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Abstract: Background. Porphyromonas gingivalis (P. gingivalis) has always been one of the leading
causes of periodontal disease, and antibiotics are commonly used to control it. Numerous side effects
of synthetic drugs, as well as the spread of drug resistance, have led to a tendency toward using
natural antimicrobials, such as curcumin. The present study aimed to prepare and physicochemically
characterize curcumin-loaded silica nanoparticles and to detect their antimicrobial effects on P. gingi-
valis. Methods. Curcumin-loaded silica nanoparticles were prepared using the chemical precipitation
method and then were characterized using conventional methods (properties such as the particle
size, drug loading percentage, and release pattern). P. gingivalis was isolated from one patient with
chronic periodontal diseases. The patient’s gingival crevice fluid was sampled using sterile filter
paper and was transferred to the microbiology laboratory in less than 30 min. The disk diffusion
method was used to determine the sensitivity of clinically isolated P. gingivalis to curcumin-loaded
silica nanoparticles. SPSS software, version 20, was used to compare the data between groups with a
p value of <0.05 as the level of significance. Then, one-way ANOVA testing was utilized to compare
the groups. Results. The curcumin-loaded silica nanoparticles showed a nanometric size and a
drug loading percentage of 68% for curcumin. The nanoparticles had a mesoporous structure and
rod-shaped morphology. They showed a relatively rapid release pattern in the first 5 days. The
release of the drug from the nanoparticles continued slowly until the 45th day. The results of in vitro
antimicrobial tests showed that P. gingivalis was sensitive to the curcumin-loaded silica nanoparti-
cles at concentrations of 50, 25, 12.5, and 6.25 µg/mL. One-way ANOVA showed that there was a
significant difference between the mean growth inhibition zone, and the concentration of 50 µg/mL
showed the highest inhibition zone (p ≤ 0.05). Conclusion. Based on the obtained results, it can
be concluded that the local nanocurcumin application for periodontal disease and implant-related
infections can be considered a promising method for the near future in dentistry.

Keywords: antimicrobial action; sustained release; curcumin-silica nanoparticles; periodontal dis-
eases; Porphyromonas gingivalis

1. Introduction

The main causes of periodontal diseases are inflammation and infection of the gums
and bone surrounding the teeth. In the early stage of periodontal disease, which is called
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gingivitis, the gums become swollen and red and may bleed. In more advanced stages,
called periodontitis, the gums can separate from the teeth, the bone can be lost, and the
teeth can become loose or even fall out. The two biggest threats to dental health are
tooth decay and periodontal disease [1,2]. These diseases affect the tissues supporting
and protecting the teeth and can deteriorate the alveolar bone and periodontal ligament.
Their frequency and severity vary greatly between communities; nonetheless, it is expected
that 15 to 20 percent of adults are infected with the more severe types of illness, while
35 to 60 percent of the population is afflicted with less severe conditions [3,4]. The most
important goal of treating periodontitis is to completely clean the pockets around the teeth
and inhibition of surrounding bone damage. If the periodontitis has not progressed much,
treatment may include less invasive and nonsurgical methods, including root planing
(smoothing surfaces of the root, preventing further accumulation of bacteria and plaque),
scaling (eliminating bacteria and plaque from surfaces of the tooth), and the oral or topical
application of antibiotics [5]. Patients with advanced periodontitis may need dental surgery
for treatment, including pocket reduction surgery (flap surgery), bone grafting, soft tissue
grafting, and the regeneration of guided tissue [6].

Bacterial infections in dentistry may induce implant-associated issues, resulting in
tissue and organ function loss or even implant failure. In dentistry, bacterial infections
contribute to the development of caries and periodontitis, which are two of the most
prevalent bacterial infections in humans [7]. Numerus bacterial strains are involved in
periodontal disease development, such as Aggrigatibacter actinomycetemcomitans, Capnocy-
tophaga species and Eikenella corrodens, P. gingivalis, Tannerella forsythia, Treponema denticola,
Prevotella intermedia, Actinomyces species, and Fusobacterium nucleatum [8]. Porphyromonas
gingivalis (P. gingivalis) has always been one of the leading causes of periodontal disease,
and antibiotics are commonly used to control it. Numerous systems releasing antibacterial
and remineralizing substances, such as fluoride (F), calcium (Ca2+) as well as phosphate
(PO4

3–), or silver (Ag+) ions, have been described for effective avoidance or treatment of
biofilm infections [9,10]. Chlorhexidine (CHX) is frequently used because of its excellent
antibacterial efficacy against Gram-negative and Gram-positive microorganisms, fungi, and
viruses [11]. Furthermore, the propensity to produce resistance is minor [12]. Preservatives
are also included in disinfection products and oral rinses [13]. Moreover, by attaching to the
enamel and pellicle, CHX suppresses the production of bacterial biofilms. The first stage in
creating biofilms, i.e., the aggregation of bacterial cells on these surfaces, is inhibited [13,14].
CHX has a significant substantivity that indicates a long-term interaction with particular
substrates, such as tooth surfaces or mucosa inside the oral cavity [14]. This elevated
CHX is the gold standard for dentistry microbial infection prevention and treatment [14].
However, tooth staining is one drawback of CHX, which limits its long-term usage. There
are also other side effects, including tongue and mucosal surface staining, changes of taste,
desquamation of the mucosa, expansion of the parotid and enlarged calculus deposition
supragingivally [15]. In addition, the spread of drug resistance has led to a tendency toward
using new natural antimicrobials [16].

The active ingredients in plants are widely used in the treatment of various dis-
eases [17,18]. Curcumin is a substance produced from the rhizomes of the Curcuma longa
plant, and it is commonly utilized in culinary applications [17,18]. A wide variety of publi-
cations have reported on curcumin’s anti-inflammatory, wound-healing, antimicrobial, and
anti-neoplastic properties, utilized in in vitro and in vivo strategies for conditions ranging
from diabetes to neurological disturbances, in cancer, in autoimmune disorders, and in
chronic inflammatory conditions, including Crohn’s disease, rheumatoid arthritis, and
periodontal disease [19]. Curcumin’s anti-inflammatory properties have been found to
diminish immune cell response to periodontal disease-associated bacterial antigens and to
restrict periodontal tissue destruction in in vitro and in vivo studies [19,20]. Nevertheless,
since most of this in vivo research has utilized a systemic manner of administration, cur-
cumin’s poor pharmacodynamic properties, including hydrophobicity, low gastrointestinal
absorption rate, and very short plasma half-life, may have skewed their results [21].
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New designs based on nanotechnology have been discovered to improve the bioavail-
ability of curcumin and reduce its cytotoxicity [22]. Today, nanotechnology has become
important in various medical fields, such as drug delivery [23]. Nanoporous silica materials
have been extensively studied [24–26] since their initial deployment as a drug delivery
platform in 2001 [27] or as implant surface coatings [28,29]. Nanoporous silica has a va-
riety of qualities that make it an attractive option for a controlled-release system. It has
a large surface area, huge pore volumes, and variable pore sizes with contracted pore
size distributions, allowing for significant cargo loading. On the other hand, uncontrolled
antimicrobial chemical leaching from release mechanisms has disadvantages. Although
burst release could benefit the treatment of acute infections, and it is much more efficient
than protracted delivery, it is essential for controlled release systems that can stay quiescent
for lengthy periods yet distribute cargo when triggered. As a result, the medicine remains
in the pores and could be removed when required. Due to the antimicrobial properties of
curcumin and the useful characteristics of porous silica nanoparticles as a sustained-release
carrier, the present study was conducted with the aim of preparing and physicochemically
identifying curcumin-loaded silica nanoparticles and evaluating their antimicrobial effect
on P. gingivalis.

2. Material and Methods
2.1. Preparation of Mesoporous Silica Nanoparticles Containing Curcumin

Fifteen milligrams of powder of silica nanoparticles (Nano Sadra Company, Isfahan,
Iran) and 0.75 mg of curcumin powder (Sigma Aldrich, Burlington, MA, USA) were added
to 10 mL of cyclohexane. The prepared suspension was sonicated, stirred overnight, and
washed with cyclohexane, and the silica particles containing curcumin were vacuum
dried [30]. The nanoparticles were stored at −18 ◦C for further investigations.

2.2. Sampling of P. gingivalis

To attain clinically isolated P. gingivalis, one patient with chronic periodontal disease
was selected from the patients referred to the Department of Periodontics, Faculty of
Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran. With sterile gauze, the
surface of the tooth was cleaned, and the gingival crevice fluid was then sampled using
sterile filter paper and placed in a thioglycollate broth media. The samples were moved to
the microbiology laboratory in less than 30 minutes and stored at −20 ◦C until assayed.

2.3. Cultivation of P. gingivalis

The isolated sample from the mentioned patient was vortexed for 30 s. Selective
medium for P. gingivalis containing Columbia agar base supplemented with vitamin K1,
5% defibrillated sheep blood, hemin, colistin sulfate, bacitracin, and nalidixic acid was
used [31]. Then, the plates were incubated under 80% N2, 10% CO2, 10% H2 and 0%
O2 in anaerobic conditions provided by the Anoxomat system (MART microbiology B.V.,
Drachten, The Netherlands). The growth of bacterial colonies was examined at 48, 72,
and 96 h. The trypsin reagent test was used to confirm the presence of P. gingivalis on
the plates. Gingipain, which is produced by P. gingivalis, is a trypsin-like enzyme. The
aerotolerance test and biochemical and microbiological assays (such as colony morphology,
special potency disks, pigment production, fluorescent under UV light, catalase test, indole,
and trypsin-like peptidase activity assay) were used to identify P. gingivalis isolates [31].

2.4. Characterization of the Nanoparticles
2.4.1. The Particle Size of Nanoparticles

The prepared nanoparticles were characterized using a dynamic light scattering (DLS)
device (DLS, Malvern, Cambridge, UK) for size determination. The suspension of the
nanoparticles was prepared in distilled water and poured into the device. An argon laser
beam at 633 nm and a scattering angle of 90◦ at 25 ◦C were used for DLS device settings.
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DLS is an instrument for measuring the hydrodynamic size of molecules and submicron
and nanoparticles. This test was performed three times.

2.4.2. Morphology and the Cytotoxicity Investigation

Transmission electron microscopy (TEM) is a powerful tool to investigate the inter-
action of nanoparticles, their structure, and their morphology. A transmission electron
microscope (TEM-2100F; JEOL, Tokyo, Japan) was used to investigate the mesoporous
structure of the silica nanoparticles. For this analysis, the samples were prepared by drop-
ping a solution of nanoparticles in deionized water on a carbon-coated copper TEM grid,
followed by imaging. Size histograms for free silica nanoparticles and curcumin-loaded
silica, based on TEM analysis, were also reported.

Cell viability examination was used to define the cytotoxicity of the prepared nanopar-
ticles against dental pulp stem cells. The cells were obtained from the cell bank of Shahid
Beheshti University (Tehran, Iran). Then, the nanoparticles as disks were placed in the
bottoms of the wells. The cells were cultured in a single layer in DMEM including serum
and antibiotics. After 72 h, the washing, incubating (for 4 h at 37 ◦C), and adding of MTT
solution (2 mg/mL PBS) were performed. As a next step, the above solution was removed
and, 200 mL of DMSO and 25 mL of Sorenson glycine buffer were added to each well. The
absorbance was read at 540 nm, and the percentage of living cells was evaluated. Cells
grown without any material were considered as control group.

2.4.3. Determination of Curcumin Loading Inside the Nanoparticles

One of the key parameters for drug-loaded nanoparticles is drug loading percentage,
which is defined as the mass ratio of drug to drug-loaded nanoparticles. To determine the
amount of curcumin loaded on silica nanoparticles, 10 mg of the prepared nanoparticles
were dissolved in 20 mL of dimethyl sulfoxide. One milliliter of the dissolved nanoparticle
solution was poured into a special tube of an ultraviolet spectrophotometer, and Lambda
Max was adjusted to 350 nm for curcumin. This test was performed three times.

2.4.4. Evaluation of Release Pattern

Drug release denotes the procedure in which drug solutes migrate from the initial
position in the carrier system to the carrier’s outer surface and then to the release medium.
To determine the pattern of drug release from curcumin-loaded silica nanoparticles, phos-
phate buffer (300 mL) was poured into 3 beakers. An amount of 5 mg of the prepared
nanoparticles was poured into the beaker. The pH of the liquid was adjusted to 7.4, and
the temperature was set to 37 ◦C. The stirrer was set to 100 rpm. Indeed, these parameters
had to be established based on the body’s condition for a dissolution test of a drug (pH
of 7.4, temperature of 37 ◦C, and stirring rate of 100 rpm). Samples were taken from the
beaker every day (1 mL), and the absorbance was noted using a UV spectrophotometer
for curcumin at 350 nm. The sample taken from the beakers was replaced with 1 mL of a
new buffer medium to keep the concentration in balance. The amount of UV absorption
was then changed to concentration. Subsequently, the cumulative release percentage was
designed against the time (day) for the release study. The calculation method for the
percentage of cumulative release (%) was according to the following equation:

Cumulative percentage release (%) = Volume of sample withdrawn (mL)/
The volume of release media (v) × P (t − 1) + Pt

where Pt is the percentage release at time t.

2.4.5. The Antimicrobial Action of Nanoparticles

The original method for determining susceptibility to antimicrobials was based on
broth dilution methods. In this study, the disk diffusion method as a routine laboratory
test was utilized to investigate the antibacterial effects of silica nanoparticles loaded with
curcumin. This method identifies the action of bacteria on an antimicrobial material by
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creating a gradient of concentration around a disk. The bacterial isolate used in this study
was isolated from a patient with chronic periodontal disease. First, a bacterial suspension
of 0.5 McFarland was prepared, and then, using a sterile cotton swab, a uniform grass
culture was grown on the surface of Brucella agar enriched with dried sheep blood (5%),
vitamin K1 (1 µg/mL), and hemin (5 µg in mL). To prepare discs containing nanoparticles,
sterile blank disks were immersed in concentrations of 3.12, 6.25, 12.5, 25, and 50 µg/mL
nanoparticle suspensions, and then the disks were placed on the agar surface. A blank disk
was used as a negative control, and metronidazole antibiotic disks (5 µg/mL) were used
as a positive control. After incubating the plates at 37 ◦C for 42 h, the growth inhibition
zones were measured. With this method, the halos of non-growth around the discs were
measured from the back of the plate with a ruler based on millimeters.

In the next step, Brucella broth supplemented with hemin (5 µg/mL), vitamin K1
(1 µg/mL), and lysed horse blood (5%) in the presence of a serial concentration of nanopar-
ticles (50, 25, 12.5, and 6.25 µg/mL concentrations) was applied to obtain the MICs of the
nanoparticles against P. gingivalis. The wells were incubated for 48 h at 35 ◦C and then
observed for microbial growth turbidity. The positive control was metronidazole antibiotic,
and water was considered as a negative control.

3. Statistical Analysis

The results are stated as descriptive indices. The Shapiro–Wilk test was applied to
test the normality of the units. The, we used SPSS software, version 20 (IBM Company,
Armonk, NY, USA), to compare the data between groups with a p value of <0.05 as the
significance level. One-way ANOVA and Tukey’s post hoc test were utilized to compare
the groups. The flow chart of the study process is shown in Figure 1.
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4. Results and Discussion

The low bioavailability of curcumin is the most important concern for its clinical
use. Additionally, little information is available about its safety at higher doses. Today, to
reduce its toxicity and improve the bioavailability of curcumin, new designs based on its
nanoformulation have been discovered [17,18]. Evaluating the physicochemical properties
of nanoparticles is necessary to ensure their suitability for various uses. The interactions
of nanoparticles in vitro and in vivo are related to their physicochemical properties [32].
Reducing the size of nanoparticles increases their surface area, the interaction of these
nanoparticles with the environment increases, and their ways of crossing body barriers and
entering cells will be different [33,34].

The average particle size of drug-free silica nanoparticles is shown in Figure 2a, and
that for curcumin-loaded silica nanoparticles is shown in Figure 2b. The results showed
that both types of nanoparticles had nanometric sizes. For drug-free silica nanoparticles
the mean particles size was 90 ± 1.02 nm, while curcumin-loaded silica nanoparticles had a
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mean particle size of 110 ± 1.23 nm. Figure 3a shows the morphology of the drug-free silica
nanoparticles, and the morphology of curcumin-loaded silica nanoparticles has shown in
Figure 3b. The size histograms for free silica nanoparticles and curcumin-loaded silica,
based on TEM analysis, are shown also in the Figure 3c and d, respectively. Our outcomes
showed that the nanoparticle sizes differed in DLS analysis compared to TEM analysis.
This difference may be owing to the hydrating of the outer layer of the nanoparticles in the
DLS technique. In addition, the aggregation of nanoparticles and the non-spherical shape
of nanoparticles could be the cause of this difference [35].

Nanoparticles exert their antimicrobial effects on bacteria by several mechanisms that
depend on the size of the nanoparticles and the type of bacteria. The dose of nanoparticles
and their physicochemical properties (shape, size and surface properties) are very important
to their antimicrobial effects [36]. The size of nanoparticles is important to their antibacterial
effect, so smaller nanoparticles, by binding to the surface of bacteria with high affinity, can
disrupt the function of the cell membrane of bacteria compared to larger nanoparticles [37].
The interaction of nanoparticles with the bacterial membrane causes local pores in the
membrane. Additionally the entry of nanoparticles into bacterial cells causes damage to
DNA and proteins (especially sulfur-rich proteins). In this way, nanoparticles can disrupt
the function of bacteria. Nanocarriers containing antibacterial agents can also combine
their structure with the bacterial cell wall and introduce their medicinal substances into the
cytoplasm [38].

TEM pictures proved the mesoporous building and the rod-shaped morphology of the
prepared nanoparticles. The filled pores of mesoporous silica can also be detected by TEM
imaging of drug-loaded mesoporous silica nanoparticles that show the loading of curcumin
into the silica nanoparticles. Rod-shaped nanoparticles may display a longer circulation
time and a slight uptake by the RES in the body compared with spherical particles [39,40].
A recent in vivo study also showed that rod-type nanoparticles exhibit a high capacity to
overcome uptake through RES and show a longer presence in the blood compared with
spherical nanoparticles [41].
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images, only part of a nanoparticle has been illustrated in each case. The size histograms for free silica
nanoparticles (c) and curcumin-loaded silica (d), based on TEM analysis. The histograms illustrate
the numbers of particles that were in the field of view of the TEM microscope. The total number of
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The percentage of cytotoxicity (cell viability) of the prepared nanoparticles on dental
pulp stem cells is shown in Figure 4. There was no significant reduction in the viability of
the cells exposed to the nanoparticles compared to the control group (cells grown without
any material). Therefore, the prepared nanoparticles were non-cytotoxic against dental
pulp stem cells (Figure 4).
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The loading results showed that the loading percentage of curcumin in silica nanopar-
ticles was 68% ± 1.02. Currently, most nanoparticle systems have relatively low drug
loading, and increasing the increase drug loading capacity remains a challenge. The reason
for the high drug-loading percentage of our nanoparticles was their mesoporous structure.

The prepared nanoparticles displayed a relatively fast release pattern in the first
5 days (Figure 5). The release of curcumin from silica nanoparticles continued slowly until
day 45. The burst release of curcumin from the prepared nanoparticles could eradicate
acute infections, and the controlled sustained release could provide the drug content for
long periods. As a result, the drug remained in the pores and could be removed when
required [42]. It seems that the pattern of rapid drug release from nanoparticles in the
first days is related to drugs adsorbed to the surface of nanoparticles that are not inside
the cavities and have a weak interaction with the outer surface of the cavities. Curcumin
molecules inside the cavities that had electrostatic interactions with the nanoparticle cavity
wall caused slow and continuous release on days 6 to 45. The slow-release pattern of drugs
is very critical in the clinical application of drugs [43]. Memar et al. achieved similar results
for meropenem-loaded silica nanoparticles [44]. They showed that, in the first two days,
about 40 percent of meropenem was released from silica nanoparticles, and then slow
release was sustained until the 30th day.
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With a conventional drug-delivery method, the drug concentration in the blood re-
mains within a relatively large range for a short period of time, which can fall short of the
lowest effective dose or exceed the maximum tolerated dose. As a result, frequent doses
are necessary, which will be associated with side effects. Using the appropriate nanocarrier,
the blood concentration of the drug at the site of infection can be maintained at the required
effective concentration for a long time and, as a result, reduce the frequency of consumption,
produce good stability, reduce patient pain, and improve patient compliance. The drug
loaded in the nanocarrier has a much more prominent inhibitory effect on cell growth with
long-term drug release compared to the free drug at the same concentration [45].

Antimicrobial Action

The results of microbial tests showed that P. gingivalis is sensitive to the silica nanopar-
ticles loaded with curcumin at concentrations of 50, 25, 12.5, and 6.25 µg/mL. The mean
growth inhibition zones of curcumin-loaded silica nanoparticles concentrations and control
antibiotic (metronidazole) are shown in Table 1 and Figure 6.

Based on the MIC test, the nanoparticles showed inhibitory effects against P. gingivalis
at 6.25 µL/mL. In addition, based on our previous study, free silica nanoparticles did not
have any significant antibacterial effects [46].
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Table 1. The mean growth inhibition zone of curcumin nanoparticle and control groups.

Samples The Mean Growth Inhibition Zone (mm)

Curcumin-loaded silica nanoparticles (50 µg/mL) 15 ± 1.2

Curcumin-loaded silica nanoparticles (25 µg/mL) 12.23 ± 0.8

Curcumin-loaded silica nanoparticles (12.5 µg/mL) 10.24 ± 1.2

Curcumin-loaded silica nanoparticles (6.25 µg/mL) 7.59 ± 1.4

Metronidazole as the positive control 19.20 ± 1.2

Blank disk (water) as the negative control 0

One-way ANOVA (between curcumin groups) revealed that there is a significant
relation in the concentration of curcumin-loaded silica nanoparticles with the size of the
growth inhibition, zone and the highest inhibition zone was displayed in the concentra-
tion of 50 µg/mL (p ≤ 0.05). Tukey’s post hoc test showed that there was a significant
difference between the antimicrobial effects of all concentrations of curcumin-loaded silica
nanoparticles (p ≤ 0.05). Thus, the nanoparticles had dose-dependent antimicrobial effects.

Other studies used P. gingivalis (ATCC33277). In a study, Shahzad et al. reported
that the growth inhibition of P. gingivalis (ATCC33277) was effected by curcumin at a
concentration of 7.8 µg/mL [47]. Additionally, Mandroli and Bhat showed that the MIC of
curcumin against P. gingivalis (ATCC33277) was 125 µg/mL [48], while Izui et al. showed
that the prevention of bacterial growth occurred with curcumin at a concentration of
20 µg/mL [49]. In another recent study, the sensitivity of P. gingivalis (ATCC33277) to
curcumin was shown in a concentration of 100 µg/mL [50]. The main reason for the
difference between the results of our study and the results of other studies may be that
they investigated the effects of free curcumin on laboratory strains, while in our study,
the effects of sustained-release nanoparticles containing curcumin on clinically isolated
P. gingivalis were investigated.

In our previous study, the prevalence of P. gingivalis isolated from the gingival crevic-
ular fluid (GCF) of 15 Iranian patients with implant failure was investigated. The results
showed that, out of 15 patients, eight (53.33%) were positive for the presence of P. gingivalis.
The antimicrobial action of curcumin nanocrystals was also investigated against P. gingi-
valis isolated from patients with implant failure, and the results showed that curcumin
nanocrystals had an MBC of 12.5 µg/mL and a MIC of 6.25 µg/mL. Additionally cur-
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cumin nanocrystals showed the highest inhibition zone at the concentration of 50 µg/mL
(p = 0.0003) [51].

A study showed that curcumin prevented bacterial strains by damaging the membrane
of bacteria [52]. Curcumin can inhibit the proliferation of bacteria by perturbation of FtsZ
assembly. Some studies have shown that curcumin deactivates bacteria by stimulating ROS
generation [53,54].

Kumbar and coworkers explained the effects of curcumin on the biofilm formation and
virulence factor gene expression of P. gingivalis using gene expression studies. They showed
that the MBC and MIC of curcumin for both clinical strains and ATCC of P. gingivalis were
125 and 62.5 µg/mL, respectively. Curcumin inhibited attachment and biofilm formation
of bacteria in a dose-dependent way. Additionally, curcumin decreased the virulence
of P. gingivalis by decreasing the expression of proteinases (rgpA, rgpB, and kgp) and
adhesions (fimA, hagA, and hagB) as the main genes of virulence factors. Curcumin has
presented anti-biofilm and antibacterial effects against P. gingivalis. Furthermore, due to the
pleiotropic actions of curcumin, it can be an inexpensive and readily available therapeutic
agent in the treatment of periodontal disease [55].

Chen and coworkers investigated the anti-inflammatory effects and the mechanism of
action of curcumin in macrophages stimulated by P. gingivalis lipopolysaccharide (LPS).
They reported that curcumin prevented the expression of IL-1β and TNF-α genes and
protein synthesis in RAW264.7 cells that were stimulated with LPS of P. gingivalis. In
RAW264.7 cells, LPS of P. gingivalis stimulated NF-κB-dependent transcription, which was
downregulated by pretreatment with curcumin [56].

5. The Strengths and Limitations

The results of this investigation showed that curcumin-loaded silica nanoparticles
had suitable antibacterial actions against P. gingivalis. This finding could be very useful
in overcoming bacterial resistance. In addition, the concentrations obtained in this study
were lower compared to those obtained previous research works, advancing the hope of
preparing optimal formulations based on these nanoparticles.

The main limitation of this study was its use of a single isolate of P. gingivalis. A single
isolate is not enough to draw conclusions regarding MIC values and accurately compare
them to other studies. In addition, the possibility of human error in the sampling of bacteria,
nanoparticle aggregation, and microbial contaminations with other bacterial strains can be
considered other limitations.

There are also other types of bacteria that act as periodontal pathogens, such as
Fusobacterium nu-cleatum, Prevotella Intermedia, Aggregatibacter and Actinomicetencomitans.
Curcumin-loaded silica nanoparticles should also be examined against these bacteria in
future studies.

This report was an in vitro study. Any possible toxicity of these nanoparticles should be
tested in future studies before any animal or clinical trials. Moreover, the antimicrobial and
antibiofilm mechanisms for them should be investigated to confirm their exact function.

6. Suggestions and Future Perspective

It is suggested to investigate the effects of curcumin-loaded silica nanoparticles on
P. gingivalis-related infections in vivo and then clinically. Additionally silica nanoparticles co-
loaded with curcumin and other antibacterial agents can be prepared, and their antibacterial
effects can be investigated in vitro, in vivo, and clinically. A limited number of clinical
isolates of P. gingivalis were analyzed in this study, and they can be used in future studies
to investigate the effects of curcumin-loaded silica nanoparticles on a greater number
of bacteria.

Nanoformulations of plant substances or phytochemicals can replace chemical antibac-
terial drugs in the future. This replacement can be a solution to reduce the use of antibiotics,
which will reduce not only microbial resistance but also the toxicity and side effects caused
by antibiotics.
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7. Conclusions

This study showed that P. gingivalis clinically isolated from the gingival crevice fluid
of a patient with chronic periodontal diseases is highly sensitive to curcumin-loaded silica
nanoparticles at a low concentration. In addition, the two-stage release profile of the
prepared nanoparticles can provide both the burst release and the controlled sustained
release of curcumin, which can be used to eradicate acute infections at first and then provide
the drug content for a long time. It can be concluded that local nanocurcumin application
for periodontal disease and implant-related infections can be considered as a promising
method for the near future in dentistry.
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