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Abstract: Complex fact verification (FV) requires fusing scattered sequences and performing multi-hop
reasoning over these composed sequences. Recently, by employing some FV models, knowledge
is obtained from context to support the reasoning process based on pretrained models (e.g., BERT,
XLNET), and this model outperforms previous out-of-the-art FV models. In practice, however,
the limited training data cannot provide enough background knowledge for FV tasks. Once the
background knowledge changed, the pretrained models’ parameters cannot be updated. Additionally,
noise against common sense cannot be accurately filtered out due to the lack of necessary knowledge,
which may have a negative impact on the reasoning progress. Furthermore, existing models often
wrongly label the given claims as ‘not enough information’ due to the lack of necessary conceptual
relationship between pieces of evidence. In the present study, a Dynamic Knowledge Auxiliary
Graph Reasoning (DKAR) approach is proposed for incorporating external background knowledge
in the current FV model, which explicitly identifies and fills the knowledge gaps between provided
sources and the given claims, to enhance the reasoning ability of graph neural networks. Experiments
show that DKAR put forward in this study can be combined with specific and discriminative
knowledge to guide the FV system to successfully overcome the knowledge-gap challenges and
achieve improvement in FV tasks. Furthermore, DKAR is adopted to complete the FV task on the
Fake NewsNet dataset, showing outstanding advantages in a small sample and heterogeneous web
text source.

Keywords: fact verification; knowledge enhanced; pre-training model; graph neural network;
cognitive reasoning

1. Introduction

Fact verification (FV) often requires retrieving a significant number of scattered evidential
sequences (documents, paragraphs, or sentences), reasoning over the fused multiple sequences and
finally labelling the given claim with ‘supported’, ‘refused’, or ‘not enough information’. Although the
claims do not need to have a specific form, the entity of the claims must be related to textual resources.
Since if one given claim is completely unrelated to the given textual context, even if the claim is labeled
as “not enough information”, the FV process is meaningless. However, the claims can be arbitrarily
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complex and allowed for a variety of expressions for the entity (e.g., mutated in various ways or even
meaning-altered) and composition of evidence relevant to one claim can be from multiple sentences.
The complex FV tasks often require a FV system to have a deeper understanding of the relationship
between the given claim and evidence from multiple dimensions (e.g., semantic features, language
knowledge, common sense knowledge, world or relevant domain knowledge), which not only needs to
use deep learning methods to learn the connections between semantic units, but also needs the support
of complex knowledge to understand the illocutionary meaning. Current FV researches [1–5] driven
by data focus on simple checking tasks at a semantic level, which only use deep learning methods to
construct a unified semantic space to learn the literal meaning. The most common error is caused by
failing to match the semantic meaning between phrases that describe the same event. As shown in
Figure 1, almost all approaches [1–5] based on pretrained language models (e.g., BERT, XLNet) fail to
realize that ‘novel’ belongs to ‘book’, and ‘Mark Heprin’ is one of ‘American journalists’. In this case,
these advanced FV systems are most likely to label the claim as ‘not enough information’. However,
for readers, there is no difficulty in verifying this claim on the premise that readers are allowed to refer
to background knowledge.
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In this paper, the human understanding process is mimicked, so that FV systems are able to
recognize the sequences with the same semantics but different expressions. When looking for the
relationship between the claim and evidence, readers not only need to understand the semantic
knowledge, but also make full use of external relevant world knowledge to fill the gap between
semantic knowledge. In this way, readers can better understand the concepts expressed in the lexical
aspect and the relations between these concepts during the reading process.

Recently, by implicitly adjusting the parameters of FV systems, the pre-trained language model
has enhanced the ability to a great extent to represent context information. Thus, FV systems can
effectively employ the background knowledge and semantic distribution features of corpora to fulfill
FV tasks better. Most language understanding datasets such as FEVER [6], HotPotQA [7], MultiRC [8],
and WikiHop [9] require finding relevant knowledge and reasoning over scattered sentences. However,
for some simple verification tasks (for example, the claims are non-controversially historical events
or the tasks themselves do not require a deep understanding), they can fortunately achieve good
performance under partial knowledge. In practice, however, for complex tasks, due to the lack of
background knowledge (or knowledge gaps), only extracting limited information from provided
corpus cannot satisfy the information needs of reasoning, as shown in Figure 2. Although seemingly
provided with all useful and reliable evidence, many claims are wrongly labelled as ‘not enough
information’ because they lack relevant knowledge. This phenomenon also refers to one of important
gaps between human race and data-driven FV systems. We know that the given claims are generated
relying heavily on datasets. Human beings may use their own prior knowledge unintentionally when
annotating claims manually. Even if many datasets do not provide enough background information,
a human will automatically fill the knowledge gaps and label the claims correctly and easily. However,
for data-driven FV systems, when there is a lack of background information in datasets, they will label
all these kind of claims as “not enough information”, whether or not there is a real lack of relevant
information in datasets. Recently, nearly all the research [1–5] concerning fact verification assume that
the used datasets provide FV systems with all knowledge that is necessary to finish tasks. In practice,
however, numerous researchers often only have access to partial knowledge when dealing with complex
FV tasks requiring multi-hop reasoning and they have clearly demonstrated this limitation in their
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papers. Especially when background knowledge plays a decisive role in FV, the results are even worse.
In addition, as the times change, some world knowledge may be continuously updated (e.g., adding
new knowledge or correcting wrong knowledge). The implicitly encoded pretraining models cannot
learn this important information. Besides, some noise against common sense in evidential sequences
may have a negative effect on the reasoning process if FV systems lack enough background knowledge
to filter them. Therefore, this paper intends to introduce a FV model that can explicitly identify and fill
the knowledge gaps between provided sources and the given claims. Inspired by human cognition,
for the knowledge auxiliary module of the FV model mentioned in this paper, its tuition idea is that
firstly, the knowledge gaps are discovered, and then these gaps are filled under the guidance of external
knowledge. Fundamentally, the OpenBookQA [10] is used to train our model’s ability to find and fill
knowledge gaps, since it is the only corpus currently accessible that provides context with annotated
knowledge gaps.
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Recently, although there is some work to improve the accuracy of open-domain Question
Answering (QA) with external knowledge, we are the first to use external knowledge to strengthen the
reasoning ability of FV systems. In some models, sentences are directly used as external knowledge,
such as in the work of [11–13]. Different from these approaches, the model in this study tends
to purposefully find and fill the knowledge gap to assist reasoning based on [14]. Other models,
such as [15–18], embed syntactic or semantic knowledge into given context to enrich embeddings.
However, this kind of simple syntactic and semantic knowledge supplement may be extremely helpful
for disambiguation, but it cannot provide the effective knowledge auxiliary for complex and logical FV
tasks. The task of neural explanation retrieval such as in [19,20] is similar to that of semantic knowledge
retrieval. Another research idea is based on the use of the structural knowledge base [15,16,21,22],
such as Freebase [23], to enhance the understanding of context. Even though these methods finish the
task of filling the knowledge gap by using semantic parse [24] and relation lookup [25], they may not
find relevant information due to the limitation of the knowledge base. According to [14], the two-step
mechanism is introduced to point out and fill the knowledge gap as part of a multi-hop FV model.

To be specific, our FV model operates according to the following steps:

• According to the given claim, the retrieval module will retrieve documents and sentences relative
to the claim.

• The auxiliary knowledge module predicts a key span in the retrieved evidence.
• Retrieve knowledge related to the claim and evidence from the external knowledge resources,

such as the ConceptNet [26] and large-scale text corpora [27]. For our paper, we adopt four
external knowledge sources: ConceptNet [26], WordNet subset (used in [10]), OMCS (Open Mind
Common Sense subset), and ARC (AI2 Reasoning Challenge dataset) [27], where both structured
and unstructured knowledge resources are included.
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• Based on the above steps, predict knowledge gaps and fill the gap with external knowledge.
• Construct the collaborative graph with external knowledge and context information.
• Reason on the collaborative graph and label the given claim as “supported”, “refused”, or “not

enough information”.

Experiments demonstrate that DKAR outperforms the previous state-of-the-art FV approaches
on FEVER dev sets, and it can also effectively solve the label errors caused by the knowledge gap.
Additionally, our method shows outstanding advantages in a small sample and heterogeneous web
text sources when checking fake news.

In general, the contribution of our work is as follows:

• Based on [4,14,28], the knowledge gaps for FV under partial knowledge are analyzed, and a new
collaborative graph for FV is also proposed to reason over the information with knowledge gaps.

• This paper is the first attempt to introduce a joint knowledge-driven and data-driven mechanism
into fact verification, and verify the effectiveness of the approach in a small sample and
heterogeneous web text source, which will provide an important reference for further research.

2. Related Work

2.1. Pre-Training Language Processing and Background Knowledge for FV

With the development of deep learning architectures and the large amounts of unlabeled data,
especially the emergence of pretrained models in recent years, the ability of machines to understand
natural language has achieved significant progress [29–32]. Among the current pre-training mechanisms,
BERT [33], which employs the Transformer [34] as the encoder and a bidirectional language model to
capture complex linguistic phenomena, is undoubtedly the most advanced mechanism, thus having
solved a series of challenging NLU problems (mainly in the field of QA) and being significantly
better than other language processing models [35,36]. However, as discussed in the introduction,
fact verification or fake news checking requires not only understanding natural language at a
semantic level, but also integrating existing background knowledge for supporting complex reasoning
process [15,37–39]. Therefore, it is argued that the complex FV models with the language pretraining
mechanism, despite their powerfulness in understanding semantics, could be further improved by
auxiliary background knowledge.

2.2. Graph Neural Network for FV

The Graph Neural Network (GNN) can provide a powerful model of structural information
representation, which shows promising results in NLU tasks requiring reasoning. The network also
employs the network-like information passing mechanism to update graph node representation from
its neighboring nodes until reaching equilibrium. Recent research aims to automatically verify the
given claims using trustworthy datasets, e.g., Wikipedia. By employing the GNN, FV systems [4,5,28]
could first retrieve relative evidential sentences from the provided corpus, and then aggregate and
reason over the structural information to verify the claim commendably. Complex FV researches are
dominated by natural language inference models because the task needs to integrate the scattered
evidence and the claim and then infer the semantic relationship between them, which is used in top
systems in the FEVER challenge. The GNN takes advantage of its structure to aggregate the features
of isolated evidence sentences and the claim on the graph, which will make full use of the structural
information of the evidence sentences and the given claim. However, it only aims to investigate
how to effectively reason over the graph constructed with the retrieved evidence from the given
context [4,5,28], and in this study, external information is first employed to assist the reasoning process
and enhance FV performance.
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3. Methodology

In the present section, firstly, the document retrieval and sentence selection modules are studied.
Then, the analysis on how to incorporate the external knowledge with the retrieved information is made,
and a collaborative graph with this external background knowledge is constructed. Next, an inference
method is introduced to reason over the collaborative graph. The pipeline of our method is shown in
Figure 3, and we use yellow module for input module and red for output module.
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Figure 3. Pipeline of our method 3.1. Document Retrieval and Sentence Selection.

The given claim-unrelated documents and distractions are removed from the original input with
a threshold filter. Inspired by the entity linking approach [1], our approach also uses the AllenNLP
to extract potential entities from the given claim. Subsequently, the extracted entities are adopted
to retrieve the relevant documents, and the eight highest documents are stored to be used for the
candidates (although many researches select the top 5 ranked documents, while we find selecting top 8
documents will perform better than top 5 in our experiments). In the end, our approach will filter out
the irrelevant documents by the word overlap between their titles and the claim. After the retrieved
documents are obtained, the most relevant evidential sentence will be selected from these documents.
Besides, the modified ESIM [4] is adopted to compute the relation score between evidence and the
given claim. For sentences containing the top 5, the highest relation scores will be chosen as candidates.
Then, the sentences are filtered out with a threshold τ, which will effectively alleviate the negative
effect on our FV system caused by noise.

3.1. External Knowledge for Retrieved Evidence

In practice, supplementary information may come from various sources, which leads to different
kinds of textual structures, such as natural language text, knowledge graph structural triples,
and datasets with special structures. Although it is difficult to transform unstructured natural
language into structured representation, it is easy to encode structured representation into unstructured
natural language by only following simple rules. The next problem is what additional knowledge
needs to be involved, given claims and the relevant evidence. To find and fill the knowledge gaps,
there are two important modules including evidence relevance and filling gap modules. To deal
with the gaps between concepts, the two modules that rely on context representation and external
knowledge, respectively. will be focused on. For example, as shown in Figure 2, the FV system finds
that there are knowledge gaps between the given claim (“Sirolimus accelerates aging in fruit files . . . ”)
and one key retrieved evidential sentence (“ . . . feeding rapamycin to adult Drosophila produces life
span extension”). The FV system will predict a span in the external knowledge base with the key fact
(“Sirolimus“ in this example). Then, it will retrieve some relevant knowledge from a knowledge base
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(“Sirolimus, also known as rapamycin”, . . . ). After finding the key fact information, FV system will
predict potential relations between each relevant external knowledge in key span and the evidential
sentences. Finally, the FV system will compose the key fact with this filled gap (“Sirolimus, also known
as rapamycin”, . . . ).

3.1.1. Identifying the Knowledge Gaps

There are 3 main processes to find the knowledge gaps: our approach first identifies the key
span of the evidence, then confirms the relation using retrieved knowledge, and finally retrieves the
knowledge gaps.

To select the key span of the given evidence, the BiDirectional Attention Flow model [40] is
adopted to make the span prediction. After getting the predicted span, background knowledge is
retrieved from the ConceptNet [26] and ARC Corpus [27].

3.1.2. Evidence Relevance

The idea of this module is that relevant evidential sequences often capture the relationship
between the given claims and the 4 evidential sentences ranked from 2 to 5 (the blue and red regions in
Figure 4). In Figure 4, the “Fact” is the first evidential sentence or the most relevant evidential sentence
to the claim.
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It should be noticed that the weighted representation of claim-fact and 4 evidential sentences-to-fact
pairs is calculated to capture the relationship between evidence with the given claim and annotation,
respectively. To be specific, the method of Fact Relevant Attention [14] is first followed to get the
claim-evidence weight representation:

Rc(e) = so f tmaxem

(
max

cm
(Ec·Ee)

)
∈ R1×em (1)

where Ec and Ee are the encodings of the claim and evidence respectively, and Ec·Ee ∈ Rcm×em .
Besides, the 4 evidential sentences-to-fact Rl(e) representation is obtained in a similar way.
Finally, a feedforward neural network will be adopted to get a scalar score for each

evidential sequence

scoree(c) = f eed f orward
([
(Rc(e) + Rl(e))

2
− avg(Ee);

(Rc(e) + Rl(e))
2

∗ avg(Ee)

])
(2)

3.1.3. Filling the Gap

In this module, background knowledge is employed to focus on the 4 evidential sentences-to-fact
pair gaps. Based on [14], there are two main steps to fulfill the gap filling task:
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1. The module predicts the relation between the fact span and the 4 evidential sentences information
representations for each evidential sentence s j, as shown in Equations (3) and (4):

Rŝ
(
s j
)
= so f tmaxem

(
max

cm

(
Eŝ·Es j

))
·Es j (3)

Rl
(
s j
)
= so f tmaxem

(
max

cm

(
El·Es j

))
·Es j (4)

where ŝ, s j denote the predicted span and the j-th evidential sentence. These two representations
obtain the contextual embedding of the words in the s j that is most relevant to ŝ and ci respectively.

2. Combine the predicted relation with evidence to score the additional knowledge by the
feedforward neural network

R′j(ŝ, l) = f eed f orward
([

Sŝ
(
s j
)
− Sl

(
s j
)
; Sŝ

(
s j
)
·Sl

(
s j
)])

(5)

Then, the information without knowledge gaps, called knowledge context will be gained.

3.2. Constructing the Entity Graph

After the Knowledge Context (KC) is acquired, the Stanford Corenlp Toolkit [41] is used to
recognize entities from the KC. The number of extracted entities is denoted as N, while the entity
graph is constructed with entities as nodes. The edge, which is the same with the DFGN [42], is built
because this link ensures that entities across multiple documents are connected. Different from the
DFGN, additional background knowledge is adopted to enhance the nodes’ relations, which will make
our entity graph more exact.

3.3. Claim Verification with the GNN Reasoning Method

In this section, the graph-based reasoning method is elaborated to fulfil FV tasks, which is another
main part of this paper. Given the sequence of the claims and evidence, our model will label the
claims as ‘supported’, ‘refused’, or ‘not enough information’. The tuition idea of this approach is to
use semantic-level structure information of knowledge evidence to predict labels of the given claims.
Besides, in the present section, firstly, an encoder is used to get representation for the claim and the
knowledge evidence. Then, information is propagated among knowledge evidence and reasoned
over the collaborative graph. Finally, the module of aggregation is utilized to predict the label of the
given claim. In the process of information propagation and aggregation, the setting of the GEAR [4]
is followed. However, distinct from our baseline model GEAR, we first construct the entity graph,
which contains rich information and knowledge on its edges, instead of the simple fully-connected
graph as the baseline model GEAR. In addition, the common GNN reasoning approaches assume that
the feature of each node is a vector. In order to retain the information of the graph nodes as much as
possible, by following the GSN [28], the representation of sequence features is learnt directly, instead of
transforming the sequence feature into a fixed dimensional feature vector through a summary module.

Besides, G = (V, E) is employed to represent the constructed graph, where V refers to a set of
N nodes, and the i-th node Vi indicates a sequence of the feature vector, which can be denoted as
Vi =

[
v1

i , v2
i · · · v

li
i

]
. li is the sequence length of node i; Different from the GNN, each element of the

feature vector is a D-dimensional vector. E denotes a set of edges, linking two nodes.
In the k-th hop, based on the GSN’s aggregation fagg and combination fcom function [28], it is easy

to calculate the structure-aware feature representation and the current feature representation fused
with neighboring information, as shown in Equations (6) and (7), respectively.

Zk
i = fagg

({
Vk−1

j : ∀ j ∈ N(i)
})

(6)

Vk
i = fcom

(
Vk−1

i , Zk
i

)
(7)
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where N(i) is the neighboring nodes of node i, and Vk
i is the node representation learned after the

k-th hop. Putting these two functions together, we can obtain a formula specifically designed for this
sequential application [28], as shown in Equation (8).

Vk
i = fcom

(
g
(
Vk−1

i , Vk−1
j

))
(8)

where g denotes the co-attention function, and the Bidirectional Attention Flow [40] is also selected as
g for the aggregation function. For the combination function, the mean pooling function is chosen.
After learning neighbor-aware representations of the current node, our model has the strengthened
ability to reason over multiple evidential sentences. Once the final state is obtained, a one-layer MLP is
adopted to get final prediction l.

4. Experiments

4.1. Experimental Setting

4.1.1. Dataset

Our experiments are performed on the large-scale dataset FEVER. The dataset consists of 185 K
annotated claims with a set of 5416 k Wikipedia documents, which is developed to extract evidence
and verify synthetic claims. In this section, FV is emphasized. In addition, the setting of GEAR [4] is
followed to extract the evidence. The training set and the dev set, which contain about 145 K and 20 K
samples accordingly, are also used.

4.1.2. Baselines

In our experiments, the current out-of-the-art FV methods are adopted as baselines, including
three previous top approaches (Athene [1], UCL MRG [2], and UNC NLP [3]) and the approaches
based on pre-trained language models (GEAR [4] and KGAT by [5]).

4.1.3. Evaluation Metrics

In order to facilitate the comparison with baseline models, the official metrics, including Label
Accuracy (LA) and FEVER scores are employed to evaluate our FV model. LA is to measure claim
classification accuracy, and FEVER is to measure whether the FV system can provide at least one
complete set of golden evidence.

4.1.4. Data Processing

The identification of knowledge span and the extraction of knowledge are extremely important for
this work. We first evaluate the key span identification model with the annotated spans in knowledge
gap dataset for training, and then trained it on the SQuAD dataset. Unfortunately, the performance is
quite poor. We found that knowledge gaps dataset [14] can improve the accuracy, F1 and EM scores
of our model, which was pretrained on SQuAD. Therefore, all the experiments in the present study
use this fine-tuned method. In addition, we adopt four external knowledge sources: ConceptNet [26],
WordNet subset (used in [10]), OMCS (Open Mind Common Sense subset), and ARC (AI2 Reasoning
Challenge dataset) [27]. In order to avoid the noise caused by human subjective factors as much
as possible, we use the method in [14] to identify a subset of fact verification and split the fact-to-4
evidential sentences candidates gap annotation into two steps, respectively, core term identification
and relation extraction.

4.2. Performance

In this section, our framework is compared with baseline models on FEVER dev sets to evaluate
its performance, including its advantages in various reasoning scenarios, and the effectiveness under
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the condition of knowledge gaps. Table 1 displays the performance of DKAR and the baselines on the
FEVER dev set, showing that DKAR outperforms previous systems with 79.64% and 77.12% in terms
of LA and FEVER scores, respectively, on the FEVER dev set.

Table 1. Results on the FEVER dev set.

Model LA (%) FEVER Score (%)

Athene [1] 68.49 64.74
UCL MRG [2] 69.66 65.41
UNC NLP [3] 69.72 66.49

GEAR [4] 74.84 70.69
KGAT [5] 78.02 75.86

DKAR 79.64 77.12

Table 2 presents the confusion matrix for the dev set prediction, where “prediction” is denoted
as P and “ground truth” is indicated as G. For the baselines, it is easy to wrongly label the claims
as “not enough information”, and it is also a great challenge for them to correctly recognize the
“not enough information” claims. Based on Table 2, it can be seen that our DKAR with auxiliary
knowledge can effectively enhance accuracy (these improvements were highlighted with bold and ↑)
and reduce the number of label errors corresponding to “not enough information” (these improvements
were highlighted with bold and ↓).

Table 2. Confusion matrix on the FEVER dev set.

Supported (G) Refused (G) Not Enough
Information (G) Total

Supported (P) 5942 (↑8%) 625 398 6965
Refused (P) 957 4397 (↑4.6%) 1031 6385

Not enough information (P) 561 (↓ 9.7%) 499 (↓ 3.6%) 5588 (↑17%) 6648
total 7460 5521 7017 19,998

4.3. Further Expeeriments of FV System on Diverse Web Information

Although the above experiments demonstrate that DKAR can effectively solve difficult problems
caused by the knowledge gap in the synthetic dataset, this paper continues to study the model
performance in a more practical dataset with multiple web sources in this section. The dataset of the
FakeNewsNet contains labelled news and social context information from two platforms: PolitiFact
(politifact.com) and GossipCop (gossipcop.com). Besides, this dataset involves both meta attributes
(e.g., all the tweets and news body text) and social context (e.g., comments for each item of news).

In order to test that our DKAR can retrieve and fill the knowledge gaps in diverse text resources
effectively, we use the whole and part of the datasets respectively in the following experiments.
Specifically, our model is trained on the FakeNewsNet (PolitiFact and GossipCop, respectively), and the
partial dataset involves 100 tweets for each piece of news, respectively. We follow the practice of
training GNN to train and test our module: randomly select 75% of the data as the training data, the rest
as the test data, and the report is the average result of 5 replicates. In order to support comparison
with baseline methods for fake news detection (e.g., HAN [43], TCNN-URG [44], HPA-BLSTM [45],
Csi [46], dEFEND [47], and the GNN with Continual Learning [48]), the following metrics, namely
accuracy, precision, recall, and the F1 score are employed and defined as follows.

Accuracy: Accuracy is simply a ratio of correct predictions to the total number of predictions.
Precision: Precision is the ratio of true positives to the total predicted positive observations.
Recall: Recall is the ratio of true positives to actual positives.
F1: F1 is the harmonic mean of precision and recall.
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The experimental results are shown in Figures 5 and 6, where the first 6 bars of each set in each
figure are the performance results of the baseline models in the FakeNewsNet, while the second last
bar is the result of our approach on the whole dataset, and the last bar is the result of our approach
on the partial dataset. For “the whole dataset”, there may be less knowledge gap than in “partial
dataset” due to the mutual support between sentences, which is not conductive to testing whether
our approach has the ability to fill knowledge gaps. In order to test this ability of our method, we use
part of “the whole dataset” as “partial dataset”. Recently, almost all the FV systems are based on
data-driven methods, and the performance of these systems relies heavily on the size of datasets. If the
experimental performance does not get worse in an obvious manner when the size of the dataset
decreases significantly, we can argue that the knowledge-driven mechanism can effectively improve
the robustness of data-driven FV systems. According to the results, the model put forward in this
study has the comparable performance on PolitiFact and GossipCop, both on the complete and partial
dataset. In addition, in order to test the ability of our model under the conditions of knowledge gaps,
partial datasets with 200, 500, 1000, and 1500 tweets for each piece of news, respectively, are used to
test our model, and the results are shown in Table 3, presenting that with gradual increase of data,
the performance improves slowly, which shows that the reasoning ability of our model does not highly
rely on the data, and the internal knowledge-driven function plays an important role.

Table 3. Performance of our approach on the partial datasets.

Dataset Metrics 100 500 1000 1500

PolitiFact

Accuracy 0.879 0.892 0.903 0.908
Precision 0.897 0.913 0.921 0.925

Recall 0.891 0.909 0.910 0.913
F1 0.895 0.903 0.915 0.919

GossipCop

Accuracy 0.890 0.896 0.900 0.903
Precision 0.906 0.910 0.915 0.916

Recall 0.898 0.901 0.905 0.907
F1 0.903 0.906 0.913 0.914
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Although the above experiments have confirmed that our model can overcome the knowledge
gap obstacle on a single dataset, whether our method works well on new datasets still should be
tested. If the model continues to perform well on a new dataset, it reveals that our method has stronger
learning ability and robustness. Besides, the model is performed on the datasets with 100 tweets
for each item of news (train on the PolitiFact and test on the GossipCop). As presented in Figure 7,
the results show that compared with a baseline model, although the graph representation of PolitiFact
and GossipCop is vastly different (heterogeneous information), including numbers of nodes and edges,
our model has a relatively stable performance. In this case, it can be proved that our model is featured
with strong robustness.
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5. Limitation of the Study

Limited by the size of knowledge bases, some knowledge gaps cannot be filled effectively
in practice. We are studying a creative reasoning mechanism to solve this problem. In addition,
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fact verification is a very open and challenging task. It needs not only the support of linguistic features
and background knowledge, but also the support of more complex multi-dimension information,
such as social content and spatiotemporal information. For example, claims evolve over time, and what
was fake yesterday is true today.

6. Conclusions

In this study, a novel graph-based reasoning framework was proposed for complex fact
verification (FV), which can dynamically supplement useful knowledge in the case of knowledge
gaps. The framework retrieves and fills the knowledge gaps between the given claim and evidence
to construct the collaborative graph before propagating and aggregating sequential information.
Experiments have shown that DKAR can effectively solve the “not enough information” mislabeling
problem in the FV task and outperform other baselines. In addition, our approach shows outstanding
advantages in a small sample and heterogeneous web text sources. Our research first illustrates that
dynamic knowledge supplementation plays an important role in complex FV tasks, which contributes
to the study of reasoning methods driven by data and knowledge for fact verification. It is expected
that our first exploration encourages others to expand upon our work, and to further shed light on the
broader and more challenging goal of complex and practical FV tasks with joint data and knowledge.
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