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Abstract: In the Industry 4.0 the communication infrastructure is derived from the Internet of Things
(IoT), and it is called Industrial IoT or IIoT. Smart objects deployed on the field collect a large
amount of data which is stored and processed in the Cloud to create innovative services. However,
differently from most of the consumer applications, the industrial scenario is generally constrained
by time-related requirements and its needs for real-time behavior (i.e., bounded and possibly short
delays). Unfortunately, timeliness is generally ignored by traditional service provider, and the
Cloud is treated as a black box. For instance, Cloud databases (generally seen as “Database as a
service”—DBaaS) have unknown or hard-to-compare impact on applications. The novelty of this
work is to provide an experimental measurement methodology based on an abstract view of IIoT
applications, in order to define some easy-to-evaluate metrics focused on DBaaS latency (no matter
the actual implementation details are). In particular, the focus is on the impact of DBaaS on the overall
communication delays in a typical IIoT scalable context (i.e., from the field to the Cloud and the way
back). In order to show the effectiveness of the proposed approach, a real use case is discussed (it is
a predictive maintenance application with a Siemens S7 industrial controller transmitting system
health status information to a Cloudant DB inside the IBM Bluemix platform). Experiments carried
on in this use case provide useful insights about the DBaaS performance: evaluation of delays, effects
of involved number of devices (scalability and complexity), constraints of the architecture, and clear
information for comparing with other implementations and for optimizing configuration. In other
words, the proposed evaluation strategy helps in finding out the peculiarities of Cloud Database
service implementations.

Keywords: distributed measurement systems; automation networks; Industry 4.0; cloud computing

1. Introduction

The fourth industrial revolution, commonly addressed as the Industry 4.0 paradigm, leverages on
the idea of a digital twin of real-world systems (e.g., machineries, tools, and so on) implemented in
the Cloud domain and continuously interacting with the physical twin by means of Internet-based
communication infrastructure [1–3]. On the digital side, analytics are executed in order to evaluate
the system history and forecast future behavior, thus improving availability, reliability and efficiency
of production systems. On the physical side, low-cost smart field devices perform preliminary data
processing and transmit refined information about the physical quantities of interest to the Internet.

The previously described scenario leads to the generation and management of very large amounts
of data, which pave the way to innovative services aiming at increasing overall performance in terms
of cost, lifetime, and efficiency [4–8].
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As a matter of fact, communications in the Industry 4.0 scenario rely on a subset of the Internet of
Things (IoT) paradigm, which is commonly referred to as the Industrial IoT or IIoT [9]; in particular,
the well-known pyramidal arrangement of legacy industrial communications, whose lower level
was occupied by fieldbuses, is flattened thanks to the adoption of the Internet as a sort of universal
backbone [10]. As a consequence, the time-related constrains of fieldbuses are somehow inherited by
such Internet-based communications, which can spread on geographical scale [11,12]. In turn, latency
in concluding service requests probably remains the most important key performance indicator (KPI).
Unfortunately, there is no universal agreement on how such a performance evaluation must be carried
out on new architecture, and the development of metrics univocally defined is still an open research
issue [13–15]. Moreover, the impact of remote database accesses in the overall delay is usually not
detailed, since the whole Cloud is generally considered as a single black-box entity.

This paper has the following novel contents:

• It provides easy-to-compute metrics to objectively evaluate the time performance of Cloud
databases (Database as a service—DBaaS—paradigm), due to the very important role they assume
in data analytics services [16].

• It introduces a reference model of an Industry 4.0 scenario (which includes a closed loop acquiring
data from the production line and providing back information about the system KPI of interest [17]).

• It provides an abstract view of the above reference model, so that the metrics are independent
from the peculiar mechanism implemented to access the database (which only depends on the
way the system has been realized, and not on the service it offers).

• It considers real-world use cases for the experimental evaluation of the proposed methodology
and of the associated set of metrics. The testbeds confirm the general effectiveness of the proposed
approach, especially when the scalability of the system under test must be evaluated and compared.

The paper is arranged as follows. The next Section provides a brief overview of the IIoT paradigm
and possible Cloud database scenarios. In Section 3 the proposed approach is detailed, while Section 4
describes the considered real-world use cases. The experimental testbench setup to evaluate the
effectiveness of the proposed methodology is in Section 5. Section 6 presents a brief overview of the
demo systems used for trade fairs. Finally, the conclusions are drawn.

2. Materials and Methods

Any Industry 4.0 applications exist in a Cyber-Physical System (CPS), consisting of both the
real-world product and its digital counterpart [18]. In particular, applications rely on the capability
to collect information about the status of a so-called smart thing (or object) during its whole lifetime,
from the initial conceiving to the aftermarket, including the disposal and recycle stage. Collected data
are saved in distributed data repository built up according to the Cloud computing paradigm; the very
same data are used to update the status of the smart object “digital twin”, which is nothing but a
description (i.e., a model) of the device in the digital domain. The backbone connecting the physical
and the cyber domains is based on the Internet: the IIoT is the IoT subset which is sometimes defined
as the Internet for the machines.

The very large amount of data generated by means of the IIoT paradigm is the fundament of any
Industry 4.0 service. The most common example is furnished by the currently commonly adopted
predictive maintenance approach. In the past, maintenance was carried out purely on time basis,
i.e., the older the equipment the more frequent maintenance procedures were executed. However,
faults very often occur on a random basis, thus vanishing any time-based maintenance scheduling.
Nowadays, more accurate failure models are implemented in the cyber space, based on artificial
intelligence techniques to learn the actual system/product behavior from the IIoT-derived data, so that
more effective maintenance can be scheduled and, based on the results of the prediction, control
applications may be configured to provide a real-time feedback via the equipment actuators.
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As stated in the introduction, data are saved in databases hosted in the Cloud, generally exploiting
the DBaaS approach, often referred to as “Managed Databases” since AWS introduced its Relational
Database Service (RDS) back in 2009. In other words, the DBaaS acronym refers to the software
infrastructure that permits to setup, use and scale databases by means of a common set of abstractions
primitives, thus not caring of the peculiar implementation details [19].

Currently, DBaaS is the fastest growing Cloud service; and the cost of offered services is mainly
determined by the writing speed (in terms of transaction per second), the storage size and the available
computation capability. On the contrary, the delay in completing writing and reading back operations
is usually not taken into account, since it is generally considered a non-critical issue, and Cloud-based
applications are generally “slow” [20]. However, such a hypothesis may be false in most industrial
applications, where real-time behavior is often mandatory.

The Considered Scenario

The advent of the Industry 4.0 and of the IIoT communications allows programmable logic
controllers (PLC), Supervisory Control And Data Acquisition (SCADA) systems, and sensors/actuators
to be directly and freely interconnected. Moreover, the Internet backbone extends connectivity to the
Cloud, possibly in real-time. As a matter of fact, the communication changes from the client-server
approach, e.g., used by human operator for accessing the Web, to the publisher-subscriber approach,
where the relationship between the data producer and the data consumer is loosely defined [10].
Consequently, innovative services operating on a geographical scale have been devised, offering
many additional benefits with respect to a local scale parameters optimization (e.g., [21]). In such a
context, advanced data mining techniques can be activated [22], leading to important savings during
production [23].

In this paper, a reference Cloud-based application has been considered, as shown in Figure 1.
In particular, without any generality loss, a data source provides information about a generic smart
object (e.g., a smart sensor deployed in a production process). Data flow to the Internet by means of
an IoT Gateway (which consists of a software interface or may be a hardware peripheral), where are
stored and processed in the Cloud. Indeed, user applications reside in the Cloud as well, analyzing
data from the field and providing feedback actions, sent to the final destination.
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Figure 1. The reference Cloud-based application architecture for definition of delay and latency metrics
including the Cloud Database. The black patch shows the data transfer to the Cloud, while the blue
path shows the data transfer from the Cloud.

The Cloud environment allows to collect information from very diverse data sources, storing
them in the Cloud database (with DBaaS paradigm) and feeding many different applications
(e.g., implementing machine learning techniques for predictive maintenance, as previously stated).
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Regarding the data dispatching, message-oriented middleware is preferred to client-server REST
API (REpresentational State Transfer Application Programming Interface) based on the HTTP protocol.
It is well known that messaging protocols are particularly well-suited for IIoT applications, since they
natively adopt the publisher/subscriber paradigm and are event-driven. Many of such messaging
protocols exist today, each one with its own pros and cons, but all sharing a common architecture.
In this work, without any loss of generality, the Message Queuing Telemetry Transport (MQTT) has
been adopted.

Regarding the Cloud database access, two different modalities can be considered for the sake of
completeness (see Figure 2). The first is traditional polling strategy, in which a DB (Database) request
is started by the user, asynchronously with respect to the DB. In such a case, time related performance
is also affected by the polling cycle and its uncertainty. Another approach relies on the use of so-called
database trigger, that is a purposely defined procedure stored in the DB which is synchronously
executed when a specific, predefined action occurs within the DB [24]. Generally, triggers are created
to run when data are modified, e.g., after insert, update, or delete operations. The use of triggers
thus allows that certain actions are accomplished regardless of the user activity. All the commercially
available solutions usually support them.
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action triggers a user function that reads back the recently written data; (b) The Database is polled
regularly to fetch recently added data.

The trigger approach to synchronously issue a DB request is particularly interesting for IIoT
applications, in which, as previously stated, real-time behavior is generally required.

3. How to Evaluate the Performance of the Architecture

The aim of this work is to estimate how the Cloud database services can impact the performance
of Industry 4.0 applications. In particular, the reference architecture is a Cloud platform, and the
performance are evaluated using time related indicators like latencies and delays.

The latency of an architecture based on data exchange is depending on the data path. In all
complex systems, like Cloud-based architectures, there are some parts that cannot be directly controlled
by the user. Many times, the use of a black-box approach is preferable. In this paper, instead of using
simulations for latency estimation (as in [25,26]), an experimental methodology has been developed.
The authors think that, once the metrics are defined, the experimental approach can be easily reproduced
on many architectures, as demonstrated in previous works and related literatures [25–28].

3.1. Introduction of Time Related Metrics

The relevant metrics must be defined considering the reference architecture of a classic IoT
application for industrial purpose. Figure 1 introduces the architecture highlighting the services in the
Cloud. Generalizing the Industry 4.0 process, data are generated in field when the system is producing,
they are collected by gateways, and then transported in the Cloud. Data storage and elaboration take
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place in the Cloud. Mixing of data coming from various sources and multiple parallel processing by
means of several applications is possible. Finally, decisions and parameters calculated online may be
sent back to the machines in the field, closing the loop.

The idea of a generally-applicable performance evaluation is tied to the use of time related metrics
that highlight the time needed by data to travel from the source to the intended destination. Please,
note that the focus is on the Cloud database for evaluating its contribution to latency, therefore the Cloud
application is a simple task where the data pass-through without being manipulated. Please note also
that a message-based protocol (e.g., MQTT protocol) is used in this work. As required by messaging
protocols, there is the “Broker” that handles and dispatches the messages (sent by the “publisher”),
forwarding them to the destinations (called “subscribers”).

According to the reference architecture shown in Figure 1, at time T0 the source of data provides a
new information. At time T1, the IoT gateway sends the collected data into the Cloud using a messaging
protocol. In the Cloud, the user application X receives, at time T2, the incoming messages from the
gateway. The application X stores the message data payload into the Cloud database, completing at
time T3 its task. The data now are uploaded and the black path of Figure 1 is complete. Whatever is
the database access implemented, the inverse path (blue color in Figure 1) starts exactly at T3, because
at that time the data are available inside the database and further delays are due only to read and
send operation (using method shown in Figure 2). The second user application Y is not related to
application X, they operate separately. Application Y completes data retrieving from the database at
time T4, and it propagates the message to the destination endpoint. Additionally, application Y uses a
messaging protocol, and send data though a Broker. The entire information loop ends at time T5.

The authors developed a methodology for collecting timestamps and combining them in previous
works [28–30]. In order to be combined, the timestamps must be taken from the local system clock
(i.e., inside the device, the machine, or the Cloud) after it is synchronized to UTC (Universal Time
Coordinated). In this paper the synchronization is done with NTP (Network Time Protocol) as
in [31–33].

The goal is to define metrics for objective comparison of different systems. The timestamps are
collected and the following primary metrics are computed:

• The delay, called DPC, between the time the IoT Gateway publishes the data and the time they are
received in the Cloud inside the user application, formally

DPC = T2 − T1 (1)

• The delay, called DCD, for carrying out a Cloud database write operation (i.e., for storing the
data), formally

DCD = T3 − T2 (2)

• The delay, called DDC, for retrieving the data from the Cloud database, formally

DDC = T4 − T3 (3)

The DDC can be related to the call of a trigger function that reacts to events inside the database
(fastest reaction, since it can send the recently written data to the user application), or it can be
related to a polling cycle that periodically read back data from the Cloud database.

• The delay, called DCS, for transmitting the data to the subscriber, formally

DCS = T5 − T4 (4)

Additionally, the following secondary metrics, used for highlighting particular behaviors, can be
calculated as a combination of the previous ones:
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• The latency, called LCDC, for storing a data in database and, then, retrieve it back, formally

LCDC = DCD + DDC = T4 − T2 (5)

The LCDC can be used for characterizing the global behavior of the Cloud database, considered as
a black box, when access parameters are changed (e.g., trigger functions or polling).

• The latency, called LPDS, between publisher and subscriber in the case the data are stored first in
the Cloud database and then sent to subscriber, formally

LPDS = DPC + LCDC + DCS = T5 − T1 (6)

The LPDS is the reference metric for characterizing the responsiveness of a Cloud service with
Cloud Database inside the feedback loop.

• The latency, called LPS, between publisher and subscriber in the case the data are sent immediately
to the subscribed before they are stored in the database, formally

LPS = LPDS − LCDC = T5 − T1 − T4 + T2 (7)

The LPS is the reference metric for characterizing the responsiveness of a Cloud service with Cloud
Database outside the feedback loop (only used for storing data or logging).

Last, it is worth to say that there is another metric related to scalability introduced, for opportunity
reasons, in Section 5.4.

4. The Considered Use Case

In this work, a typical predictive maintenance [34,35] application has been considered as the
reference use case; in particular, the solution provided by Metalwork for pneumatic valves controller,
formally known as EB80, has been adopted. The EB80 solution aims at inferring the health status of
electro-pneumatic actuators collecting diagnostic information of actuators, including reaction times,
operating temperatures and so on. By the way, each electro-pneumatic actuator forwards such
diagnostic data towards a local PLC. The latter leverages on an IoT-gateway to further propagate data
into the Cloud, where they are processed according to the Cloud computing paradigm, i.e., they are
stored in a Cloud database (according to the aforementioned DBaaS approach) and are analyzed by
algorithms remotely executed in the Cloud.

The capability of the proposed methodology to evaluate various solutions no matter the actual
implementation details, has been verified considering two different architectures of the predictive
maintenance system. In the first one, the IoT-gateway publishes data on a generic MQTT-Broker,
which oversees the propagation of acquired information towards an IBM Cloud platform, including
an IBM Cloudant Database [36]. Activities carried out in the IBM Cloud are managed via Node.js
configured by means of Node-RED dataflows. The very same generic MQTT-Broker is used by
“actuator” and/or end users (e.g., technicians) to access results furnished by the prediction system
processing. In the second scenario, the generic MQTT-Broker is substituted by an IBM-MQTT-Broker,
that also in this case is adopted for both receiving data from the field and furnishing results to end
users. Both the considered arrangements are depicted in Figure 3.
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4.1. The Actual Testbench Implementation

The previously described reference scenarios have been implemented by means of industrial
devices and software applications, as shown in the previously introduced Figure 3; in particular:

• Data from the field are retrieved by an EB80, the Metalwork electro-pneumatic system including,
other than the solenoid valve assembly, digital and analog I/O and power supply modules;

• The local controller is implemented by a S7 PLC from Siemens (the S71215C, supporting
Ethernet-based connectivity via both regular TCP/IP stack and PROFINET (an Industrial Real-Time
Ethernet protocol));

• The IoT gateway is the Hilscher netIOT device, running a Linux-derived operating system and
supporting configuration and management by means of Node-RED interface; the netIOT device
embeds an Intel J1900 processor, 4 GB of RAM and 64 GB solid state disk;

• Maintenance related results are collected by an embedded system designed around an IOT2040
from Siemens and running a Yocto Linux operating system distribution; the processor is an Intel
Quark X1020, complemented by a 1 GB of RAM;

• The generic MQTT-Broker is an instance of the free, open source iot.eclipse.org broker; as a
consequence, Quality of Service (QoS) is not guaranteed, due to the free subscription to the service;

• The IBM Cloud is furnished according to the free subscription reserved for testing proof-of-concept
implementations; for this reason, the QoS is not guaranteed as well.

Field devices also include a Siemens industrial workstation, which acts as the local supervisor but
has not been involved in the experimental tests discussed in the rest of the paper.

The EB80 system, the netIOT and the IOT2040 devices are all located at the engineering campus
of the University of Brescia; local connectivity is provided via the University network, which ensures
reliability and high bandwidth. Accordingly, delays in the University local network are ignored.

It must be also highlighted that actual placement of both the iot.eclipse.org and IBM MQTT-Broker
is unknown; indeed, due to the virtualization strategies adopted by the providers, location can change
time by time.

4.2. Implementation of Timestamp Probes and Measurements Data Collection

All the metrics introduced in the Section 3.1 are based on the availability of as accurate as possible
timestamps which allow to track in time the messages.

Authors already demonstrated in previous works that a viable solution is provided by Node-RED;
for instance, in [30] they demonstrated that timestamping uncertainty in the order of few milliseconds
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can be obtained in typical IoT-like applications. Node-RED is supported by a browser-based frontend
which is used to graphically connect and configure the processing nodes implementing the desired
application (in agreement with the dataflow programming paradigm). The actual software execution
is event-driven and leverages on a Node.js runtime, which is readily available on many different
platforms, thus shortening development time and confirming portability.

Once a new timestamp is collected, it is inserted into a purposely defined measurement data
structure, which moves along the predictive maintenance data and it is finally populated with the
five timestamps Ti, i = 1–5, required to evaluate the proposed metrics. Each new measurement data
structure, finalized once it reaches the end user (in this case the IOT2040), is added to the “Meas”
Cloudant database shown in Figure 3.

5. Experimental Results

The experiments are divided into three major campaigns: the first one is the longest one and it took
ten days; the second and the third campaigns were shorter but more focused on specific aspects related
to the database evaluation. Note that the scenarios with two Brokers are simultaneously evaluated,
meaning that the involved Cloud functional blocks are duplicated.

5.1. Long Term Reference Experiment

The first experiment is related to the reference situation: data are published every minute and each
run ends with the subscriber receiving the data. Exactly 15,000 runs are carried out, simultaneously
collecting the measurements from both possible paths shown in Figure 3. Due to the fact that the
connection is over Internet, during the days some very long delay situations happened. In order to
keep valid measurement data and discard outliers, the outlier detection threshold has been set to
exclude the 1% of the measures (i.e., 150 samples are labeled as outliers).

The results in Table 1 show the DPC, which is the delay between the publisher (i.e., IoT gateway)
and the user application in Cloud. The advantage of using native direct interface to IBM Cloud
offered by the Watson Broker is clear; it is faster (more than 100 ms less in average) than the external
MQTT Eclipse Broker. Furthermore, the Watson Broker is less variable than the Eclipse Broker and the
maximum delay is one third.

Table 1. Statistics of the DPC (Delay from Publisher to Cloud user application) collected in the
experiments. All values are in milliseconds.

Broker Type Min Average P95% P99% Max Std. Dev.

Eclipse 86 145 235 286 338 43
IBM Watson 4 32 55 88 100 15

The results in Table 2 regard the DCD metric. i.e., the delay for writing the data in the Cloud
database. The first observation is that the results are independent of the Broker type, since they are
only related to the Cloud database that is used. The second observation is that the distribution of the
measurements is bimodal (i.e., with measures divided in two groups) as shown in Figure 4. For this
specific database (IBM Cloudant) the delay (when a write rate of 1 document per minute is used) can
be centered on an average of about 160 ms or centered on an average of 30,160 ms. Figure 4 shows
that the probability of experiencing the longer delay is low (5%) but not negligible. This experimental
finding is of major importance, and it is the reason why other deeper experimental campaigns have
been carried out later on (see in the following).
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Table 2. Statistics of the DCD (Delay from Cloud user application to Database) collected in the
experiments. All values are in milliseconds.

Lower Group of Measures Higher Group of Measures

Broker Type Average Std. Dev. Average Std. Dev.

Eclipse 150 42 30,152 36
IBM Watson 168 45 30,175 62
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Figure 4. Distribution of the DCD metric during the experiments. There are two groups, the distribution
is bimodal.

The results about the DDC metric are in Table 3. In these experiments, the database is accessed
using the trigger functions. Hence, as expected, the delay for retrieving a recently written data using
the callback function is independent of the Broker type. The experiment results are really very similar
in the two situations. In average, only about 50 ms are needed to get back (i.e., into the user application)
the new data stored in the Cloud database.

Table 3. Statistics of the DDC (Delay from Database to Cloud user application) collected in the
experiments. All values are in milliseconds.

Broker Type Min Average P95% P99% Max Std. Dev.

Eclipse 2 50 73 94 119 13
IBM Watson 2 53 78 99 120 13

The results of the DCS are in the Table 4. As in the case of the DPC the delay for sending data to
subscriber is shorter with the Watson Broker with respect to the use of Eclipse Broker (130 ms more in
average). Once again, the IBM Watson has a lower variability than the Eclipse Broker.

Table 4. Statistics of the DCS (Delay from Cloud user application to Subscriber) collected in the
experiments. All values are in milliseconds.

Broker Type Min Average P95% P99% Max Std. Dev.

Eclipse 102 183 331 364 406 73
IBM Watson 11 27 32 44 56 4

Finally, the results about the LPS and LPDS metrics are reported as they globally resume the goal of
this first experiment. The latency between publisher and subscriber describe the entire reaction time of
the closed loop architecture. If the database is excluded from the path, the LPS is reported in Table 5.
It worth to recall that this metric gives the best possible performance related only to data transfer. As a
matter of fact, since cloud elaboration and database operations are excluded, only Internet delays and
internal delay of IBM Cloud are considered. The scenario all based on IBM Cloud has a great advantage
with respect to the mixed scenario where the Broker is external (Eclipse Broker). The average LPS is
69 ms in the first case and 330 ms (i.e., five time more) in the second one.
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Table 5. Statistics of the LPS (Latency between Publisher and Subscriber without passing in the database)
collected in the experiments. All values are in milliseconds.

Broker Type Min Average P95% P99% Max Std. Dev.

Eclipse 215 331 487 551 612 89
IBM Watson 30 59 87 124 137 15

On the other hand, the discussion of the LPDS metric is more complicated. The latency between
publisher and subscriber when the Database is included is clearly tied to the behavior of the database
(and IBM Cloudant seems to introduce a variable delay, i.e., a variable DCD). For this reason, the LPDS

is varying from 230 ms to 30,230 ms following the bimodal distribution of DCD.

5.2. Database Access Experiment

The behavior of the database has been studied with another experiments, aimed to determine if
the type of software access chosen in the user application could lead to different results. The experiment
consists in changing the Node-RED flow in order to use the native IBM Cloudant Node for Node-RED
or implementing the Cloudant API REST access using base HTTP Node for Node-RED. Only IBM
Watson Broker is used. The experiment took 5 h with a new data published every minute. Table 6
shows the percentage of values of the LCDC metrics that are greater than 5 s. Comparing these results
with Figure 4, it can be seen that the solution that minimizes the occurrence of the very long delay is
the one that uses API REST for both writing and reading data in the database.

Table 6. Percentage of database access with LCDC greater than 5 s.

Read Type

Write Type Node-RED Node API REST

Node-RED node 13.3% 12.3%
API REST 6.3% 5.33%

Referring to Figure 5, and examining more in details the distribution of LCDC (in the four
configurations of Table 6 and excluding the LCDC > 5 s), it is evident that there are no differences in
terms of distribution shape or center. Hence, the different software access method only impacts on the
occurrence rate of the long delays, leading to the general suggestion to use API REST for both write
and read accesses.
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Figure 5. Distribution of the LCDC metric (with LCDC < 5 s) in the four configurations of the software
access method; (a) write type is Node-RED node and (b) write type is REST API.
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5.3. Database Scalability Experiment

The third part of the experiments is related to the study of the scalability of IoT applications
based on Cloud databases. The goal is to determine if scaling can produce changes with respect to the
reference scenario evaluated in the first (long term) experiment. In details, in the reference experiment
only one device is using the Cloud application and only one database access per minute is considered.
When the scenario scales, it is expected to have more and more devices publishing their data to the
Cloud. In this last experiment, the number of devices that publish data has been increased to 10, 100
and 500. The devices are not synchronized, and they publish data randomly with the same rate, that is
one new data message every minute. In other words, now, the database must be accessed 10, 100,
and 500 times per minute. Since, the deployment of hundreds of devices is not feasible with the budget
of this project, the publishing of data is simulated with a software that also takes care of randomizing
transmission instants.

The details of this particular experiments are shown in Figure 6. The path between the user
application and the database is interrupted and the Device Simulator software is now generating the
messages as they come from many devices. Another important block is introduced in these experiments,
the Rate Limiter. It is always needed to respect the maximum allowed write rate, rw, of the selected
database. This block is not used in the long-term experiments, since there was no possibility that a
single device sending data every minute could violate database constraints. Conversely, as the number
of devices increases, the use of the rate limiter becomes mandatory, since usually databases rise errors
and drop data if the maximum access rate is exceeded. In other words, scalable systems must use
such blocks, so it is inserted in this experiment. The behavior of the Rate Limiter is simple: it works
dividing the time in a slot of one second; it postpones the sending of write request to the database if
the maximum number of write per seconds has been reached in the current second.
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Figure 6. Adding the Device Simulator software for testing the scalability of the system under test.
The Rate Limiter block is required not to violate the Database write rate limit.

Even using a Rate Limiter, there is an upper limit to the scalability of the system that is due to the
database write rate limit and to the average generation period, tg, of the devices

Nmax = rw·tg. (8)

Referring to the Figure 6, an additional metric can be defined:

• The delay, called DRL, that the Rate Limiter introduces in order to enforce the write rate limit of
the database (this delay varies for each message since it depends on previous message), formally

DRL = T3 − T3*. (9)



Electronics 2020, 9, 1435 12 of 17

For the application of the previous discussion to the current use case, the following parameters
have been used: rw = 10 write/s (standard rate for IBM Cloudant Lite), tg = 60 s, N = [10,100,500].
Note that, with the given values, the Nmax = 600 for the considered use case. The experiment simulates
an operation interval of 30 min during two moments (day and night) in order to highlight possible
problems of congestions of the cloud infrastructure.

The results regarding the DRL are shown in Table 7 and Figure 7. It is clear that the impact of the
Rate Limiter is negligible if the number of devices is far from the Nmax, but it becomes dominant when
the devices are 500. In that case, delays up to 3 s are possible. As expected, there are no noticeable
differences between experiments carried out during the day or during the night, since the Rate Limiter
requires a very limited computation.

Table 7. Statistics of the DRL (delay introduced by the rate limiter block) collected in the scalability
experiments. All values are in milliseconds.

Nodes Conditions Min Average P95% P99% Max Std. Dev.

10 Day 0 5 12 54 68 126
10 Night 0 4 7 60 113 61
100 Day 0 16 97 143 281 67
100 Night 1 17 100 169 301 57
500 Day 2 731 1970 2434 3063 72
500 Night 3 778 1989 2457 3273 76
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Figure 7. Distribution of the DRL metric varying the number of devices and the moment of the day:
(a) during the day; (b) during the night.

The results regarding the LCDC metric in the scalability experiment are shown in Table 8 and
Figure 8. The database itself introduces an overall latency that seems depending on the effective write
rate. In detail, the higher the number of devices, the higher the write rate and the lower the database
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latency. From the LCDC distribution it appears that the support of the distribution shrinks as the
number of devices grows. Although, this behavior seems non-intuitive, it may be in accordance with
the previous results about the sporadic long delay introduced by IBM Cloudant. Further discussion is
carried out in the next section. Last, the moment of the day when the experiment is done has a very
limited effect, it appears to have some influence only when the number of devices is low.

Table 8. Statistics of the LCDC (latency introduced by the database) collected in the scalability
experiments. All values are in milliseconds.

Nodes Conditions Min Average P95% P99% Max Std. Dev.

10 Day 172 308 487 716 1622 126
10 Night 164 252 360 456 682 61
100 Day 107 218 313 409 1432 67
100 Night 109 219 309 399 1238 57
500 Day 101 186 259 327 2033 72
500 Night 104 196 273 377 2657 76
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the night.

5.4. Final Discussion about Results and Effectiveness of the Proposed Methodology

The proposed experimental methodology for the characterization of scalable industrial applications
based on Cloud services and databases has been applied to an example architecture producing significant
results with important insights. It is worth to say that no optimization nor configuration has been done,
so the results are just a picture of the situation and they might be improved. However, the important
thing “per se” is that the proposed procedure is able to highlight such inner behavior of architecture
blocks, which are usually considered as black boxes.
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The primary result is a full characterization of all the components of the architecture under
test, with the possibility, for the end user, to determine its weak and strong points. Modifications or
improvements can be quantitatively evaluated using the proposed procedures.

The first secondary result is the highlighting of the database behavior.
Going more specifically, the IBM Cloudant database has a variable delay that depends on the write

rate. Contrasting with usual expectations, the IBM Cloudant reduces latency as the write rate increases.
With one write per minute, the delay can be very long, up to 30 s in 5% of the cases. When the number
of writing increases, the delay decreases, reaching a minimum for a number of writing close to the
maximum allowed write rate. There could be several explanations for this behavior; the most probable
is the presence inside the database interfaces of a timeout task that waits some time (for additional
incoming requests) before executing the write. When the access is sporadic the entire waiting period
must expire (i.e., this is the long delay), while if more requests are received the write operations are
performed (as a batch) when the number of requests reach a threshold.

Another secondary result is the underlining of the indirect effect of database write limitation on
the scalability. While it is clear that the write rate limit is the upper bound of the scaling range of the
considered application, the effect that such limit has on delays is clearly visible only with the proposed
methodology. In particular, every single device experiences a variable delay that is a function of the
total number of devices. Higher number of devices means higher delays.

The last secondary result is about the evaluation of the real-time capability of architecture under
tests. The extensive statistics obtainable with the proposed method can quantify the reaction time of the
entire loop (i.e., LPDS, from machine to machine passing in the cloud and in the database). For instance,
the use case architecture can be adopted for slowly changing industrial applications only, given that
the longest reaction time can be greater than 30 s.

6. Demo of the Use Case and Last Remarks

The experimental setup used for the experiments has been transformed in a demo show bench
that Metalwork uses in the trade fair. In particular, the demo system (shown in Figure 9), has been
operating during all the 2019 at Hannover Fair and SPS Fair in Europe. The visitors can interact with
the EB80 pneumatic valve systems (e.g., causing malfunctions like “air leakage”) and see the feedback
of the Cloud based predictive maintenances in the dashboard.Electronics 2020, 9, x FOR PEER REVIEW 15 of 17 
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During the show it was possible to carry out some additional experiments about the quantity of
data exchanged by the field devices and the Cloud. Based on a 10-day long experiment, the publisher
EB80 in “demo mode” (which, in order to easy visual interaction with visitors, means a faster publishing
rate of tg = 10 s and a full parameter upload,) and the subscriber (i.e., the dashboard panel) consume
about 16 Mbytes of aggregate data per day. Such a last result is given just to underline that also the
amount of published and subscribed data should be taken into account for scalability analysis.

7. Conclusions

The Industrial IoT or IIoT is one of the most important parts of the Industry 4.0. Thanks to it,
the so-called cyber physical space can be realized, and the overall efficiency and quality of industrial
processes can be improved by means of new services.

The large amount of data generated in these industrial applications is usually stored in Cloud
databases, leveraging on the DBaaS approach. Therefore, timeliness of Cloud databases is a main concern
in any IIoT solution. Unfortunately, neither real-time is easily ensured on large distributed system nor
accurate and effective methodologies have been established to evaluate time-related performance.

In this work, authors propose: a measurement methodology based on an abstraction view of IIoT
control applications: and a set of metrics able to objectively evaluate time performance of such systems.
As a result, the Cloud is treated as a gray box and details about the Cloud database can be estimated.
The suggested approach can be easily used for “stress tests” in order to verify the scalability of the
system under evaluation.

The on-the-field validation of the propose method has been carried out by means of an extensive
measurement campaign based on a real system dealing with predictive maintenance. More in detail,
this real-world use case includes: a Siemens S7 PLC, an electro-pneumatic actuators EB80 from
Metalworks; and the IBM Bluemix Cloud platform, offering the IBM Cloudant database. Data are
transferred using MQTT message-oriented protocol. Thanks to the proposed measurement strategy,
some interesting peculiarities of the real system under evaluation are highlighted; for instance, the way
the Cloud database stores and retrieves records has a large impact on the overall time performance;
and, since different optimization techniques are probably applied depending on the estimated activity,
this delay may hugely vary when the number of nodes changes.
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