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Abstract: The demand for robots has increased in the industrial field, where robots are utilized in
tasks that require them to move through complex paths. In the motion planning of a manipulator,
path planning is carried out to determine a series of the positions of robot end effectors without
collision. Therefore, it is necessary to carry out trajectory planning to determine position, velocity,
and acceleration over time and to control an actual industrial manipulator. Although several methods
have already been introduced for point-to-point trajectory planning, a trajectory plan which moves
through multiple knots is required to allow robots to adapt to more complicated tasks. In this study,
a trajectory planning based on the Catmull–Rom spline is proposed to allow a robot to move via
several points in a task space. A method is presented to assign intermediate velocities and time
to satisfy the velocity conditions of initial and final knots. To optimize the motion of the robot,
a time-scaling method is presented to minimize the margin between the physical maximum values
of velocity and acceleration in real robots and the planned trajectory, respectively. A simulation is
then performed to verify that the proposed method can plan the trajectory for moving multiple knots
without stopping, and also to check the effects of control parameters. The results obtained show that
the proposed methods are applicable to trajectory planning and require less computation compared
with the cubic spline method. Furthermore, the robot follows the planned trajectory, and its motion
does not exceed the maximum values of velocity and acceleration. An experiment is also executed to
prove that the proposed method can be applied to real robotic tasks to dispense glue onto the sole in
the shoe manufacturing process. The results from this experiment show that the robot can follow the
3-D curved contour in uniform speed using the proposed method.

Keywords: trajectory planning; spline; task space; multiple knots

1. Introduction

Owing to growing interest in industrial robots, various robots have been utilized in manufacturing
sites. Previously, in the teaching process, skilled operators manually moved a robot and recorded its
position in the robot controller. The recorded position was then replayed by performing a point-to-point
or continuous-path motion in a real robot [1–3]. Using this teaching process, the robot can execute pick
and place, loading and unloading, and assembly tasks in the manufacturing site. However, for the
same robot to adapt to more complex and flexible tasks such as painting, polishing, welding, etc.,
the complicated and optimal paths or trajectory planning methods are required [4–9]. One of the core
processes in a shoe manufacturing factory [10] is attaching a sole to the upper part of a shoe, after
applying adhesive to the upper contour of the sole. If a robot is adapted to this gluing task, its Tool
Center Point (TCP) should follow the 3-D contour path of the sole with a uniform dispensation of the
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glue. For the robot to move through this contour, a trajectory should be planned a priori. This trajectory
is planned by connecting intermediate points on the contour obtained from the CAD data of the sole or
from the point cloud scanned in the 3-D scanner while the target object is being moved by a conveyor,
as shown in Figure 1.
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If the robot moves several consecutive points without stopping at each point, a smooth spline
path is required to avoid discontinuity of velocity. The points through which the robot passes are called
knots or knot points. This spline method has been widely applied to create paths for many systems such
as mobile robots [11], vehicles [12], unmanned aerial vehicles (UAVs) [13], and manipulators [14,15].
Actual examples of robotic tasks include welding, dispensing glue, and painting, where a manipulator
must move continuously through multiple defined knots in a manufacturing site.

In the motion planning of the robot, path planning is used to find a series of the positions
of robot end effectors without collision. However, in trajectory planning, it is necessary to move
the real manipulator to determine the position, velocity, and acceleration of the robot over time.
Sampling-based motion planning [16] is widely used in path planning to find a collision-free path.
However, it cannot be used to derive closed-form solutions to plan this trajectory. To apply to industrial
robots, closed-form solutions are required to assign a position, velocity, and acceleration to them
at each sampling time. Consequently, previous studies used other methods such as B-spline, cubic
spline, trigonometric spline, and Bezier spline to plan a trajectory for multi-points [17–26]. The spline
trajectory planning method can be divided into trajectory planning in the joint space and trajectory
planning in the task space (Cartesian coordinate space). In the joint space, the cubic spline method is
primarily used to generate the trajectory of each joint such that the change in angle of each joint is
connected without stopping during motion. The joint vector at each knot should be calculated using
inverse kinematics before applying the trajectory planning method. In the concept of the trajectory
planning in the task space, the time series of position in the task space are derived at every sampling
time. Then the joint vectors at each sampling time are calculated with inverse kinematics and the robot
controller moves joint angles. Basically, the operators intuitively assign and record each knot of the
manipulator in the real manufacturing site. Therefore, it is necessary to propose a new method to plan
spline trajectory in the task space.

In the task space, the Catmull–Rom spline can be used to plan the spline path [27] because it
is simple and requires little computation. The Catmull–Rom spline is primarily used in computer
graphics applications to draw paths that connect multiple points smoothly [28], in order to satisfy the
continuity of velocity at each point [29]. At these points, Catmull–Rom can be applied to plan the
trajectory of the robot manipulator. However, it is necessary to first derive the velocity and acceleration
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functions for the trajectory planning of the robot. A method is required to assign initial and final
velocities while a systematic consideration is necessary to plan the trajectory for complicated industrial
applications such as following a closed-loop contour at uniform speed. To apply this to the robot, it is
necessary to maximize productivity by minimizing its cycle time [30]. Previous studies considered
this problem and proposed a method for an optimal trajectory using jerk bounding [31,32] or by
considering velocity and acceleration [33]. However, determining the jerk limit of a robot is difficult
and counterintuitive [34]. Therefore, it is necessary to optimize the velocity and acceleration of the
robot considering limit conditions such as maximum speed and acceleration.

In this study, a simple novel method is proposed to generate a spline trajectory in a task space
to allow the robot to move through multiple knots. To help the basic Catmull–Rom spline adapt to
the robot trajectory planning problem, the authors propose an iterative segmentation method for
multiple knots and present a method that determines control points outside the trajectory, such that
the initial and final velocities of the motion are zero. To minimize the operating time of the robot and
stay within the physical limit value, an optimization method that considers the physical maximum
velocity and acceleration of the robot is presented. The systematic planning process is presented
for applications in complicated industrial tasks, to enable the robot to follow the 3-D contour at
uniform speed. The proposed methods are evaluated via simulation in various cases and to compare
computational load with the cubic spline method. They are also implemented with an experiment
that involves dispensing adhesive uniformly to the upper contour of the sole of a shoe at a shoe
manufacturing factory. The results show that the proposed trajectory planning in the task space can be
applied to the robotic task in actual manufacturing processes.

Section 2 introduces related studies and a basic Catmull–Rom spline in detail. In Section 3,
the method for creating the task space trajectory based on the Catmull–Rom spline is explained with the
simulation. An experiment to test the proposed method on real industrial robotic tasks are described
in Section 4. Finally, Section 5 contains the discussion and conclusion of this study.

2. Trajectory Planning via Spline Method

2.1. Related Works

Several studies have focused on trajectory planning using smooth functions to connect multiple
knots [17–26]. There are two types of trajectory planning, namely, interpolation and approximation.
When a series of knots is given, interpolation is the method used to pass a robot completely through
the actual knots. The approximation method involves determining the smooth function from the knots
but does not aid the passage through the actual knots [17,18].

A commonly used approximation method in the robotics application is the B-spline [19–21].
B-splines blend the positions of control points without passing through any of them, as shown in
Figure 2a. It is used in the computer graphics area, which has a curve that consists of the linear
combination of B-spline basic functions, with control points determining the shape of the curve.
B-spline is widely used because it can be easily and quickly modified when a local modification is
necessary. Koch and Wang [19] applied B-spline to planning the joint trajectory of manipulators.
Biagiotti and Melchiorri proposed a simple method to formulate B-spline-based trajectories with
simplicity and low computational complexity [20]. Haron et al. proposed a new parameterization
method that can handle collinear and two adjacent data points, including long distances between
two consecutive data points [21]. Although previous research on B-spline has been published, it is
basically just an approximation method and cannot be applied to a task that requires the curve to pass
through waypoints.
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The Hermite formulation is one of the popularly recognized functions used for interpolations.
To obtain a Hermite spline as shown in Figure 2b, an operator must collinearly arrange consecutive
tangents to satisfy velocity continuity [17]. Applying this method to robotic tasks is tedious because it
requires all tangential vectors for all knots to be assigned. Previous research reported that the Bezier
spline is well suited for robotic motion planning [16,22]. The smooth curve is constructed by adding
two control points in the cubic Bezier curve case, as shown in Figure 2c. The 3rd order Bezier curve has
continuity in velocity and acceleration by adding two control points. If more than two control points
are placed inside the path, the order of the equation increases and the curve becomes smoother than it
was before [22]. However, it is difficult to add and determine the positions of control points when
multiple knots are given because control points can be arbitrarily placed. In addition, the path cannot
pass the control points exactly.

The cubic spline in references [23,24] provides a simple method to generate a smooth robot
trajectory. Here, the piecewise-cubic trajectory, which passes through the waypoints and satisfies
velocity continuity can be determined. The cubic spline has been used for joint [3] and task space
trajectory splines [23]. Kolter and Ng proposed a method for task space trajectory planning using
cubic spline optimization. However, one setback of the cubic spline is its computational limitation
because it needs additional processes to compute intermediate velocities in order to find the function
of the curve [2,23]. A cubic spline interpolation with three control points was then proposed in
reference [24] to overcome the Catmull–Rom spline using four points. They applied the proposed
method to limited cases and compared it with the method using the Catmull–Rom. They mentioned
that it could exhibit undesirable behaviors such as large overshoot compared with the case using
the Catmull–Rom. Other methods such as trigonometric function and polar piecewise were also
proposed [25,26]. However, they are not widely used because they can only be applied to specific types
of robots or have limitations to their smoothness.

This study aimed to plan the trajectory for a robot to follow the 3-D contour of a sole at a shoe
manufacturing factory. When intermediate points on the edge of the sole are given, it is necessary to
adopt the interpolation method to connect all given waypoints on the Cartesian space. If the 3rd order
Bezier spline is used for this case, two control points should be placed between every two neighboring
knots. It is tedious to plan the trajectory and the trajectory can be changed depending on the positions
of the control points. There was no interest in approximation in this study. Consequently, the planned
trajectory meets certain requirements [24]. The first requirement was that it should be at least C1

continuous. The continuity of the position and velocity at each point had to be satisfied. The second
requirement was that it had to be an interpolating spline to pass through all given waypoints.
The most used interpolating splines that satisfy these two requirements are Catmull–Rom splines.
The Catmull–Rom satisfies the continuity of velocity at each point [27–29] and can be used intuitively
in the task space. The Catmull–Rom spline makes use of positions on the knots alone without any
other information such as tangent for velocity in Hermite.

To apply the Catmull–Rom spline to the trajectory planning of a robot, it is crucial to select
two control points before and after the path connecting the two given points. In this study, iterative
segmentation was proposed to interpolate consecutive points by assigning control points from
neighboring knots without any arbitrary determination of control points. Additionally, the method
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used to select the first and final control points was addressed to satisfy the condition that requires both
the initial and final velocities of the trajectory to be zero.

2.2. Catmull–Rom Spline

The Catmull–Rom spline method is used to interpolate the path between two given points (P1

and P2). In the Catmull–Rom spline method, two virtual control points (P0 and P3) are assigned before
and after the path connecting the two given points (P1 and P2), as shown in Figure 3. Because the
curvature of the path changes with the two control points outside the path, the method used to set
these control points must be considered.Electronics 2018, 7, x FOR PEER REVIEW  5 of 20 
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When the position of the robot is at time tk, it is referred to as P(tk), and the constraint conditions
for this position and its velocity are expressed in Equations (1) and (2), respectively. When α is 0.5
in the Catmull–Rom spline case in reference [26], the tangents of P1 and P2 are determined from the
difference between the neighboring two points as defined in Equation (2).

P(t0) = P0, P(t1) = P1, P(t2) = P2, P(t3) = P3 (1)

.
P(t1) = α(P2 − P0),

.
P(t2) = α(P3 − P1) (2)

To create an actual trajectory, it is necessary to determine the time at each midpoint (knot).
In reference [28], the parameterization of the Catmull–Rom curve is defined using the parametric
value si in Equation (3). In this study, time ti was replaced with si, and the time at each point could
be determined by β in Equation (4). As a parameter, β was used for determining the time at each
point using a value between zero and one. In the case of a zero value, all sections between two
neighboring points are referred to as uniform splines of the same time. When β is set to one, they are
referred to as chordal splines proportional to the relative distance. However, in a uniform spline
case, self-intervention can be generated. This is not appropriate because a large acceleration may be
generated by a small radius of curvature owing to the rapid change of path when the robot follows this
trajectory. In a chordal spline case, a moving distance becomes long in a relatively gentle path, which
is disadvantageous. Another case is the centripetal spline case, which has a β value of 0.5.

si+1 =
[
‖Pti+1 − Pti‖

]β
+ si (3)

ti+1 =
[
‖Pti+1 − Pti‖

]β
+ ti (4)

When the time at each point is determined using Equation (4), the position of the trajectory with
respect to time is expressed in Equation (5). For simplicity, the equations are represented by parameters
of A j and Bi. A j is a function of time t determined by position, P j−1 and P j, and time, t j−1 and t j, of the
neighboring two knots. Bi is a function of time t determined by Ai−1 and Ai+1, and ti−1 and ti+1.

P(t) =
t2 − t
t2 − t1

B1 +
t− t1

t2 − t0
B2, (t1 ≤ t ≤ t2),
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where,

Bi =
ti+1 − t

ti+1 − ti−1
Ai +

t− ti−1

ti+1 − ti−1
Ai+1 and A j =

t j − t
t j − t j−1

P j−1 +
t− t j−1

t j − t j−1
P j (5)

To derive this trajectory, velocity and acceleration should be solved. The velocity function in
Equation (6) is derived by differentiating the position function defined in Equation (5) with respect to
time, and the acceleration function in Equation (7) can be obtained by differentiating Equation (6) with
respect to time.

.
P(t) =

1
t2 − t1

(B2 − B1) +
t2 − t
t2 − t1

.
B1 +

t− t1

t2 − t1

.
B2, (t1 ≤ t ≤ t2)

where,

.
Bi =

1
ti+1 − ti−1

(Ai+1 −Ai) +
ti+1 − t

ti+1 − ti−1

.
Ai +

t− ti−1

ti+1 − ti−1

.
Ai+1 and

.
A j =

1
t j − t j−1

(P j − P j−1) (6)

..
P(t) =

2
t2 − t1

(
.

B2 −
.

B1) +
t2 − t
t2 − t1

..
B1 +

t− t1

t2 − t1

..
B2, (t1 ≤ t ≤ t2),

where,
..
Bi =

2
ti+1 − ti−1

(
.

Ai+1 −
.

Ai) (7)

3. Trajectory Planning for Multiple Knots

3.1. Iterative Segmentation for Multiple Knots

The Catmull–Rom spline is basically utilized to find paths in order to connect two points.
Therefore, the Catmull–Rom spline method should be sequentially applied by connecting two
consecutive neighboring points to generate a trajectory via multiple knots. Figure 4 shows an
example of n knots starting at P1 up to Pn.
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To connect P1 and P2 in the first segment, two control points are required. One control point
can be designated as the next knot P3. For the other control point, a virtual control point P0 can be
selected using the constraint that maintains the velocity at P1 at zero because P1 is the starting position
in the overall path. From Equation (2), the velocity at P1 is zero when P0 is equal to P2, as expressed in
Equation (8).

.
P(0) = 0.5(P2 − P0) = 0 (8)

.
P(tn) = 0.5(Pn+1 − Pn−1) = 0 (9)

To derive the path in the subsequent segment, two control points are placed using the points
that immediately precede and follow them. When the last segment connects Pn−1 to Pn, similar to the
first segment, the virtual control point Pn+1 can be replaced with Pn−1, such that the velocity at Pn

becomes zero in Equation (9). Therefore, the first control point P0 and last control point Pn+1 of the
entire trajectory can be determined. Equations (5)–(7) can be applied repeatedly to obtain the position,
velocity, and acceleration of the entire trajectory.

The process to plan trajectory from P1 to Pn is represented as a flowchart in Figure 5. Two virtual
control points, P0 and Pn+1, are assigned using (8) and (9) when the n multiple knots are given.
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Every four knots are selected as a segment from i = 1 to i = n − 1, and trajectory from Pi to Pi+1

are iteratively calculated using Equations (4)–(7). Then position, velocity, and acceleration for the
entire path can be derived as a result and final motion time can be found as t f . Simulation to evaluate
the proposed method is performed with MATLAB in the computer operated by Windows operating
system. The source code for the algorithm is implemented as a script language in MATLAB without
using a toolbox.Electronics 2018, 7, x FOR PEER REVIEW  7 of 20 
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The simulations used to move multiple knots in the task space are executed using data in Table 1.
The first simulation is implemented to show trajectory planning when all segments have an equal
distance with knots in the task #1. In the second simulation, each segment has a different distance as
knots in the task #2.

Table 1. Position (X, Y, Z) in mm of knots.

knot Task #1 Task #2

1 (0, 0, 0) (0, 0, 0)
2 (100, 0, 0) (100, 0, 0)
3 (100, 100, 0) (100, 200, 0)
4 (200, 100, 0) (400, 200, 0)
5 (200, 0, 0) (400, 0, 0)

The target path in the task #1 consists of five points, and the distance between two points in each
segment is 100 mm. The result of the planned path using the proposed method is shown in Figure 6.
The given knots are represented as a circle at each point, and each line corresponds to the case when β
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in Equation (3) is changed from 0 to 1. The velocity and acceleration of the TCP of the robot are shown
in Figure 7. The results show that the three trajectories are exactly the same even when a different
β is applied. The velocity at the initial or final point is zero, and the trajectory exhibits continuity in
velocity at each point. This shows that the trajectory remains consistent regardless of the value of β,
provided all segments are uniform in length.Electronics 2018, 7, x FOR PEER REVIEW  8 of 20 
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In the second simulation with the task #2, each segment has its own distance, from 100 mm to
300 mm. The result of the planned path is shown in Figure 8 and its velocity and acceleration profiles
are represented in Figures 9 and 10, respectively. As shown in these figures, the path and trajectory
change according to the value of β. As shown in the third segment with the longest distance between
points 3 and 4, a long motion time is required and this motion follows the long path in the chordal case
(β = 1). This occurs because the time in each segment is proportional to the relative distance between
two points. However, the deviation in the velocity at each segment is relatively small when β is one.
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Therefore, if the robot is required to move at a relatively uniform speed to execute the spline motion,
β can be chosen as one.Electronics 2018, 7, x FOR PEER REVIEW  9 of 20 
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Figure 10. Acceleration according to β in the task #2.

3.2. Comparison with Cubic Spline

The proposed method based on the Catmull–Rom spline is compared with the previous spline
method used in the interpolation. The representative method is the planning using a cubic spline
curve. It has a piecewise-cubic trajectory, which passes through the multiple waypoints and satisfies
velocity continuity at each waypoint. The simulation is implemented using knots in the task #1 and
the task #2 to show computational efficiency and shape of the curve.

In Figures 11 and 12, the difference between the two results can be shown. The paths are compared
in Figure 11 when knots in the task #1 are used for planning. A large overshoot exists between the
third and fourth waypoints when the cubic spline is applied. Figure 12 shows the paths from knots in
the task #2 and a large overshoot can be shown in the same segment. It means that the curve using
cubic spline can exert large overshoot as mentioned in reference [24].
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The computation time is measured while these simulations are executed to compare computational
efficiency for two methods. This simulation is performed with MATLAB in the computer operated by
Windows 10. It has an Intel Core i7 4 GHz CPU with 32 GB RAM. The 20 simulations are performed,
and the average time and standard deviation are listed in Table 2. The results show that it takes less
time in about 5.7~5.8 ms when the Catmull–Rom is used compared with cubic spline. Therefore, it can
be concluded that the proposed method requires less computation.

Table 2. Computation time for the trajectory planning in ms.

Time
Task #1 Task #2

Catmull–Rom Cubic Catmull–Rom Cubic

Average 20.7 26.6 21.8 27.1
Standard deviation 2.8 4.1 2.7 3.9

3.3. Optimization of Velocity and Acceleration

Because the trajectory generated by the iterative segmentation procedure is determined by the
time passed by each point in Equation (4), the physical maximum velocity and acceleration of the actual
robot are not considered in the magnitudes of the velocity and acceleration. To minimize the operating
time of the robot and maintain its physical limit value, it is important that velocity and acceleration
would cause the trajectory to move lower and closer to the maximum velocity and acceleration to
which the robot can move.

The points where the velocity and acceleration of the robot are maximum in the trajectory are
those points where the derivatives of its position and velocity are zero. The time corresponding to the
trajectory of the actual robot movement in one segment is between t1 and t2. The maximum velocity
and acceleration in each segment can be estimated from Equations (6) and (7). When these values are
determined in the entire segments, the maximum velocity vmax and maximum acceleration amax can be
predicted in the entire trajectory.

To optimize the velocity and acceleration of motion and enable the robot to follow the planned
trajectory, the maximum velocity vr,max and the maximum acceleration ar,max in the task space of the real
robot should be determined. If the initial and final velocities in the trajectory are zero, the maximum
velocity and maximum acceleration of the robot can be changed according to the ratio of the motion
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time. The parameters kvel and kacc representing this ratio can be calculated using Equation (10) because
the velocity is linear with time and acceleration is proportional to the square of time. By determining
the maximum ratio value k in Equation (11) and multiplying it by the motion time Tmotion, the optimized
motion time Toptimal can be obtained, as expressed by Equation (12). Hence, by redistributing the motion
time according to this ratio, the actual velocity and acceleration of the robot can be approximated to
the physical maximum value, and the motion of the robot can be optimized.

kvel =
vmax

vr,max
, kacc =

amax

ar,max
(10)

k = max[kvel, kacc] (11)

Toptimal = k·Tmotion (12)

The effect of optimizing the time of motion is evaluated in the simulation with task #2. To evaluate
the optimization of the motion time, three cases are compared with the knots in task #2 and β is set
to 0, as shown in Table 3. The resulting velocity and acceleration are shown in Figures 13 and 14,
respectively. In the first case, the maximum velocity is less than 300 mm/s. However, the maximum
acceleration is 2000 mm/s2 when time is zero and is equal to ar,max. The ar,max is then changed to
3000 mm/s2 in the second case. Subsequently, the maximum acceleration in the planned trajectory
becomes 3000 mm/s2 and motion time is decreased by approximately 0.7 s. This means that motion
is optimized by satisfying the acceleration limit. In the third case, vr,max is set at 300 mm/s to verify
the effect of the velocity limit. The third plot in Figure 13 shows that the maximum velocity in the
trajectory is equal to vr,max, whereas maximum acceleration is less than ar,max, as shown in the third
plot in Figure 14. This shows that motion is optimized by limiting the maximum velocity of the robot.

Table 3. Maximum velocity and acceleration of robot.

Case vr,max ar,max

1 1000 2000
2 1000 3000
3 300 3000
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4. Experiments in 3-D Industrial Task

4.1. Target Task

One of the tasks performed at a shoe manufacturing site is attaching a sole to the upper part of a
shoe, after dispensing adhesive on the upper contour of the sole. As shown in Figure 15, the robot
targets the path generation problem and applies the adhesive evenly to the outer edge of the shoe sole.
The generation of spline trajectory is executed based on the point data on the outer path of the sole,
which were measured using a 3-D scanner. The target sole is approximately 290, 105, and 25 mm in
length, width, and height, respectively.
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4.2. Experiment to Validate the Effect on the Number of Points

The measured data from the 3-D scanner are the 3-D positions of 169 points, and they are
represented as circles in Figure 16. The solid line in Figure 15 is the resulting path that is mapped out
based on the proposed spline method. The velocity profile in the trajectory is shown in Figure 17.
The initial and final values of the velocity are both zero, consequently, velocity is nearly uniform.
To validate the impact on the number of points, the experiment was conducted with a reduced number
of points.
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Figure 17. TCP speed in the trajectory using 169 points.

The second test involved planning the trajectory based on reduced point data that were sampled
from 262 scanned points. In this case, 43 points were selected and the planned path is illustrated
in Figure 18. The overall path appears similar to that in Figure 16. The velocity profile is shown in
Figure 19, showing a slight variation when compared with the profile in Figure 16. It is inferred that
velocity is relatively uniform because the segment between two neighboring points is sufficiently small
in the first case.
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Three paths are shown in Figure 20 to comprehensively compare the planned paths from different
numbers of points. The solid and dashed lines are almost the same in the entire path. However, the
dotted lines formed when 43 points are used for planning are not matched with the other path in some
parts. The maximum positional difference between the case with 169 points and that with 43 points is
approximately 2 mm. However, the maximum positional difference between the case with 169 points
and that with 85 points is less than 1 mm.
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Figure 20. Paths planned using 169, 85, and 43 points.

An experiment was implemented to evaluate the proposed spline method and verify that it can
be applied to the robotic task in manufacturing sites. The planned trajectory was transferred to the
industrial robot with a dispensing tool and the experiment was conducted to check the variation of
dispensing qualities according to the number of points. The experimental setup consisted of the glue
dispensing tool and the 6-DOF(Degree of Freedom) manipulator, Indy-7, supplied from Neuromeka in
Korea as shown in Figure 21. Figure 21 is a snapshot of the scene, where the TCP of the robot performs
dispensing. The glue was sprayed through the nozzle at the tip of the dispensing tool while the robot
was moving. The color of the glue was transparent. Therefore, the result can be examined through the
blue light as shown in Figure 22. Three tests were conducted and the results are shown in Figure 22.
It can be shown that glue is well sprayed along the contour of the sole and there is little deviation when
three cases are compared. Therefore, the experimental results show that there is not much different
depending on the number of points. By considering this result, it is advantageous to take advantage of
a small number of points for rapid production.
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4.3. Experiment to Validate the Uniform Distribution

When dispensing adhesives on shoes, the uniform distribution of adhesives is very important,
and to satisfy this condition, the operation involving a robot should follow a trajectory that can
guarantee the uniform speed of the robot end-effector. The time at each knot is assigned by the
chordal case (β = 1) in Equation (4). Then, the moving time between two neighboring points is made
proportional to the distance between these two points. To evaluate and check the effect of the time
allocation between knots, the experiments are conducted by changing the value of β in Equation (4).
The target points are the 3-D positions of 43 points, and they are represented as circles in Figure 18.
The three cases depending on the value of βwere applied and the results of TCP speed, acceleration,
and jerks are shown in Figure 23. The solid line in Figure 23 is the resulting trajectory when β was
set to 1. It is shown that the initial and final values of velocity are both zero, and the TCP speed had
uniform value in the entire path.
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Figure 23. TCP speed, acceleration, and jerk in trajectory planned using 43 points.

The resultant products are shown in Figure 24. It is verified that the adhesive is evenly dispensed
on the desired contour when β is 1, as shown in Figure 24c. In the case of Figure 24a when β is 0, narrow
and non-uniform sections are visible and maximum 4 mm deviation exists in width. Similar results are
shown when β is 0.5 in Figure 24b. Finally, the experimental results show that the proposed method
with timing by the chordal case can generate a spline trajectory for uniform dispensing. The movie for
this experiment can be accessed on the website in reference [35].
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5. Conclusions

In this study, the authors proposed a method for generating the trajectory of a robot using the
spline method, which allows the robot to move several points without stopping in a task space.
The basic interpolation was based on the Catmull–Rom spline, which satisfied the continuity of velocity
at each knot. To adapt a basic Catmull–Rom spline to the robot trajectory planning problem, a method
was proposed to select control points outside the trajectory such that the initial and final velocities
of the robot were zero. The simulation results demonstrated that the trajectory did not change with
respect to time at each knot when the relative distance between two neighboring points was constant
for the entire path. However, when the relative distance was varied and the chordal Catmull–Rom
spline applied, the robot moved at a relatively uniform speed to execute a spline motion, in which the
time in each segment was determined to be proportional to the relative distance between two points.

By proposing the motion time redistribution method based on the maximum velocity and
acceleration of the robot, the motion time of the actual robot could be optimized. This was verified via
simulations using various maximum velocities and accelerations.

The proposed method is applicable to various robotic tasks requiring a robot to move continuously
through multiple assigned points. To evaluate this, an experiment is executed to follow a 3-D curved
contour. The target task is for the robot manipulator to dispense adhesive uniformly on the upper
contour of the sole at a shoe manufacturing factory. The experimental results show that the proposed
trajectory planning in the task space can be applied to the robotic task in the real manufacturing process.

Although the simulation and experimental results demonstrated that the proposed method
was applicable to the robotic trajectory problem, this method could not guarantee the continuity of
acceleration, and the curvature constraint in the cases where the knots consist of sharp curves should
be considered. In the future, this method will be more applied to various complicated robotic tasks,
and a method will also be studied to guarantee the continuity of acceleration and the constraints of
physical curvature.
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