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Abstract: Power estimation is one of the key aspects that can help designers create digital circuits more
effectively. If a designer is able to estimate circuit parameters during the early stages of development,
correct decisions can be made that can significantly shorten the design time. The early design stages
are represented by modeling at the system level of abstraction. However, existing system-level
power/energy estimation methods are either too complicated, or they do not consider power
management when estimating power consumption, meaning they are inaccurate. Therefore, in this
paper we propose a method for a more accurate system-level estimation of the dynamic energy
consumption by considering the impact of power management. The SystemC description of a
power-managed system and the simulation results (in the form of the value change dump (VCD))
are inputs to the estimation method. The proposed method is based on an activity profile using the
modified Hamming distance computation. The method is especially useful for the exploration of
alternative power-management strategies, and it helps the designer to select the most efficient strategy.

Keywords: digital system; energy estimation; low power; power management; system level

1. Introduction

When designing a new Internet of Things (IoT) system, we need to consider power consumption
from the beginning of the design process, especially when designing IoT end nodes with a limited
amount of available energy, such as in battery-powered or energy harvesting applications (e.g., [1,2]).
Accordingly, we need to estimate the system power consumption as soon as possible in the design
process, because it can help to develop more energy-efficient system and waste fewer resources (such as
time and money).

Power consumption comprises two factors: static and dynamic. The dynamic factor represents
switching [3] and short-circuit power [4,5]. Switching power is consumed when a transistor
changes from one state to another (the on and off states). Short-circuit power is consumed
for a short period during state switching, while the power is connected to ground. The static
power is consumed constantly, even when no state is changing. For the calculation of
dynamic-power consumption, the following equations are used [3–5]. Switching power is expressed by

PT = Cpd×V2
cc× f I×NSW , (1)

where PT is the switching power consumption, Cpd is the dynamic power-dissipation capacitance,
Vcc is the supply voltage, f I is the input signal frequency, and NSW is the number of bits switching.
Short-circuit power PSC is expressed by
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PSC =
∫ t3

t1

Vdd×ISCdt =
1
2
×(t3 − t1)×ISC f max×Vdd, (2)

where Vdd is the supply voltage, ISC is the short-circuit current per time, ISC f max is the maximal
short-circuit current, t1 is the time when the short circuit started, and t3 is the time when the short
circuit ended.

Energy consumption is the power consumed by a system over time, and designers reduce
this by using power management. This enables dynamic switching between the power states of
system components based on the current performance requirements. The first estimation of power
consumption can be obtained at the system level, after the system is specified. Because existing
system-level energy-estimation methods do not usually consider power management, the obtained
results are inaccurate. However, the lower-level energy estimation (which is more accurate) is not
sufficient for complex systems, because modifications of the design at a lower abstraction level require
more time and cost.

In this paper, we propose a new system-level dynamic energy estimation method, which also
considers the power-management effect. The proposed method is implemented in a tool called power
estimation at system level (PESL), which calculates the relative energy consumption of the components
under a specific power management regime. This enables a comparison between multiple alternative
designs for dynamic energy consumption, and the best design for implementation can then be selected.
Although static power consumption is as important as dynamic power in modern electronics, we only
focus on the dynamic factor in this paper. We deal with the static factor in another work [6].

The key contribution of the paper can be summarized as follows:

• a new post-processing based dynamic power estimation method considering the power-
management effect,

• more accurate dynamic power estimation than the original Hamming-distance computation method,
• fast multiple power-management alternatives exploration, often without need for resimulation of

the model.

Section 2 describes the existing methods in this research area. Section 3 describes the proposed
energy-estimation method. The experimental results are then presented, which support the usefulness
of the proposed method, followed by the conclusions.

2. Related Work

There are several system-level dynamic power-estimation methods, all of which focus on
monitoring system activity and computing the power based on some power models. This is because
according to (1), dynamic power is directly correlated to signal frequency and switching activity.
The activity-monitoring methods differ mostly by the granularity at which the activity is tracked.

One of the popular older methods is the instruction-based approach (e.g., [7–11]), which usually
divides the estimation into a few steps. The component provider picks a set of suitable instructions,
conducts an energy analysis at the logic level to create energy lookup tables for each instruction,
and then creates a system-level score model using the lookup tables for power estimation. Finally,
using the system-level simulation of the component with the score model, the power consumption
is estimated. While this is a quite accurate approach, it requires the previous implementation of the
component and creation of the score model. Further, because it is highly dependent on design reuse,
it is not suitable for a top-down design approach in which the system-level model is designed first and
only then is it implemented at lower abstraction levels.

An analogous approach can be also used when utilizing more-modern transaction-level
modeling (TLM), where the transactions are used instead of the instructions for power estimation
(e.g., [12–15]). Even more abstract tasks or applications can be used to trace the activity and map
to the power model for energy estimation; however, these are mainly used for energy profiling of
some application running on an embedded processor. The transaction-, task-, or application-based
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power estimations are also dependent on design reuse to characterize the monitoring elements
(transactions/instructions/tasks/applications) appropriately in terms of power requirements.
Therefore, these approaches are unsuitable for the top-down design process.

Another possibility is to use signal-based activity monitoring at the system level, which uses
the Hamming distance calculation method to identify the amount of signal activity (e.g., [16–19]).
Using this approach, a designer can efficiently calculate the number of bitwise switching activities of a
component, based only on the simulation. For example, if the signal value of 001 is changed to 111,
this represents a Hamming distance of 2 (i.e., two bits have changed). This approach can be used at
various abstraction levels: at lower levels it is more accurate, whereas it is faster at higher levels. It can
be also used at the system level with sufficient accuracy [19].

The tracked system activity, using some of the above-described approaches, can sometimes be
used to estimate the power/energy consumption of the system. For example, the methods in [20–26]
require the creation of power macro-models, which include the power characterization of components.
The power data are obtained from lower levels (i.e., the design-reuse dependence), otherwise default
values are used. Using the activity profile of components from simulations, the power macro-models
are used to estimate the power consumption of the system. However, these methods do not consider
power management; thus, the obtained results can be highly inaccurate and misleading. On the other
hand, the methods [27–29] support some kind of power management. However, this is not based on
standard power-management concepts, resulting in difficult verification at lower levels. Thus, it is
rarely used in automated design flows.

The latest update of the unified power format (UPF) standard [30] also introduced power modeling
at the system level. This supports its previous power-intent specification and verification capabilities
(although at insufficient abstraction). It is usable to explore various power-management alternatives for
a system, but it does not standardize a method of obtaining power data. Thus, previous implementation
and analysis of components is required, rendering it unsuitable for a simple top-down design approach.

There are multiple methods based on UPF standard concepts (e.g., power domains
or power states), such as [31–37]. Using these methods makes the transition (although
mostly manual) from system to lower levels easier. However, the used abstraction is too low,
making power-management exploration too difficult. These methods also require the power
characterization of components, which makes them unsuitable for pure top-down design.

Another method, also based on UPF standard concepts, is to use the power management
specification (PMS) library [38] to extend the SystemC model. This enables a really simple specification
of power management by utilizing five predefined power states (NORMAL, DIFF_LEVEL, HOLD,
OFF, and OFF_RET), power domains (a set of components working in the same power state),
and power modes (a combination of power states in all power domains). Thus, modification of
the power-management specification is easy to achieve. However, it uses high-level synthesis and
analysis at lower levels to evaluate the impact of power management. Although this provides more
accurate power analysis, it takes time to explore multiple different power-management alternatives.

In view of the above analysis, we propose a simple solution to evaluate the impact of power
management specified in SystemC (using the PMS library) directly at the system level. Using the
proposed method, the effect of power management is estimated much faster, often without a need to
re-simulate the model. The proposed method is introduced in the following section.

3. Novel System-Level Energy-Estimation Method

Based on the analysis of existing methods, we propose a novel system-level power-estimation
method, and specify the requirements for the implemented tool. We use the Hamming distance
calculation method for calculating the power consumption, which we enhance by considering the
power-management effect. This method works in the following way:

1. First, we process data from SystemC (functional model description with power-management
specification) and value change dump (VCD) system simulation data files.
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2. After processing the data, the algorithm begins to read the VCD file. Based on the simulation results,
we then calculate the Hamming distance (i.e., the number of bits that switched their value in time).

3. When the algorithm calculates the Hamming distance, it searches the SystemC processed data
and find out the power state of a specific module.

4. Based on the module state, the algorithm multiplies the calculated Hamming distance with the
appropriate coefficient and adds the result to the overall energy consumption.

5. The algorithm continues working this way until it reaches the end of the VCD file.

The requirements specified for the tool include the following: load and process SystemC and
VCD files, enhanced Hamming-distance calculation for estimating energy consumption, present and
export the results, simple control, and easy-to-read output.

3.1. Data Processing

Data processing from the VCD and SystemC files works in the following way: in the VCD file,
the algorithm finds all modules, ports, and variables for each module. These variables are hashed
into HashMap, in which the hash-key is represented by the variable and corresponding module
names separated by a space (e.g., “dut cpu”). For each key, the previous state of the variable is
saved to HashMap. In the SystemC file, the algorithm identifies a top module, which contains the
power-management specification. The top module is identified based on the created hierarchy of
SystemC modules. After identifying the top module, the algorithm starts to identify the power
domains, power states, power modes, and the module constructor. The constructor contains the power
management specification, especially in which power state a power domain operates in a specific
power mode. This information is then saved. It is also necessary to calculate a coefficient for each
DIFF_LEVEL power state, which is calculated as the arithmetic average between the NORMAL and
DIFF_LEVEL power states.

3.2. Energy Estimation

After the initial data analysis and processing, the algorithm starts calculating the energy
consumption. The algorithm begins by reading the VCD file. At first, it initializes the states of
all variables, which are represented as a binary-vector value. The method initially looks at the power
state and then calculates a summed Hamming distance of variable values for each SystemC module
according to that power state. Based on the power state, the Hamming distance of a variable is either
calculated or not. As previously stated, there are five types of power states, as defined in [38].

3.2.1. NORMAL

The component operating in this power state is supplied by the basic voltage of the system,
and its working frequency is not modified. Therefore, the Hamming distance is calculated in the
usual way, and the current variable state is saved as previous. For example, the previous variable state
(binary vector) was 110011 and the current variable state is 100111. The Hamming distance between
these two vectors is 2 (the number of bits that have changed). This value is added to the total sum,
as expressed by

Total_sum = Total_sum + distance. (3)

3.2.2. DIFF_LEVEL

In this power state, the component is operating at the voltage and/or frequency level, which is
different from in the NORMAL power state. According to (1), both parameters influence dynamic
power consumption. Therefore, the Hamming distance is multiplied by a coefficient representing
the arithmetic average of the voltage and frequency ratios between the DIFF_LEVEL and NORMAL
power states, and the current variable state is saved as previous. Such a modified distance is added to
the total sum, as expressed by
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cDIFF_LEVEL =
1
2
×(

VDIFF_LEVEL
VNORMAL

+
fDIFF_LEVEL

fNORMAL
) (4)

Total_sum = Total_sum + distance×cDIFF_LEVEL. (5)

3.2.3. HOLD

This power state represents a stand-by state, in which the component remains powered, but its
operation is stopped (i.e., operation frequency is 0). Because the internal state of the component should
not change in this power state, the activity from VCD is ignored. Thus, the Hamming distance is not
calculated and the previous variable state is not changed (i.e., the current variable state is ignored).
The total sum is not incremented.

3.2.4. OFF

The component is powered-down in this power state. Because the component is not active in this
state, the variable changes are ignored during the OFF state. However, the previous state is not retained;
therefore, we use the 0-vector for calculating the Hamming distance. During entering of OFF power
state, the distance is computed between the 0-vector and previous variable state. Then, the 0-vector is
set as the previous variable state. Thus, during leaving the OFF power state, the distance is computed
between the current variable state and 0-vector. These two computed Hamming distances are added
to the total sum for the OFF period, as expressed by

Total_sum+ = distanceenter_OFF + distanceleave_OFF. (6)

3.2.5. OFF_RET

In this power state, the component is powered down, but its internal state is retained. This means
that the component is inactive in this power state. Thus, the algorithm does not compute the
Hamming distance, similar to the HOLD power state. The result of this power state is that the
total sum is not incremented.

After calculation of the total sum distance for each component, this distance is added to the
overall system energy consumption, and it is also added to the consumption of the corresponding
instance of a SystemC module.

In Figure 1, an overview of the novel power estimation method is illustrated, which also describes
the inputs and outputs for each part of the method.
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Figure 1. Process data flow in the proposed method.



Electronics 2020, 9, 1313 6 of 13

3.3. Energy-Estimation Tool

We have implemented the proposed method into an easy-to-use tool, mainly for evaluation
purposes and to demonstrate its benefits. The tool works in the following way: after starting the tool,
the SystemC and VCD files should be loaded. In the tool settings, the user can set where the output is
to be saved and which output format should be used, and can change other parameters. After loading
the files, the user starts automated processing of data from the input files, and subsequently initiates
the calculation of energy consumption. The progress bar illustrates the progress of the calculation as
a percentage, and the result is automatically exported in a format defined by the settings.

The tool is divided into six parts, and communication between these parts is shown in Figure 2.
The tool is proposed in this way because of the modularity (i.e., a simple future extension of
its functionality).

Process 

data

Algorithm

ExportLoad data

Config
configure

data

GUI

results

configure

data

processed

data

loaded

data

processed

data
estimation

filepaths

results for 

graph creation

configure

data

configure

data

Figure 2. The architecture of the developed tool.

The Process data module serves for processing data from the VCD and SystemC files.
Initially, this module accepts data from the Load data module. This module analyzes the data and sends
the data back to Load data. At the start, the module accepts the configuration from the Config module.

The Config module serves for creating and saving the tool configuration. The configuration
contains default values, but if a user changes the configuration in the tool settings, then the new
configuration is saved. This module always sends the configuration data to each module at the start.

Load data is a simple module that serves for loading the data from the VCD and SystemC files.
Another purpose of this module is storage. Initially, this module stores the loaded data, sends the
data for processing, stores the analyzed data, sends the data to the Algorithm module, and stores the
calculated power consumption (which is sent to the Export module).

The Export module serves for exporting the data into the XML, PDF, TXT, PNG formats, and for
visualizing the data in the graphic user interface. The module exports the data based on either the
accepted configuration or the current tool settings, which can be changed during runtime. By default,
the results are exported to the graphic user interface.

The Algorithm module accepts the analyzed data. After accepting the analyzed data, the module
starts calculating the consumed energy (according to the method described above) and then sends the
result to the Load data module.

The GUI module is a graphic user interface. It serves for the user to control the tool and to see
the results. In the GUI module, the user can load the SystemC and VCD files, which are processed.
There is also a progress bar that displays the progress of the energy calculation. The GUI module also
has the settings window.
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Sending of data between modules is realized through interfaces. These load the data to a specific
module, the data are then sent to another module after processing, and the data are deleted from the
previous module.

A pseudo-algorithm that summarizes the proposed energy-estimation method is provided in
Algorithm 1.

Algorithm 1: A pseudo-algorithm of the proposed method.

1 prepocessing SystemC file
2 foreach module do
3 | find topModule
4 | assing variables to module
5 end
6 findSpect (obj topModule){
7 if(powerMangSpec)
8 return moduleName;
9 else
10 foreach module in topModule do
11 | findSpect(module)
12 end
13 endif
14 }
15 preprocessing VCD file
16 foreach line do
17 | find variables
18 | if(powerSimulationData)
19 | break;
20 | endif

21 end
22 preprocesing pairing variables
23 foreach variable do
24 | pair systemC variables to VCD variables
25 end
26 power calculation
27 set powerStateToEachModule
28 foreach powerSimulationData do
29 | if(changePowerState)
30 | set powerStateToEachModule
31 | calculate HammingDistance
32 | addDistanceToSumResult
33 | addDistanceToModuleResult
34 | else
35 | calculate HammingDistance
36 | addDistanceToSumResult
37 | addDistanceToModuleResult
38 | endif
39 end
40 showAllResults

4. Experimental Results

To evaluate the accuracy of the proposed estimation method, we compared our results with those
obtained using the Synopsys Power Compiler (using the NanGate_15nm_OCL technology library)
from an equivalent very high-speed integrated circuits hardware description language (VHDL) model
of the system. Such estimations are commonly used in industry. Because the proposed method
produces a relative estimation (i.e., a sum of normalized Hamming distances of system variable values
during the simulation), it cannot be directly compared to other methods that estimate the power
in watts. Therefore, we compared the obtained ratios of estimated values for two design alternatives,
using each of the two estimation methods.

As a case study, we have used a simple system, consisting of one microprocessor (CPU)
communicating with two memories (MEM1 and MEM2) via a memory manager (MCU). The CPU
and MEM components are based on the mu0 and ram0 VHDL descriptions from [39]. MCU selects
the MEM component, with which the CPU communicates. The abstract architecture of the case-study
system is illustrated in Figure 3.

The experimental evaluation was more specifically processed in the following way:
first, we described the same case-study system in both SystemC (system level) and VHDL
(register-transfer level). We then created two alternatives in each model: with and without
power management. At the system level, we used the PMS library for a specification of
power management, whereas we used a power-intent specification in UPF at the register-transfer level.
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Figure 3. The case-study system abstract architecture overview.

As a next step, we estimated the power consumption of both VHDL alternatives (with and without
the power management) using Power Compiler. Power Compiler reported the average switching
power (i.e., the activity-dependent fraction of the tool’s power estimation) of the CPU component
to l6.14 × 10−4 mW for the alternative without power management, and 4.8 × 10−4 mW for the
alternative with power management. The computed ratio between the estimated values of these two
alternatives is 6.14×10−4

4.8×10−4 = 1.28. Similarly, we estimated the relative energy of both SystemC alternatives
using the implemented PESL tool. The obtained results were 1,652,915 for the alternative without
power management, and 1,569,213 for the alternative with the power management, which represents a
ratio of approximately 1.0533.

We then compared these two ratios (i.e., obtained by Power Compiler and by the PESL tool) by
computing their relative percentage change. Using the example above, the change is computed as
1.0533−1.28

1.28 × 100% = −17.71%. This means that the proposed method estimated the impact of power
management on dynamic energy consumption with an inaccuracy of 17.71% when compared to the
VHDL-based estimation produced by a professional tool.

Although the accuracy is not particularly high, we have improved the accuracy of the system-level
estimation method. The original Hamming-distance computation method [19] does not consider a
power-management effect; hence, it would always provide a ratio of 1. If we compare the inaccuracy
of the original method and the inaccuracy of our method, we achieve an improvement of 4.16% with
the proposed enhancement in this particular case. If we would prolong the simulation time when the
device was inactive five times, we would achieve an improvement of approximately 30%. Since many
of the IoT sensor-based devices can be inactive even 99% of their lifetime (due to the duty-cycle
communication restriction in long-range IoT networks [40]), the original method not considering
power management can be totally inaccurate, making an improvement of hundreds of percent.

To indicate the key benefit of the proposed enhancement clearly, we provide an
experiment illustrating system-level power-management exploration using the proposed method.
Using SystemC/PMS, we specified four alternative power-management architectures for the previously
mentioned case-study system, in which each component had a dedicated power domain called
PD_<component name> (see Figure 3). We then estimated the effect on its dynamic energy consumption
(during the same simulation). The results are provided in Table 1. In the table, the alternative A is the
specification without the power management, and the other alternatives include the specifications of
various combinations of power states in the system power modes (i.e., various power architectures).
The second column from the right contains the estimated dynamic energy of the system under the
specified power management in the number of bit-flips during the simulation, adjusted according
to the proposed method in Section 3.2. The final column presents a comparison of the estimated
dynamic energy for the power-management alternatives and the alternative A (i.e., without the
power-management specification). The formula used to obtain the values in the Comparison column



Electronics 2020, 9, 1313 9 of 13

is EDE(X)
EDE(A)

× 100%, where EDE is the estimated dynamic energy value from the corresponding column,
X is the alternative from the first column, and A is the alternative A.

Table 1. Illustration of the power-management exploration.

Power
Management Power Mode Power States in Power Domains Estimated

Dynamic Comparison
Alternative PD_CPU PD_MEM1 PD_MEM2 Energy

A

PM1 NORMAL NORMAL NORMAL

10,919,512 100%PM2 NORMAL NORMAL NORMAL
PM3 NORMAL NORMAL NORMAL
PM4 NORMAL NORMAL NORMAL

B

PM1 NORMAL NORMAL NORMAL

7,956,291 72.9%PM2 NORMAL NORMAL OFF_RET
PM3 NORMAL HOLD NORMAL
PM4 OFF HOLD OFF_RET

C

PM1 NORMAL NORMAL NORMAL

7,956,290 72.9%PM2 NORMAL NORMAL HOLD
PM3 NORMAL HOLD NORMAL
PM4 HOLD HOLD HOLD

D

PM1 NORMAL NORMAL NORMAL

8,072,960 73.9%PM2 NORMAL NORMAL HOLD
PM3 NORMAL HOLD NORMAL
PM4 NORMAL HOLD HOLD

E

PM1 NORMAL NORMAL NORMAL

9,486,080 86.9%PM2 NORMAL NORMAL HOLD
PM3 NORMAL NORMAL NORMAL
PM4 OFF OFF OFF

According to the results, the alternatives B and C are the most energy-efficient. We obtained the
same estimations for these alternatives because the OFF/OFF_RET power states in the alternative
B were substituted by the HOLD power state in the alternative C. Further, according to the
proposed method, all of them have the same effect on the dynamic energy. The alternative D has a
slightly higher estimated energy consumption, because the CPU is active during the whole simulation.
Similarly, the alternative E has even higher energy consumption, because the MEM2 is active even
when not being used by the CPU (i.e., while it is communicating with the MEM1). We have proved
through this experiment that the proposed method can be used for system-level power-management
exploration. This would not be possible using the original Hamming-distance computation method [19],
because it would return the same result for each alternative. Moreover, we did not need to re-simulate
the design in this experiment, because we have not modified power-mode switching in the alternatives
(i.e., the power modes were switched in the same simulation time in each alternative). This would not
be possible in any other existing power-management exploration method. Thus, the proposed method
enables faster power-management exploration than the existing methods. This improvement was by a
factor of several magnitudes (i.e., seconds instead of hours).

4.1. Discussion

As previously mentioned, no other existing similar tool (i.e., taking power management into
account while estimating the dynamic power) is freely available; hence, we could not experimentally
compare the solutions. However, we at least tried to compare our solution to the TLM Power 3
tool [22] (in addition to the original Hamming-distance computation method [19]) based on an analysis,
and present a summary of the differences in Table 2.
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Table 2. Comparisons.

Solution Top-Down
Design Accuracy Estimation Required

Knowledge

TLM Power 3 No High Real Units High
Ref. [19] Yes Low Relative Units Low

PESL Yes Medium Relative Units Low

It can be observed that our solution has several advantages. Using PESL, we can realize a
pure top-down design approach. This is not possible using the TLM Power 3 tool, because it
relies on data from previous implementations of system components. PESL is very intuitive and
easy-to-use, while the TLM Power 3 tool is more complex and knowledge is required to set it
correctly. Another advantage lies in the estimation time. We can estimate the effect of an alternative
power-management specification without starting a new simulation. However, modifications in
system specification that do not require a new simulation must keep the number of power modes and
their switching time intact. With such a PESL feature, we can easily try many power-management
alternatives. In comparison, TLM Power 3 would need to run a new simulation every time. We can
express this speed advantage by the following equations.

Time of power estimation using TLM Power 3 can be expressed by

tpc = n×(ts + te), (7)

where tpc is power-calculation time, n is the number of alternatives, ts is the simulation time, and te is
power-estimation time. Time of power estimation using PESL can be expressed by

tpc = m×ts + n×te, (8)

where m is the number of required simulations (m ≤ n).
There are some disadvantages with PESL. For example, it can only provide a relative

power estimation, whereas TLM Power 3 provides estimations in real units. Further, PESL is
less accurate than TLM Power 3. However, it is better than in the case of [19], which could
not be used for power-management exploration of the same system. Moreover, the accuracy of
the PESL estimation is good enough to provide a difference in the power estimation of various
power-management architectures.

Compared to lower-level power estimations (e.g., at the register–transfer level, gate level, or post
placement and route stage), the proposed method is less accurate due to higher abstraction, but is
significantly faster. Lower design-abstraction levels include more details; thus, more information can
be used during the estimation. However, the simulation takes longer with a more-detailed model.

5. Conclusions

In this paper, we proposed a novel method for system-level energy estimation that considers the
power-management effect. We also described the implementation of this method in a user-friendly tool.
By analyzing the SystemC and VCD files, this method calculates the dynamic energy consumption
using enhanced Hamming-distance computation. Using the computed relative energy consumption,
a designer can efficiently compare two design alternatives of the same power-managed system and
select the most appropriate. The results can be exported into various file formats (XML, PDF, TXT
or PNG) for simplified further processing by another tool.

The proposed method is especially suitable for fast power-management exploration at a system
level. The reason for this is that the method does not require re-simulation of the system model after the
power management is modified, if the number of power modes and their switching has not changed.
Thus, a designer is able to “try” multiple power-state variations or partitioning of the system into the
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power domains in a very short time without re-simulation. This is a unique approach that has never
been seen before.

We expect that the proposed method will be faster, simpler, and more accurate compared to other
system-level power-estimation methods usable for top-down design, because it considers the power
states of each module during the simulation at a system level. The experimental results demonstrated
that the novel method estimated lower energy consumption when it should be lower (according to the
specified power management), whereas the original method would have estimated the same energy
as in the system without power management. Thus, the proposed method improved the accuracy
compared to the original Hamming-distance calculation method.
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