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Abstract: Computing and networking systems traditionally record their activity in log files,
which have been used for multiple purposes, such as troubleshooting, accounting, post-incident
analysis of security breaches, capacity planning and anomaly detection. In earlier systems those log
files were processed manually by system administrators, or with the support of basic applications for
filtering, compiling and pre-processing the logs for specific purposes. However, as the volume of
these log files continues to grow (more logs per system, more systems per domain), it is becoming
increasingly difficult to process those logs using traditional tools, especially for less straightforward
purposes such as anomaly detection. On the other hand, as systems continue to become more
complex, the potential of using large datasets built of logs from heterogeneous sources for detecting
anomalies without prior domain knowledge becomes higher. Anomaly detection tools for such
scenarios face two challenges. First, devising appropriate data analysis solutions for effectively
detecting anomalies from large data sources, possibly without prior domain knowledge. Second,
adopting data processing platforms able to cope with the large datasets and complex data analysis
algorithms required for such purposes. In this paper we address those challenges by proposing an
integrated scalable framework that aims at efficiently detecting anomalous events on large amounts
of unlabeled data logs. Detection is supported by clustering and classification methods that take
advantage of parallel computing environments. We validate our approach using the the well known
NASA Hypertext Transfer Protocol (HTTP) logs datasets. Fourteen features were extracted in order
to train a k-means model for separating anomalous and normal events in highly coherent clusters.
A second model, making use of the XGBoost system implementing a gradient tree boosting algorithm,
uses the previous binary clustered data for producing a set of simple interpretable rules. These rules
represent the rationale for generalizing its application over a massive number of unseen events in a
distributed computing environment. The classified anomaly events produced by our framework can
be used, for instance, as candidates for further forensic and compliance auditing analysis in security
management.

Keywords: anomaly detection; clustering; k-means; gradient tree boosting; XGBoost

1. Introduction

Hosts and network systems typically record their detailed activity in log files with specific
formats, which are valuable sources for anomaly detection systems. The growing number of hosts per
organization and the growing complexity of infrastructures result in an increasingly massive amount
of recorded logs available—requiring simpler and cheaper anomaly detection methods. While classic
log management applications based on manual or preset rule-based analysis still hold value, they do
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not scale well with the large volumes of data that are currently available. Moreover, they are limited
in terms of exploratory analysis: they fail to detect anomalies not predefined in the rules (i.e., based
on prior knowledge) and/or require considerable operator expertise to reach their full potential.
This opens the way for the introduction of new approaches, which are less dependent on prior
knowledge and human-guided workflows and are able to extract knowledge from large volumes
of log data in a scalable and (semi)automated way. Moreover, taking advantage of the available
computational resources may also contribute to achieving performance and accuracy for identifying
anomalies and retrieving forensic and compliance auditing evidence.

Over the past years, several automated log analysis methods for anomaly detection have been
proposed. However, most of those proposals are not suitable to the scale needed for identifying
unknown anomalies from the growing high-rate amount of logs being produced and their inherent
complexity. In the scope of the ATENA H2020 Project [1,2], we faced this challenge while building
a Forensics and Compliance Auditing (FCA) tool able to handle all the logs produced by a typical
energy utility infrastructure.

To address such challenges, we researched novel integrated anomaly detection methods
employing parallel processing capabilities for improving detection accuracy and efficiency over
massive amounts of log records. These methods combine the k-means clustering algorithm [3] and
the gradient tree boosting classification algorithm [4] to leverage the filtering capabilities over normal
events, in order to concentrate the efforts on the remaining anomaly candidates. Such an approach
may greatly contribute to reducing the involved computational complexity.

The characteristics of abnormal system behaviors were obtained by extracting 14 statistical
features containing numerical and categorical attributes from the logs. Then, the k-means clustering
algorithm was employed to separate anomalous from normal events into two highly coherent clusters.
The previous binary clustered data serve as labeled input to produce a gradient tree boosting algorithm
implemented by the XGBoost system [5]. Its role is to produce a set of simple rules with the rationale
for generalizing the classification of anomalies of a large number of unseen events in a distributed
computing environment. K-means, XGBoost and Dask [6] provide the tools for building scalable
clustering and classification solutions to find out the candidate events for forensic and compliance
auditing analysis.

The rest of this paper is organized as follows. Section 2 discusses background concepts and
related work. Section 3 describes the proposed framework. Section 4 presents the validation work and
discusses the achieved results, and Section 5 concludes the paper.

2. Background and Related Work

This section starts by providing the reader with the key base concepts related with the scope of
our approach. Next, we discuss related work (Section 2.2). Finally, we present the algorithms and
tools we adopted in our work, namely k-means (Section 2.3), decision trees (Section 2.4), gradient tree
boosting on XGBoost (Section 2.5) and Dask (Section 2.6).

2.1. Base Concepts

By definition, an anomaly is an outlying observation that appears to deviate markedly from other
members [7]. Anomalies are typically classified into three types: point anomalies, contextual anomalies
and collective anomalies. A point anomaly in data significantly deviates from the average or normal
distribution of the rest of the data [8]. A contextual anomaly is identified as anomalous behavior
constrained to a specific context, and normal according to other contexts [8]. Collection of data
instances may reveal collective anomalies while anomalous behavior may not be depicted when
analyzed individually [9]. Time series data include a significant amount of chronologically ordered
sequence data sample values retrieved at different instants. Their features include high-dimensionality,
dynamicity, high levels of noise, and complexity. Consequently, in the data mining research area,
time series data mining was classified as one of the ten most challenging problems [10].
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Anomaly detection for application log data faces important challenges due to the inherent
unstructured plain text contents, the redundant runtime information and the existence of a significant
amount of unbalanced data. Application logs are unstructured and stored as plain text, and their
format varies significantly between applications. This lack of structure presents important barriers
to data analysis. Moreover, runtime information, such as server IP addresses, may change during
execution. Additionally, application log data are designed to record all changes to an application
and hence contain data that are significantly unbalanced in comparison to non-anomalous execution.
The size and unbalanced nature of log data thus complicate the anomaly detection process.

2.2. Related Work

Various anomaly detection methods have been proposed for applying clustering algorithms to
detect unknown abnormal behaviors or potential security attacks.

Some of those proposals have addressed the usage of log analysis as one of the input sources for
anomaly detection. Chen and Li [11], for instance, proposed an improved version of the DBSCAN
algorithm for detecting anomalies from audit data while updating the detection profile along its
execution. Syarif et al. [12] compared five different clustering algorithms and identified those providing
the highest detection accuracy. However, they also concluded that those algorithms are not mature
enough for practical applications. Hoglund et al. [13], as well as Lichodzijewski et al. [14], constructed
host-based anomaly detection systems that applied a self-organizing maps algorithm to evaluate if a
user behavior pattern is abnormal.

Clustering techniques, such as the k-means algorithm, are often used by intrusion detection
systems for classifying normal or anomalous events. Miinz et al. [15] applied the k-means clustering
algorithm to feature datasets extracted from raw records, where training data are divided into clusters
of time intervals for normal and anomalous traffic. Li and Wang [16] improved a clustering algorithm
supported by a traditional means clustering algorithm, in order to achieve efficiency and accuracy when
classifying data. Eslamnezhad and Varjani [17] proposed a new detection algorithm to increase the
quality of the clustering method based on a MinMax k-means algorithm, overcoming the low sensitivity
to initial centers in the k-means algorithm. Ranjan and Sahoo [18] proposed a modified k-medoids
clustering algorithm for intrusion detection. The algorithm takes a new approach in selecting the
initial medoids, overcoming the means in anomaly intrusion detection and the dependency on initial
centroids, number of clusters and irrelevant clusters.

Other authors have used hybrid solutions for log analysis, combining the use of the k-means
algorithm with other techniques for improving detection performance. They realized that despite the
inherent complex structure and high computational cost, hybrid classifiers can contribute to improving
accuracy. Tokanju et al. [19], for instance, took advantage of an integrated signature-based and
anomaly-based approach to propose a framework based on frequent patterns. Asif-Igbal et al. [20]
correlated different logs from different sources, supported by clustering techniques, to identify and
remove unneeded logs. Hajamydeen et al. [21] classified events in two different stages supported by the
same clustering algorithm. Initially, it uses a filtering process to identify the abnormal events, and then
it applies it for detecting anomalies. Varuna and Natesan [22] introduced a new hybrid learning
method integrating k-means clustering and Naive Bayes classification. Muda et al. [23] proposed
k-means clustering and Naive Bayes classifiers in a hybrid learning approach, by using the KDD Cup’99
benchmark dataset for validation. In their approach, instances are separated into potential attacks
and normal clusters. Subsequently, they are further classified into more specific categories. Elbasiony
et al. [24] used data mining techniques to build a hybrid framework for identifying network misuse
and detecting intrusions. They used the random forests algorithm to detect misuses, with k-means as
the clustering algorithm for unsupervised anomaly detection. The hybrid approach is achieved by
combining the random forests algorithm with the weighted k-means algorithm.

Some research focused on detecting which outliers constitute an anomaly when applying
clustering methods [25,26]. Liao and Vemuri [26] computed the membership of data points to a
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given cluster, supported by the use of Euclidean distance. Breunig et al. [27] stated that some detection
proposals weight data points as outliers.

Hybrid approaches have indeed proven quite interesting. However, in general, proposed solutions
still take considerable amounts of time to generate models for particular datasets, aggravated by the
growth patterns normally associated with log sources in production systems. This situation calls for
alternative strategies that are able to improve speed (as well as accuracy and efficiency) by taking
advantage of innovative algorithmic approaches together with improved parallelism.

Our work focuses on scalability and interpretability, since the aim is to use it in the forensics and
audit compliance contexts already discussed in Section 1. The goal is to be able to sift through data to
select candidates for a more detailed analysis or inspection.

Similarly to other works, we also take a hybrid approach for identifying anomalies for log analysis.
However, unlike other works, we specifically target speed, agility and interpretability. Our approach
allows training and classifying out-of-core datasets in scenarios involving the computation of very large
datasets with limited computing resources, parallelizing their processing by distributing them across
the available nodes. Therefore, our approach is supported by clustering and classification algorithms
that are able to scale and produce interpretable results. Our method works in two stages: first, it starts
with the unlabelled dataset, implementing a binary anomalous event classifier through the use of
unsupervised learning algorithms; the second stage produces a set of simple rules by considering the
previously classified data through the use of supervised learning algorithms. It combines the k-means
algorithm for clustering anomalies and gradient tree boosting to produce a simple set of interpretable
rules to be parallelized in a distributed environment on classifying a large amount of data.

Next, we present the already existing techniques used by our approach in more detail.

2.3. K-Means

K-means remains one of the most popular clustering methods and one of the most relevant
algorithms in data mining [3]. The main advantage of k-means is its simplicity. By starting with a set
of randomly chosen initial centers, one procedure assigns each input point to its nearest center and
then recomputes the centers given the point assignment [28].

Scaling k-means to massive data is relatively easy, due to its simple iterative nature. Given a
set of cluster centers, each point can independently decide which center is closest to it, and given an
assignment of points to clusters, computing the optimum center can be performed by simply averaging
the points. Indeed, parallel implementations of k-means are readily available [28].

From a theoretical standpoint, k-means is not a good clustering algorithm in terms of efficiency or
quality. Thus, the running time can grow exponentially in the worst case [29,30] and even though the
final solution is locally optimal, it can be very far away from the global optimum (even under repeated
random initializations). Nevertheless, in practice, the speed and simplicity of k-means are attractive.
Therefore, recent work has focused on improving its initialization procedure performance in terms of
quality and convergence [28].

2.4. Decision Trees

Decision trees is a popular supervised machine learning method that produces regression or
classification models in the form of a tree structure containing decisions as nodes, resulting in a set
of leaves containing the solution. Decision trees are suitable to be applied to any data without much
effort when compared with algorithms such as neural networks. Trees are built top-down from the
root node and involve recursive binary splitting. In neural networks, the initial dataset is partitioned
into smaller subsets according to their features, while an associated decision tree is incrementally
built. Such a splitting process is driven by a greedy algorithm evaluating the best solution at each
of those steps and evaluating the maximum loss reduction from the cost function in order to make
a split on features. To regulate the complexity of a given model and increase the performance of a
given tree, pruning processes are available. Notwithstanding, decision tree learning does not generally
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provide the best performance in terms of prediction. Some approaches exist in learning decision forests,
including bagging [31], random forests [32] and boosted trees [33].

Tree boosting overcomes the above performance problem by the use of an additive model that
iteratively builds decision trees to learn decision forests by applying a greedy algorithm (boosting)
on top of a decision tree base learner [33-35]. Tree boosting is regarded as one the most effective
off-the-shelf nonlinear learning methods for a wide range of application problems [34]. It is also highly
effective and widely used for achieving state-of-the-art results on many machine learning challenges
hosted by the machine learning competition site Kaggle [36].

Regularized greedy forest is an algorithm that can handle general loss functions with a wider
range of applicability, which directly learns decision forests while taking advantage of the tree structure
itself, while other methods employ specific loss functions, such as exponential loss function in the case
of the Adaboost algorithm [34].

2.5. XGBoost

XGBoost is a scalable system that implements gradient tree boosting and the regularized model
so as to prevent overfitting, and simplifies the objective function—for parallelization of the regularized
greedy forest algorithm [34]. It is suitable for the development of parallel computing solutions
applicable to larger datasets or faster training. Besides processors and memory, it uses disk space
to handle data that do not fit into the main memory. To enable out-of-core computation, the data
are divided into multiple blocks [5]. The system includes cache access patterns, data compression,
and sharding. Its performance relies on a tree learning algorithm, which is able to handle sparse data,
and on a weighted quantile sketch procedure. This procedure enables handling instance weights in
approximate tree learning and is able to solve real-world scale problems using a minimal amount
of resources. Besides the penalty from regularizing the objective function, two techniques prevent
overfitting: shrinkage, introduced by Friedman [37], and feature subsampling retrieved from random
forests to speed up computations. XGBoost works well in practice and has won several machine
learning competitions, such as Kaggle [36], running faster than other popular solutions on a single
machine and scaling in distributed or out-of-core settings. It can be easily interpreted, given the tools
it provides for finding the important features from the XGBoost model.

2.6. Dask

The Dask parallel computing framework leverages the existing Python ecosystem,
including relevant libraries such as “numpy” or “pandas”. Dask capabilities are supported by
executing graphs to be run by the scheduler component, potentially scaling execution to millions of
nodes. Those features are suitable to be applied to out-of-core scenarios (not fitting in memory) on a
single machine [6].

Dask is a Python specification representing the computation of directed acyclic graphs of tasks
with data dependencies to encode parallel task graph schedules. It extends the easy to adopt NumPy
library for leveraging parallel computation over modern hardware. It allows scaling large datasets
by using disks that extend the physical memory as out-of-core and parallelize and linearly speedup
the code by taking advantage of several cores. The main objective is to parallelize the existing Python
software stack without triggering a full rewrite. A Dask cluster includes a central scheduler and several
distributed workers. It starts up a XGBoost scheduler and a XGBoost worker within each of the Dask
workers sharing the same physical processes and memory spaces.

Dask enables parallel and out-of-core computation by including collections such as arrays, bags and
dataframes. It couples blocked algorithms with dynamic and memory-aware task scheduling to achieve a
parallel and out-of-core popular NumPy clone [6]. Sharing distributed processes with multiple systems
allows usaging of specialized services easily and avoiding large monolithic frameworks.

Dask is often compared with other distributed machine learning libraries, such as H2O [38] or
Spark’s Machine Learning Library (MLLib) [39]. XGBoost is available in Dask to provide users with a
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fully featured and efficient solution. The Dask parallel computing approach can handle problems that
are more complicated than the map-reduce problem at a lower cost and complexity when compared
to solutions such as MLLib, given that most of the problems can be resolved in a single machine.
Any function is able to be parallelized by the use of delayed function decorators. Additionally, Dask is
substantially lightweight when compared to Spark.

3. Proposed Framework

Motivated by the related work, we propose an integrated method with filtering mechanisms to
improve detection accuracy and efficiency in scenarios involving large amounts of logs. This method
is supported by the k-means clustering and the gradient tree boosting classification algorithms,
as implemented by the XGBoost system. To overcome the limitations of existing anomaly detection
methods that spend a significant amount of time building the models for the whole dataset, we built
three different tools for improving detection accuracy and efficiency.

This section starts with a formal presentation of the algorithm of the model, followed by a
discussion of the three compounding tools used for implementing the proposed approach.

3.1. Description of the Algorithm

The proposed approach is formalized in Algorithm 1, which describes how to combine k-means
and XGBoost. The algorithm is implemented as a function that takes as input a set of events E and
returns the identification of the anomaly anomalycluster, the classified events ypred!, total classified
events totalevents and the total of those events classified as anomalies fotalanomalies.

Algorithm 1 Proposed Algorithm
INPUT: E, Event Set

S « CLUSTER(
C < CLIENT(S
G < DISTRIBUTEDARRAY (E)
k<2
km <+ KMEANS(C, k)
km.TRAIN(G)
Y + km.PREDICT(G)
X < XGBOOST(X)
X.TRAIN(Y,Y)
ypred <— X.PREDICT(G)
foralli € ypred do

if ypred; > 0.5 then

pred} + 1
k2 +—k2+1
else )
red; < 0
]ﬁj ~kl+1

end if
end for
if k1 > k2 then

anomalycluster < 1

totalanomalies < k2
else

anomalycluster <— 0

totalanomalies < k1
end if
totalevents + k1 + k2

OUTPUT: ypred!, Cluster Predictions

OUTPUT: anomalycluster, Identification of the anomaly cluster
OUTPUT: totalevents, Total number of events

OUTPUT: totalanomalies, Total number o anomalies
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It starts by initializing the cluster S and activating the client connection C to the cluster S. Then the
distributed array G is prepared from the received events in E. The next step is to initialize the k-means
model Km for binary classification in the cluster (k = 2) from the distributed array G to separate
events into two distinct clusters in Y. Then, the XGBoost model X is initialized with the previously
predicted events Y being provided as an input for training in the cluster through the use of the client
connection C. The final prediction ypred is achieved from the XGBoost model X. In the next stage, each
of those predictions (i € ypred) is classified according to the cluster they belong to in ypred!. Such a
classification will be determined by evaluating the total number of events in clusters k1 and k2, so as to
decide which corresponds to the anomaly cluster. To that aim, 0.5 was considered as the threshold to
classify events as belonging to clusters 1 or 2 (ypred; > 0.5).

After all events have been classified, the cluster including the fewer number of events (k1 > k2)
will correspond to the anomaly cluster, and such decision will stored in anomalycluster.

3.2. Tools

The framework encompasses three tools that may be independently combined in a cooperative
way for normalizing raw data and for producing a model able to achieve evidence for forensic
and compliance auditing analysis. The “fca_normalization” tool is used to normalize the raw data,
“fca_model” produces the model and “fca_analysis” provides the pieces of evidence for forensic and
compliance auditing analysis.

The normalization tool takes as input HTTP raw data logs and normalizes data into a new file.
Optionally, the encoded features may also be specified. In case encoding is not provided or in the case
of missing feature values, the tool automatically applies an encoding label. The tool can be invoked,
for example, by using the following command:
python fca_normalization
-in NASA_access_log_Jul95
-in_encoding in_encoding.data

-out logs_NASA.csv
-out_encoding out_encoding.data

In this example, “fca_normalization” receives the raw HTTP log data file “NASA _access_log_Jul95”
along with the optional encoding file “encoding.data”. The output normalized file is saved as
“logs_NASA.csv”. Finally, the tool optionally defines the encoding table in the "out_encoding.data" file.

The modeling tool takes as input the previously normalized data and builds the XGBoost
classification model by making use of the gradient tree boosting algorithm after applying the k-means
clustering algorithm. In the example invocation provided next, the input file “logs_NASA.csv” contains
the HTTP raw log data and the output model is saved as “fca_xgboost.pkl”.
python fca_model

-in logs_NASA.csv
-out fca_xgboost.pkl

The forensic and compliance auditing analysis tool takes as input the model and the normalized
events in order to identify the anomalies. In the invocation example provided next, the input model in
read from “fca_xgboost.pkl’, and the normalized data is read from ‘logs_NASA.csv’. The final output
containing the anomaly events is saved on ‘outlier_events.csv’.
python fca_analysis
-in_model fca_xgboost.pkl

-in_data logs_NASA.csv
-out outlier_events.csv

Table 1 summarizes the inputs and outputs for each tool.
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Table 1. Tools’ inputs and outputs.

Tool Input Output

Normalization HTTP raw logs data, encoding Normalized data, encoding
Modelling Normalized data Model

Analysis Model, normalized data Anomaly events

4. Discussion and Evaluation

This section addresses the validation of the proposed framework. First, we discuss feature
extraction. Next, based on the extracted features, we describe the initial application of the k-means
clustering algorithm for dividing the dataset into two different clusters. Finally, we discuss how to
use the previous clustered data for training a scalable gradient tree boosting implemented by the
XGBoost system.

For the sake of readability, throughout this section we extensively use as reference a set of
well-known, publicly available datasets [40]. These datasets consist of traces containing two months’
worth of all HTTP requests to the NASA Kennedy Space Center WWW server, involving 1,871,988
logged events. This dataset was selected because it is probably the largest log-based dataset publicly
available, allowing us to assess our scalability claims.

4.1. Feature Extraction and Data Exploration

To capture the characteristics of the system behaviors, 14 features were extracted, containing both
numeric and categorical attributes from the raw log records. The original features in the raw HTTP log
records are “IP”, “Date”, “Request”, “Response” and “length”. By making use of regular expressions,
the most relevant time-related components were extracted from the "date" feature, including “Day”,
“Month”, “Year”, “Hour”, “Minute” and “Second”. From the “Request” field, the “operation”, “page”
and “method” features were extracted. Then, “Month” names were encoded. Therefore “Year”,
“Month” and “Day” were composed in the temporary “date” feature in order to retrieve the day of
the week (“weekday”) and “weekend” features. Next, “Request” and other temporary features were
removed from the dataset. Finally, categorical features such as “IP”, “page”, “operation”, “method”
and “Response” were encoded, and the dataset was saved in a file.

By exploring the dataset we can achieve the first insights. Figure 1 depicts the covariance of the
most representative features, including “length”, “Hour”, “operation”, “method” and “Response”.
This figure shows an interesting covariance between length and other features.

Figure 2 provides a three-dimensional analysis of the number of events that occurred along the
day (from O to 24 h) and along each weekday (0 to 6), where days 5 and 6 correspond to Saturday and

Sunday, respectively.

4.2. Clustering

Based on the extracted features, we employed the k-means clustering algorithm for grouping
log events into two different clusters. The larger cluster gathers the normal events, while the smaller
holds the deviations from normal behavior. Therefore, the latter cluster should correspond to the set
grouping the anomaly events. In addition, sparse clusters are possibly caused by anomalous activities,
which can be labeled as anomaly candidates for further analysis.

Our framework model takes advantage of the initialization k-means|| algorithm (largely inspired
by k-means++) to obtain a nearly optimal solution after a logarithmic number of steps. In practice,
a constant number of passes suffices [28].

After training this model with 90% of the total number of records and using just the remaining
10% for testing, the model produces a normal cluster containing 185,897 events while the anomaly
cluster includes 1301 events, corresponding to 0.06% of the total number of events in the normal cluster.
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Figure 1. Feature covariance.

Figure 2. HTTP (Hypertext Transfer Protocol) events over time.

The computed centroids for the two clusters, separating the normal and anomaly events, are the
following:

[[4.41534608e+04, 0.00000000e+00, 8.12115012e+05, 1.14495884e+01,
0.00000000e+00, 0.00000000e+00, 1.26692042e+01, 2.96762857e+01,
2.94179871e+01, 0.00000000e+00, 1.75010380e+04, 2.84859910e+03,
2.82322741e+00, 2.23245109e-01]
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[4.27877328e+04, 1.63161125e-01, 1.53047043e+04, 1.24323538e+01,
0.00000000e+00, 0.00000000e+00, 1.26856431e+01, 2.95910303e+01,
2.94991093e+01, 2.22648078e-03, 1.47567972e+04, 2.84883391e+03,
2.68136168e+00, 1.93607622e-01]1]

4.3. Classification

Classification results from the application of the gradient tree boosting algorithm implemented
by the XGBoost system, which is the second and final stage of our model. The resulting tree can be
linearized into decision rules, where the outcome is the content of the leaf node, and the conditions
along the path form a conjunction in the if clause.

The results of this stage were validated by comparing if the number of events classified as
anomalies is equal to the number of events belonging to the anomaly cluster. This condition was
verified for 1301 events. The predict function for XGBoost outputs probabilities by default and not
actual class labels. To calculate accuracy we converted them to 0 and 1 labels, where a 0.5 probability
corresponds to the threshold. XGBoost is able to correctly classify all the test data according to the
k-means clustering algorithm. Figure 3 depicts the importance of the XGBoost features, according to
the F-score metric.

r=o< - R R R
engtn - N I
e
vour R
Second ---

0 2 4 6 8 10
F-score

Figure 3. Features importance.

This classification model produces a set of rules providing the rationale for generalizing to unseen
events, as shown in Figure 4. The leaf values depicted in the figure are converted into probabilities by
applying the logistic function.

Figure 5 depicts the covariance of “length” and “page”, which are the two most important features
computed by the final model. The events tagged as anomalous are highlighted in red color.
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Figure 4. Decision tree.
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Figure 5. Page and length covariance.

4.4. Parallelization

The proposed framework makes use of the k-means algorithm and the XGBoost system, which are
designed to scale in a distributed environment supported by available parallel computing capabilities.
Such an approach comes in line with a Big Data scenario.

Our approach is supported by the use of parallel computing capabilities available in the Python
“Dask” library. More specifically, the “dataframe” component is able to manage out-of-core datasets
along the execution pipeline, since the features are extracted until the clustering and classification
models are implemented. Figure 6 provides an example of the kind of graphs Dask is able to produce
when reading and splitting a dataset. The Dask libraries “dask_ml” and “dask_xgboost” provide the
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implementation of popular machine learning algorithms, such as k-means and XGBoost, which support
the framework models.

Our experiment involved a simple cluster formed by just two workers in a single node with two
cores while the total available memory was 13.66 GB.

To study the framework model’s ability to scale in order to cope with large datasets in a reasonable
time, two experiments were performed using the parsed NASA HTTP logs dataset. Due to constrained
laboratory resources, those experiments were limited to the use of two cores in a single node. As a setup
configuration, the Dask chunk size was set to 50,000 events. The model’s ability to scale was assessed
by comparing its performance under different configurations. To determine the model performance,
running time (in milliseconds) was considered throughout the training and predict steps for both
k-means and XGBoost stages in accordance with the model topology.

| (fom-delayed-#0°,0) | | (from-delayed-#0",1) |

I I

pandas_read_text-#1 ‘ ‘ pandas_read_text-#3

pandas_read_text(...) pandas_read_text(...)

l l

read_block-0-#2 | | read_block-64000000-#2

read_block_from_file read_block_from_file

Figure 6. Paralellized Dask graphs.

The first experiment aimed at determining the parallel approach performance, compared with
the sequential approach—considering non-Dask sklearn as the sequential approach and Dask as the
parallel approach. As a setup configuration, the Dask framework included a single worker and two
threads. The running time was measured along the four steps previously defined for the two stages.
Those sequential steps include the train (1) and predict (2) steps for the k-means stage, followed by the
train (3) and predict (4) steps for XGBoost stage. The running time for each framework, along those
running steps, is provided in Figure 7. The achieved results show that the Dask framework outperforms
the non-Dask sklearn framework, especially in the case of the training steps.
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Figure 7. Sequential (non-Dask) vs. parallel (Dask) comparison.

The second experiment evaluated the parallelization capability of the Dask framework under
different configurations, such as the number of workers and threads per worker, by measuring
the aggregated running time along the topological steps. Figure 8 compares the performance for
one and two running workers, while increasing the number of threads per worker from one to
ten. Measurements showed that one worker outperforms two workers. Increasing the number
of workers did not improve performance, while increasing the number of threads contributes to
improved performance until a given threshold is reached. Finally, it was also possible to depict higher
performance running over an even number of threads in comparison to the odd ones—due to the less
optimal parallelization gains that occur when splitting an odd number of threads into two cores.

= ™
S sl Sa " A *—a
-8 Toll HI# H., \.#.h=?.‘.
S h
(@)
3 _
R0
S g | [== 1worker
3 —a— 2 workers
O_
| | | | |
2 4 6 8 10
Threads

Figure 8. Dask parallel comparison.

4.5. Discussion

The presented framework method relies on two stages. The clustering model is the output
of the first stage and serves as the input for the classification stage. Therefore, this approach
allows starting from initial unlabelled data for obtaining the interpretable meaningful rules with
the rationale for classifying unseen events. Those rules are simple to understand, interpret and
visualize, requiring relatively little data preparation effort. Additionally, the described algorithms
can easily handle heterogeneous data containing different features produced by different sources.
Although the initial nature of our problem is not a classification problem, this approach may be
adapted to different scenarios where labeled data are not available. This way, it becomes possible
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to convert an unsupervised into a supervised learning scenario and take advantage of the use of
classification algorithms.

The decision to select the k-means algorithm and XGBoost system, both supported by the Dask
library for parallel processing, was driven by requirements in terms of scaling and interpretability
when working with limited resources. This decision enabled the application of this framework to
larger datasets in order to highlight the anomalous events. Given the inherent nature of the problem
being addressed through the use of the unsupervised learning approach, it is not trivial to evaluate the
framework model’s accuracy in the scope of this paper. An alternative option would be to compare the
achieved results with those provided in the existing literature. However, to the best of our knowledge,
there are no anomaly detection research works addressing the NASA HTTP logs.

The obtained results highlight the obviously normal events in highly coherent clusters, with a
minor subset of events being classified as anomalies for further forensic and compliance auditing
analysis. The model interpretability is indirectly validated by the produced decision rule set already
provided in Figure 4, which implicitly shows how the model identifies classes. Figure 7 also shows the
performance of the parallel approach compared with the sequential approach, and Figure 8 highlights
the parallelization capabilities of the Dask library in processing out-of-core datasets.

Designing the framework with independent tools makes it possible to reuse them over different
scenarios. For example, the same modeling tool can be combined with a different normalization tool
for processing a different data source. Additionally, these framework tools can be applied to the
context of the aforementioned ATENA project in order to identify anomaly events from massive logs.
This approach can be independently applied to different datasets in a first stage, allowing to correlate
them as heterogeneous sources in a second stage.

The achieved results demonstrate the capability of the proposed method in terms of finding a set
of interpretable rules that can parallelized and applied in scale.

5. Conclusions and Future Work

In this paper we proposed a framework that takes a parallel computing approach for identifying
anomaly events in massive log files. In its first stage, our method uses the k-means algorithm to
separate anomalies from normal events. In the second stage, a gradient tree boosting classification
model, implemented using the XGBoost system, produces the interpretable meaningful rationale rule
set for generalizing its application to a massive number of unseen events. This approach is suitable
for application in the context of out-of-core datasets in cases where log sources are so massive that it
becomes impossible to use more traditional approaches.

The proposed method was presented, and the achieved results demonstrated its applicability to
producing simple and interpretable rules for highlighting anomalies in application log data to scale
and in a distributed environment. Such an approach makes it suitable to be applied in the fields of
forensics and audit compliance.

Regarding future work, we plan to explore the application of collective anomaly detection over
time series summarized data logs and the application of Bayesian networks as the classification model
component, and evaluate the method’s capability of producing scalable and interpretable models.
We also plan to explore the map-reduce model as a way to achieve higher parallelism performance on
data preparation.
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