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Abstract: Complex energy systems are made up of a number of components interacting together via
different energy vectors. The assessment of their performance under dynamic working conditions,
where user demand and energy prices vary over time, requires a simulation tool. Regardless of the
accuracy of this procedure, the uncertainty in data, obtained both by measurements or by forecasting,
is usually non-negligible and requires the study of the sensitivity of results versus input data. In this
work, polynomial chaos expansion technique is used to evaluate the variation of cogeneration plant
performance with respect to the uncertainty of energy prices and user requests. The procedure allows
to obtain this information with a much lower computational cost than that of usual Monte-Carlo
approaches. Furthermore, all the tools used in this paper, which were developed in Python, are
published as free and open source software.
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1. Introduction

The concerns about global warming related to greenhouse gas emissions, the scarcity of fossil fuels
reserves, and the tendency to reduce primary energy consumption have led to a considerable increase
in complex energy systems deployment. Complex energy systems combine together different energy
vectors and possibly renewable energy sources; in this way they can reach a better overall efficiency
value and help pave the path toward a decarbonized society. This topic is of high research interest as
attested to by several ongoing research projects in the field [1–4]. As an example, cogeneration plants
make use of components such as internal combustion engines to produce electricity and recover heat
otherwise wasted, thus obtaining a better exploitation of primary fuel [5–9]. The intelligent use of
these systems is considered to be one of the most promising and effective ways to move toward a
decarbonized society [10]. The study of the operational management of these systems creates new
challenges associated with the evaluation of the variability and uncertainty of some data affecting the
system performance [11–16]. As examples of possible sources of uncertainty, the energy demand of
loads that have to be supplied, the energy prices, the fuel cost and the price of the electricity sold to
the grid can be mentioned [17]. Several simulation and optimization tools have been proposed in the
literature and are based on different methodologies and approaches: from thermodynamical-based
procedures solving the basic equations of the plants to power flow analysis tools [18].

The computation of all uncertainties of the performance of a complex power plant is important
in the evaluation of Key Performance Indices (KPI) and in the simulation and optimization of plant
operations, especially when there is a high lack of confidence in the planning phase of a new plant [19].
When future revenues and cash flows have to be evaluated, a typical question that arises in the
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planning phase is how large will the deviation of the predicted KPIs versus variations in the predicted
energy price be.

Sensitivity analyses are usually performed to check these issues by varying one parameter and
looking at the corresponding output, i.e., illustrating the range of plausible estimates by altering a
crucial parameter. More sophisticated methods rely on probability theory, where various parameters
are expressed through probability distributions. The sensitivity analysis is computed through
different methods, the most used one being the Monte Carlo (MC) approach [20]. Despite its simple
implementation, its computational cost is usually very high and it requires a large amount of time to
converge to an acceptable solution [21].

The alternative method proposed in this work is the Polynomial Chaos Expansion (PCE) method.
PCE is a probabilistic method consisting of the projection of the model output on the basis of orthogonal
polynomials in the random inputs. The stochastic projection provides a compact and convenient
representation of the model output variability with regards to the inputs. These approaches rely
upon a Fourier–Hermite expansion of the uncertain input parameters and the model output into the
governing equations [21,22].

At the same time, in the past twenty years, the ANalysis Of VAriance (ANOVA) technique has
been used for Sensitivity Analysis (SA). In this approach, the variance of the output is expressed as a
sum of contributions depending on each input variable or on their combinations. Recently, Sobol’s
sensitivity indices for the global sensitivity analysis of model output have been developed. Sobol’s
indices are used in SA to determine which input variables (or groups of variables) both qualitatively
and quantitatively influence the uncertainty in the model output the most and are related to PCE
coefficients [23]. PCE and ANOVA then become a very valuable tool for Uncertainty Quantification
(UQ) by defining an analytical approximation of the output function.

The PCE approach is used here to assess the variation of the KPIs of a cogeneration plant with
respect to the variation of three main parameters: cost of the primary fuel feeding the plant, thermal
load requested by users and selling price of the electricity. The PCE tool used in this paper was
completely developed by the authors and is published as free and open source software. It is written
in Python (Python 3+ is required) and can be obtained in Reference [24].

The model of the plant is performed on the basis of energy flows on an hourly basis. This time
scale allows to take into account variations in electricity prices and in load demand but avoids the
solution of smaller time scale problems, which would require a thermo-dynamic formulation of the
problem whose computational cost would be mostly unfeasible within an optimization loop. The basic
approach followed is described in [25]. All computations are carried out with the Python codes that
are shared on GitHub (https://github.com/giaccone/cogen_eval) to allow anybody to reproduce the
presented results and/or help to understand how to use the PCE tool [24] for other analyses.

The work is structured in the following way: in the next section, some basic features of the
PCE technique are given, after which the description of the model cogeneration problem is outlined;
some PCE results are then presented and compared with the MC method.

2. ANOVA and Polynomial Chaos Expansion

The beginnings of PCE can be traced back to the computational process named after the American
mathematician Norbert Wiener, and this method is also called “Wiener Chaos expansion” [26].
Differently from the MC approach based on a random sampling of the model response, PCE uses
a functional representation of uncertainty, leading to a more efficient evaluation of the variance of
output with respect to input. The approach relies upon a Fourier–Hermite expansion of the uncertain
input parameters and the model output into the governing equations. At the same time, among the
methods for UQ, the analysis of variance is one of the most important. The two previously mentioned
techniques are well matched, as will be briefly described below. A complete and thorough treatment
of this topic can be found in [27].

https://github.com/giaccone/cogen_eval
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The ANOVA method aims at subdividing the variance of the output function in a series of terms
depending either on a single input or on a combination of inputs. For instance, for a model function y
of two parameters p1 and p2, the function can be written as:

y(p) = f0 + f1(p1) + f2(p2) + f12(p1, p2) (1)

Following the approach proposed in [27], the expected value of the function is represented
by the first term on the right hand side, f0, i.e., not depending on the parameters, while the other
terms represent the share of variation of the function y of a single parameter ( f1 and f2) or their
combinations ( f12).

The notation proposed in (1) is crucial to express the variance of the function as a sum of terms.
The variance V is defined as:

V = Var [ f (p)] =
∫

Ω
y2(p)dp− f 2

0 (2)

where Ω is the domain of definition of the function. By performing the integration of Equation (2) and
exploiting the properties of orthogonal functions [27], the variance of the output can also be expressed
as a sum of terms as:

V = V1 + V2 + V12 (3)

where the terms on the right-hand side are the partial variances depending on a single parameter or a
combination of the two.

Variance terms can be computed through an MC approach by sampling the function in a number
of points. Unfortunately, the MC method often has a computational cost that is too high for engineering
functions where each evaluation has a non-negligible cost. On the other hand, PCE can provide the
same coefficients with a more complex formulation but with a much lower burden.

In PCE the variation of the output on the inputs is projected on a set of orthogonal polynomials
Φ, which are the function of the uncertain parameters p.

y(p) '
M

∑
j=0

αj
(
Φj (p)

)
(4)

where αj are coefficients, Φ are a family of multivariate and orthogonal polynomials and M is the order
of the approximation truncated for computational reasons. For instance, the family of one-dimensional
Legendre polynomials ϕj can be used to represent an uncertain input with uniform distribution over
an interval. Multivariate polynomials are obtained by the product of univariate Legendre polynomials.

The coefficients αj can be obtained by projecting the function over the polynomial basis.
This process involves the computation of integrals over the domain of definition of the parameters.
The definition of the scalar or inner product is given by:

〈Φj (p) , Φk (p)〉 =
∫

Ω
Φj Φkdp (5)

where, thanks to the orthogonality of the polynomials, the result is null if i 6= j.
Projecting Equation (4) over a polynomial l and taking the inner product gives us the

following equation:

〈y(p), Φl (p)〉 '
M

∑
j=0

αj〈Φj (p) , Φl (p)〉 (6)

Since the inner product is null if l is not equal to j, the value of the unknown coefficient αl can be
computed as:

αj =
〈y(p), Φl (p)〉
〈Φj (p) , Φj (p)〉

(7)
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While the denominator can be computed analytically once the family of polynomials is defined,
the numerator requires the integration of the output function multiplied times the polynomial. As the
output function is seldom known analytically, the right-hand side of Equation (7) involves the use
of quadrature rules, which become computationally intensive if the number of uncertain parameters
p increases. Particular techniques for numerical integration over sparse grids allow to reduce the
computational cost of the procedure [21,28].

It is worth mentioning that Equation (6) is a surrogate model function that analytically
approximates the behavior of the output function with respect to the variation of the input. This model
is important as it enables the study of the original function, for instance looking for the “worst case
combination” of the input uncertainties with the function values [29].

Equation (4) expresses a decomposition of the output function in terms of the input parameters;
its structure is similar to that of Equation (1) and so the knowledge of the αl coefficients enables the
computation of partial variances. The sensitivity function Sj is particularly important; it is often called
Sobol’s index, which expresses the importance of the j-th parameter on the variance and is defined as:

Sj =
Vj

V
(8)

As a consequence of the PCE formulation, the computation of the integral of Equation (2) can
now be simplified by using the orthogonality property. Considering, for instance, the j-th first-order
variance Sj, the following equation is obtained:

Sj =
∑k∈Γk

α2
k〈Φk

(
pj
)

, Φk
(

pj
)
〉

∑M
k=0 α2

k〈Φj (p) , Φj (p)〉
(9)

where the set is made up of all the terms that are a function of the j-th parameter only [27]. In the
following these concepts will be used within the analysis of an energy management procedure. We also
remind the reader that the PCE has been implemented in Python and the code is freely available [24].

3. Model of Cogeneration Plant

The operational optimization of a poly-generation plant often requires the use of mathematical
procedures for its simulation. In fact, as it is possible to fulfill the load requests in more than one way,
a choice between multiple alternatives must be made.

One of the simplest cases to describe this issue is represented in Figure 1. A cogeneration plant
can provide heat to an end-user in at least two different ways: by burning a primary fuel in a boiler or
by using the same fuel to supply a cogenerator that produces, at the same time, heat and electricity.
This last form of energy can be sold to the grid, creating both a better exploitation of fuel and a form of
economical revenue. The choice between these two modes of operation is related mainly to the selling
price of electricity. As this price varies during the day, the operational mode changes and, for instance,
makes it more convenient to run the cogenerator in hours when the electricity price is high while
running the boiler at low price times. The Unit Commitment (UC) problem is then the definition of a
strategy for finding the minimum running cost of the plant defining, at each time interval within a
scheduling period, the on/off state of each machine and its production level.

electric

heat

natural gas

Figure 1. Schematic of the cogeneration plant studied.
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This problem can be approached in different ways by means of mathematical programming and
is solved here with an approach similar to that presented in [25].

The management cost C to be minimized is defined, in the present Italian case, as follows:

C =
Nint

∑
j=1

c(nd)
NG

Bt(tj)

ηb Hi
∆t + c(d)NG

Pt(tj)

ηt Hi
∆t− cs(tj)Pe(tj)∆t (10)

where c(d)NG and c(nd)
NG are the cost of natural gas without and with taxation due to different Italian

fiscal regimes of the cogenerator and boiler, respectively; ηt and ηb are the thermal efficiencies of the
cogenerator and boiler, respectively; Hi is the lower heating value of the natural gas; Bt(tj) is the
value of heating power of the boiler in the j-th interval; Pt(tj) is the value of the thermal power of the
cogenerator in the j-th interval; Pe(tj) is the value of electrical power of the cogenerator in the j-th
interval; cs(tj) is the unit selling price of electrical power to the grid at the j-th interval expressed in
e/MWh; and Nint are the intervals with equal length for discretizing the scheduling period.

Although the efficiency of both the cogenerator and boiler varies at partial load conditions
(as shown in [25]), in this work we focus our attention on other uncertain parameters with a higher
influence on the running cost. Therefore, a simple model with constant efficiencies is used. Moreover,
as will be shown later, the cogenerator often works at full power.

Equation (10) highlights that the management or operational cost for the plant is formed by the
cost of burning fuel in the boiler and the cogenerator, reduced by the income owing to the electricity
produced by the cogenerator and sold to the grid. It can be noticed that the objective function in
Equation (10) also represents an economic balance influencing the dispatching of the two heat sources
at each time interval. First, the unit with cheaper running cost is scheduled. Afterward, if the source
capacity is lower than the heat demand, the unit with more expensive running cost contributes to
covering the residual demand. Clearly Equation (10) is also subjected to energy balance constraints
stating that heat production from the boiler and the cogenerator supply local demand Ut, as well as
that electricity is sold to the grid when produced by the cogenerator.

To evaluate the minimum cost C defined above, some data about the plant must be known. First,
the cost of the fuel that will be burned inside components should be known. In the case of natural gas,
a unit cost expressed, for instance, in e/smc is needed. In the same way, the thermal power demanded
by the end-user has to be provided. This value is not scalar but rather an array of values defined
for instance on a 24 h scheduling period. In Figure 2 the pattern of this end-user request related to a
district heating in the winter season is shown.

Figure 2. Heating power to be provided to the end-user over a 24 h period.

Another array of data is the selling price of electricity. The price depends on the time of day and
on the season. In Figure 3, an example of price dynamics taken from the Italian market is shown.
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Figure 3. Example of unit selling price of electricity over a 24 h period.

An example of commitment of the plant is shown in Figure 4: the power produced by the
cogenerator is shown in blue and that of the boiler is shown in orange. These results are completely
defined by the optimizer on the base of the minimum running cost. With the parameters considered it
is observed that during daytime it is convenient to exploit as much as possible the energy coming from
the cogenerator. In fact, the cogenerator is run during the central hours of the day when the electricity
price is higher, while the boiler is used to produce the heat demand during the night and to cover
peaks of request for which the cogenerator alone is not sufficient.

Figure 4. Unit commitment over a 24 h period.

4. Sensitivity Analysis

The problem formulation proposed in the previous section gives the minimal running cost of the
plant for a given price of natural gas, thermal load and selling price of electricity profiles. As was
mentioned in the introduction, these values are often affected by errors and imprecisions, and how
these uncertainties impact the minimal cost can be estimated by SA based on the approach proposed
in Section 2. To this aim, the minimal running cost described in Equation (10) becomes, in the SA
procedure, Equation (4). It is worth stressing that the cost evaluation proposed in Equation (10) is
based on an optimization run, and that its computational burden is not negligible, thus preventing
the use of an MC technique for evaluation of the variance of the cost. At any rate, in this case, an MC
run is used as reference for the evaluation of the variance and for a comparison of the number of cost
evaluation function calls required.
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For the study proposed here, as already mentioned, the price of natural gas, the profiles of the
thermal load and the selling price of electricity are considered as sources of uncertainty. For this
purpose, three scalar and unitless quantities p1, p2 and p3 are introduced as multiplicative factors.
With reference to Equation (10):

• The cost of natural gas is multiplied by p1;
• The heating load is multiplied by p2;
• The selling price of electricity is multiplied by p3.

The uncertainty is introduced by tuning the variation of the parameters p1, p2 and p3. In this
paper we consider both uniform and normal distribution. In the first case we consider a uniform
distribution in the range (0.9, 1.1) to simulate a ±10% variation with respect to their nominal value.
In the second case we consider a normal distribution having a mean of µ = 1 and standard deviation
of σ = 0.05. This choice makes it possible to simulate a variation of which 95% of the samples fall
within the same range considered for the uniform distribution.

As explained earlier, in both cases the cost function of Equation (10) is taken as the y(p) function
of Equation (4) and is used for the evaluation of the PCE coefficients defined in Equation (7).

By applying the procedure to the cogeneration case, the values of mean and of standard deviation
of the cost can be plotted with respect to the number of function calls. This number corresponds in the
MC method to the number of sampling trials, while in PCE it is the number of quadrature points that
have to be used in the evaluation of the integral appearing in the numerator of Equation (7). The larger
the number of points, the more accurate the evaluation of the PCE coefficients.

For both uniform (Figure 5) and normal variations (Figure 6) of the uncertain parameters, the PCE
and MC techniques give similar results, but PCE is able to provide stable and convergent mean and
standard deviation values after ten thousand cost function evaluations while MC is still far from
convergence after 5 million calls.

Figure 5. Mean and standard deviation of the cost function by the PCE and MC methods in the case of
uniform distribution; results in e/day.
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Figure 6. Mean and standard deviation of the cost function by the PCE and MC methods in the case of
normal distrinution, results in e/day.

PCE also allows the evaluation of sensitivity or Sobol’s indices. These values are evaluated in
terms of both uniform and normal variation of input parameters. As explained above, both cases are
set to analyze the variation of the parameters in the same range; therefore it is not strange to observe
similar values for Sobol’s indices, as shown in Table 1.

Table 1. Sobol’s indices in the case of uniform and normal distributions.

Variation S1 S2 S3 S12 S13 S23 S123

Uniform 0.4931 0.1172 0.3891 0.0002 0.0002 0.0002 0.0000

Normal 0.4933 0.1177 0.3885 0.0002 0.0002 0.0001 0.0000

Some considerations can be drawn from the analysis of Table 1, in particular:

• The cost function is mostly affected by the natural gas cost as the sensitivity function S1 reaches
about 49% of the global variance in the case of both uniform and normal distributions;

• In terms of importance, the second parameter affecting the variance is the electricity price,
whose influence S3 is about 39% of the total variance;

• A lower importance parameter is the thermal load, whose effect S2 is around 12%;
• Cross effects due to interaction of the parameters are not meaningful (S12, S13, S23 and S123

are negligible).

5. Discussion

The application of the PCE procedure to the cogeneration test case showed its effectiveness for
the assessment of the propagation of uncertainties in the evaluation of operating cost minimization.
Its computational cost is some orders of magnitude lower than an MC run and can thus be acceptable
for the evaluation of KPI in complex energy systems whose simulation is computationaly intensive.

The main features of PCE also enable the analysis of the coupling between different causes of
uncertainty, giving a deeper insight on the system.

In addition to mean and variance values, PCE creates a more accurate estimate of the parameters
that mostly affect the output function by computing the sensitivity or Sobol’s indices. As a consequence,
attention can be focused on these parameters, trying to reduce their uncertainty for getting more precise
assessments of the cost function.
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