ask whether any DEGs were relatively expressed in publicly available
datasets from various studies. To check this, we used TCGA datasets and checked for
alteration of frequencies and expression in the cohorts. We used the PanCancer Atlas [74]
dataset for Prostate Adenocarcinoma, where 489 samples were screened for their functional
roles and molecular aberrations (Figures 5 and 6. Mutations and CNV analysis for some of
the DEGs were done and the results are summarized below:

Furthermore, an attempt was made to analyze genomic alterations such as gene ampli-
fications, deep deletions (that are equivalent to homozygous deletions), shallow deletions
(heterozygous loss), truncating mutations, in-frame mutations, or missense mutations.
Among the DEGs, amplification was the most prominent one in the case of DOK5 and
STEAP2; whereas, deep deletions and mutations were observed in COL6A1, STX6, and
CTNND1. We argue that similar analysis could check the performance of all the DEGs
which will highlight the alteration frequencies across the cohort (Figure 5).
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edges are the input genes whereas solid circles are the interacting partners).
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Figure 4. A compendium of the top 20 genes from the PPI network that are regulated and expressed
in malignant samples was considered using the Cytoscape-CytoHubba plugin. The network was
ranked based on clustering coefficients which yielded hierarchically high confidence interactions.
These genes with the highest clustering coefficients are indicated in red, while high to moderate
clustering coefficients are in orange and those with low clustering coefficients are shown in yellow.
Some of the important genes we identified through all 4 networks ((A–D) represents 4 different
sample pairs from which DEGs were analyzed) are DOK5, APP, CTNND1, STX6, STX10, STX16,
BACE1, and BACE2, which are amongst the top-ranking genes in the network. It is imperative that
some genes are ranked based on the clusters they make.

3.4. Gene Ontology Yielded Distinct Pathways Regulating Biogenesis

All the DEGs obtained from our Cuffdiff pipeline were subjected to GO analysis by
Pantherdb, which shows the role of DEGs in biological adhesions, biological regulations,
biogenesis, cellular, metabolic and developmental processes, localization, locomotion, and
multicellular organismal processes (Figures 7 and 8).

For the molecular function category, the terms are binding factors, catalytic, adapter,
transducer, and transcription regulator activities which are associated with differential
expressed genes. This indicates the role of DEGs in different important processes like
transcription, cell migration, differentiation, etc.

3.5. Phenolyzer Highlights Important DEGs

A cross-sectional comparison of phenotypes and DEGs using phenolyzer (http://
phenolyzer.usc.edu last accessed on 7 April 2023; Figure 9) would provide us with indicators
for the extent of expression across diseases [75]. Therefore, we asked how many DEGs
among all, including the samples, cbioportal, and comparative analyses, are distinctly
associated with disease/phenotype terms. Our Phenolyzer results with disease names, viz.,
Prostate Cancer, PCa neoplasia, which are clinical phenotype terms, have largely related to
each other (seen in pink edges in Figure 8). On the other hand, to reach a consensus with the
identification of DEGs, we also employed the DESeq/EdgeR normalization method which
resulted in the identification of approximately 1230 genes as DEG: 490 were upregulated
and 1215 were downregulated. We identified distinct genes including KLK4, FN1, PBOV1,
TPM2, and FLNA which are known to be involved in PCa pathways along with IGF1,
TPD52, and SRSF1 that are involved in different cancer pathways [76–78]. While KLK4 is
a very important gene that is known to be involved in the progression of prostate cancer
by promoting proliferation, migration, and epithelial to mesenchymal transition, we have
checked its expression in our sample by qRT-PCR and we did see a significant change in
benign vs. malignant samples. We also found a few novel lncRNAs such as LINC00940 and
FLJ16779 that have not been reported earlier besides SNHG19, NPBWR1, and lncRNAs
that are known to be involved in cancer and other diseases as well. A further attempt was

http://phenolyzer.usc.edu
http://phenolyzer.usc.edu
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made to understand the regulatory mechanisms underpinning PCa signature pathways by
mapping lncRNAs with protein-encoding genes (Supplementary Table S2).
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Figure 5. Graphical summary of corresponding genes with mutation types. We employed the
cBioportal and analyzed different mutation types in genes; (A) COL6A1, (B) DOK5, (C) STEAP2,
(D) STX6, and (E) CTNND1 related to PCa by comparing with integrated genomic data of different
alterations available in it. Different color codes depict different mutation types. Here, green shows
missense mutations of unknown significance, grey for truncating mutations, and red for in-frame
putative mutations.
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Figure 6. Graphical representation of gene expression and alteration frequency. (A) COL6A1,
(B) DOK5, (C) STEAP2, (D) STX6, and (E) CTNND1 were queried using an available gene expres-
sion database of Prostate adenocarcinoma cancer type in the cBioportal tool where the different
colors green, red, blue, and grey code mutations, amplifications, deep deletion, and other multi-
ple alterations, respectively. The queried gene is altered either in 1% or less than 1% of queried
patients/samples (total number of samples—489).



Diseases 2023, 11, 72 15 of 22Diseases 2022, 10, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 7. Gene Ontology analysis using Pantherdb. We used GO database for upregulated DEGS 
from our study, with the genes clustered based on biological functions (BP) and Molecular functions 
(MP). Important pathways associated with them are listed below corresponding to different colors. 

 
Figure 8. Gene Ontology analysis using Pantherdb. We used GO database for downregulated DEGS 
from our study with the genes clustered based on biological functions (BP) and Molecular functions 
(MP). Important pathways associated with them are listed below corresponding to different colors. 

Figure 7. Gene Ontology analysis using Pantherdb. We used GO database for upregulated DEGS
from our study, with the genes clustered based on biological functions (BP) and Molecular functions
(MP). Important pathways associated with them are listed below corresponding to different colors.
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Figure 9. Phenolyzer hub of DEGs associated with distinct clinical terms, viz., PCa and PCa neoplasia.

4. Discussion

In the current study, we have identified many DEGs which are known to be involved
in different cancer pathways including PCa. While some of them are specifically known
to be associated with PCa, we also discovered a few novel lncRNAs which need further
investigation. Expression of COL6A1 is significantly elevated in different tumors such as
lung, prostate, cervical, and pancreatic cancer compared to normal tissues. Interestingly, our
previous WES studies in PCa have identified COL6A1 as one of the causal genes [9]; whereas
we also identified this through our RNA-seq analysis. COL6A1 was shown to be physically
interacting with DNAJB11, APP along with some other genes. DNAJB11 is involved in
aberrant signaling pathways associated with different cancers. Similarly, APP is known to
be associated with androgen-responsive genes and regulates the proliferation and migration
of PCa cells [79]. Therefore, we argue that COL6A1 might act as a prognostic marker for
PCa in the Indian population. Transcriptional factor Kaiso/ZBTB33 was identified as
a CTNND1-specific binding partner and this complex is a modulator of the canonical
Wnt/β-catenin signaling pathway [80]. There is a large amount of research focusing on
the role of CTNND1 in cancer development and progression; however, in PCa, it is still
not well-elucidated [81]. In our study, we have identified CTNND1 and ZBTB33 through
interaction studies, but what is more interesting is that we have earlier identified CTNND1
as a co-localization partner with one of the lncRNAs (NONHSAT239888) which is known
to be highly expressed in PCa [82]. Furthermore, CTNND1 is one of the main interacting
partners of ACE2/TMPRSS2, the main receptors which are responsible for SARS-CoV-2
entry into the cell. We had hypothesized that CTNND1 interacts with EGFR, and this
interaction could uphold the SARS-CoV-2 infection independent of its endocytosis and
associated with cell viability [83]. The interacting partners of another important gene
STEAP2 are KLK3, KLK2, and AR, all of which are hallmarks of PCa. KLK3 is a protein-
coding gene, and its protein product, Prostate-specific antigen (PSA), is a well-established
biomarker of PCa [84,85]. Similarly, human kallikrein 2 (KLK2), interacts with AR and
drives PCa progression [86]. Earlier studies have shown that DOK5 are expressed in T-cells
and their expression is regulated upon T-cell activation. DOK5 is shown to be involved in
the invasion and metastasis of cancer specifically in gastric cancer, but it has not been well-
studied in PCa [49]. Since we got a strong interaction of DOK5 in our clustering coefficient
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studies using the cytoHubba plugin, we argue that it would be worth analyzing this gene
further. Interestingly, through our cytoscape-cytoHubba analysis, we identified many
soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE)
proteins that are key mediators of membrane fusion [87]. All the SNARE proteins share a
common sequence of 60–70 residue called the SNARE motifs, which helps in mediating
the interaction between vesicle SNAREs (v-SNAREs) and targetting membrane SNAREs
(t-SNAREs) [88]. One of the t-SNARE proteins, syntaxin 6 (STX6), is particularly important
in vesicle fusion. STX6 is upregulated in a variety of cancers including breast, colon, liver,
pancreatic, prostate, bladder, skin, testicular, tongue, cervical, lung, and gastric cancers,
and it has been identified as a common transcriptional target of the p53 family members
(p53, p63, and p73) [89]. Along with STX6, we have identified STX10, VTI1A, and STX16
which can be further studied. Overall, we also found other important DEGs, viz., BACE1
and BACE2, which belong to a class of proteases called β-secretases that are extensively
studied in Alzheimer’s disease [90]. Not many studies have been done with respect to
their role in cancer, but there are some recent studies that have shown their involvement in
pancreatic and skin cancers [91].

4.1. Comparative Analysis of RNA-seq Data with Other Publicly Available Datasets

To screen the potential DEGs across the datasets, we compared and analyzed the
DEGs from our current study to those of the DEGs from cbioportal and methylation/array-
specific datasets that are publicly available from NCBI gene expression omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/ last accessed on 13 April 2023). As no concrete list of
RNA-seq datasets was associated in the sequence read archive in lieu of PCa phenotype,
we compared our DEGs to GEO datasets, viz., GSE6919 and GSE45016, in addition to the
previously benchmarked RNA-seq dataset of PCa in the Chinese population [92]. From
this, we obtained only 135 hits in SRA for the RNA-seq of PCa, and most datasets are
either from PCa cell lines or RIP-seq; hence, we deemed them not useful keeping in view
of diffident phenotypes, experiments, and perhaps correlation studies that they may be
heralded with. Nevertheless, we identified a few common genes which could be the key
candidate genes in our study, viz., STEAP2, DOK5, Il6ST, LMOD1, CTNND1, etc. Likewise,
when our data were compared with GEO datasets, we observed IL6ST, BACE2, SOX2-OT,
STEAP2, APP, SNX9, STX16, and CTNND1 among the other genes that are expressed. This,
we believe, strengthens our finding that the DEGs which we have mentioned in the current
study could be a valid signature for PCa diagnosis. On the other hand, when we compared
Prostate Adenocarcinoma (TGCA, PanCancer Atlas) dataset to that of our list of DEGs, we
found IL6ST and ZBTB20. These key DEGs are common between the Indian population
and the Western population, which can be validated further as it is beyond the scope of
this current analysis.

4.2. A Major Chunk of lncRNAs Are Novel and Regulated in Distinct Pathways

LncRNAs do not code for proteins, but they are involved in almost all biological pro-
cesses such as gene expression, epigenetic regulation, cell cycle regulation, etc., in different
cancers, PCa being one of them. Previous studies have highlighted the oncogenic role of
lncRNAs in metastasis, proliferation, and development of PCa, but still there are several
lncRNAs whose functions are still unknown. With the advancement in NGS, bioinformat-
ics analysis has enabled the identification of many lncRNAs which show dysregulated
expression in PCa [93]. Their diverse role has made them a target for all stages of PCa
development which includes screening, diagnosis, prognosis, and treatment, further estab-
lishing their role as biomarkers in PCa. For example, MALAT-1 (Metastasis associated lung
adenocarcinoma transcript 1), a lncRNA, which is used to predict metastasis and survival in
non-small cell lung cancer [94], has also been correlated with PCa development and progres-
sion [95]. It has also been reported that MALAT-1 expression closely correlates with PSA
levels, Gleason scores, and tumor sizes [93]. Similarly, PCAT-18 (prostate-cancer-associated
non-coding RNA transcript 18 and SChLAP1 (second chromosome locus associated with
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prostate-1)) has also been used as a diagnostic and prognostic biomarker in PCa [96,97].
Some of the lncRNAs we identified from our current study include LINC01440, SOX2OT,
ENSG00000232855, ENST00000647843.1, and FTX. FTX has been reported to be involved in
the tumorigenesis of multiple cancer types. Long intergenic non-protein coding RNA 1440
(LINC01440) is a novel lncRNA that needs to be explored for its role in cancers. A recent
study has implicated its role in a spinal disorder known as Ossification of ligamentum
flavum (OLF), where it was found to be upregulated in the diseased patients compared to
the healthy population [98]. Different studies have shown that SOX2OT acts as an oncogene
and is elevated in different tumor types. However, its role and significance are still not
explored in PCa, which makes it a very promising candidate for further analysis. Another
lncRNA, ENSG00000287903 (NONHSAT106693), was earlier screened in our Vitamin K
deficiency cohort from our recent study [99]; wherein, qRT-PCR showed a significant upreg-
ulation in malignant samples compared to control samples (supplementary information),
which provides us a raison d’être to further validate the remaining lncRNAs as well. Given
the role of lncRNAs in PCa, it would be interesting to see if any of these lncRNAs can
serve as biomarkers; albeit several downstream experiments and well-designed clinical
trials are to be employed. Taken together, there are a few limitations to our study. (i) The
qRT-PCR validation needs more tumor and adjacent normal tissue samples as our sample
size is very small. (ii) Some additional experiments, such as immunohistochemistry and
Western blot, when performed, could confirm the protein levels in PCa. (iii) Given the
scarcity of PCa data in India, the survival analysis across the entire transcriptome could not
be drawn as it is largely towards the identification of biomarkers indicating the prognostic
power, but given the sample size conundrum we have, we are limited in checking this
power. Nevertheless, in our previous study, we performed WES on PCa samples, which
we have cited, but again, the sample size is limited. (iv) Due to a lack of fresh–frozen
prostate/radical prostatectomy tissues, only FFPE blocks were used, and isolating RNA
from them is an arduous and challenging task [39]; due to this, we could not perform
qRT-PCR for all the selected DEGs.

5. Conclusions

Prostate cancer cases are increasing in India even as NGS studies are just beginning
to be explored. In our current RNA-seq study and subsequent bioinformatics analyses,
we sought to characterize DEGs including lncRNAs that are specific to PCa of an Indian
sub-population. While we identified some of the important genes, viz., DOK5, COL6A1,
CTNND1, STEAP2, and APP, their role in PCa is still not clear. We envisage that characteriz-
ing their functional aspects would help us understand PCa progression. Since the search
for non-invasive and more sensitive biomarkers is on the anvil across all solid tumors,
we firmly hope that these lncRNAs amongst the DEGs would serve as a precedent in the
development of NGS panels for PCa detection in the Indian phenotype.
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Supplementary Information: qRT-PCR validation of important DEGs, Primer sequences used in the
qRT-PCR, and PCR conditions for the experiment.
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