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Abstract: Recent video captioning models aim at describing all events in a long video. However,
their event descriptions do not fully exploit the contextual information included in a video because
they lack the ability to remember information changes over time. To address this problem, we propose
a novel context-aware video captioning model that generates natural language descriptions based on
the improved video context understanding. We introduce an external memory, differential neural
computer (DNC), to improve video context understanding. DNC naturally learns to use its internal
memory for context understanding and also provides contents of its memory as an output for additional
connection. By sequentially connecting DNC-based caption models (DNC augmented LSTM) through
this memory information, our consecutively connected DNC architecture can understand the context
in a video without explicitly searching for event-wise correlation. Our consecutive DNC is sequentially
trained with its language model (LSTM) for each video clip to generate context-aware captions
with superior quality. In experiments, we demonstrate that our model provides more natural and
coherent captions which reflect previous contextual information. Our model also shows superior
quantitative performance on video captioning in terms of BLEU (BLEU@4 4.37), METEOR (9.57),
and CIDEr-D (28.08).

Keywords: deep neural network; deep learning; context understanding; recurrent neural network;
action recognition; memory

1. Introduction

In the last few years, deep learning has significantly contributed to the improvement of visual
perception research. This encouraged people in recent vision research to show more interest in
challenging problems, such as video understanding. The main goal of video understanding is to
describe the contents of a video in natural language automatically. Compared to image captioning,
which describes a still image, video understanding is a more challenging task as information in a video
is far more complicated. We need to capture not only the spatial contents of video (objects, scenes),
but also the temporal dynamics (actions, context, flow) within the video sequences for adequate video
description. Recent advances in 3D convolutional neural networks (CNNs) [1] provide a method to
yield semantic representation of each short video segment which also embeds temporal dynamics.
However, for longer and complicated video sequences (such as 120 s long in the ActivityNet dataset [2]),
the context understanding of a video becomes more important for generating natural descriptions.
Since long videos involve multiple events ranging across multiple time scales, capturing diverse
temporal context between events is the key for natural video description with context understanding.
In the following, we introduce traditional video captioning models and their limitations for video
context understanding. We then propose our approach to this problem.
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The conventional deep learning based video captioning models adopt gated recurrent neural
networks (RNN), such as long short-term memory (LSTM) or gated recurrent unit (GRU), with the
encoder-decoder architecture [3–5]. Those models encode each input video sequence into semantic
representations and send it to a decoder to generate video captions. However, those approaches have
following limitations:

1. They cannot generate natural captions for long videos with diverse and complex events.
2. They suffer from a lack of context understanding.

The conventional RNN is not sufficient to encode information with long-term dependency in
long video sequences. Although LSTM or GRU partially address such an issue, long-term dependency
is still an unsolved problem for long sequential data. Additionally, those conventional captioning
models hardly maintain the contextual information included in a video sequence. Due to the memory
limitation in the RNN models, the conventional video captioning models only work for short video
clips with simple scenes and are not applicable to long videos consisting of multiple complicated events.

To overcome this limitation, in this paper, we propose a novel context aware video captioning
model which can generate captions based on temporal contextual information in a long video as shown
in Figure 1. To focus on the temporal context alone, we divide a long input video into event-wise
sub-video clips and leverage external memory to understand temporal contextual information in the
video. To reliably store and retrieve temporal contextual information, we adopt a differentiable neural
computer (DNC) [6]. DNC naturally learns to use its internal memory for context understanding in
a supervised fashion and it also provides the contents of its memory as an output. In our proposed
model, we consecutively connect the DNCs based captioning models (DNC augmented LSTM) with
this memory information which reflects the context, and sequentially train each language model
to generate captions for each sub scenes. In our experiments, we show that the proposed model
generates temporally coherent sentences by using previous contextual information, and compare the
captioning performance with other state-of-the art video captioning models. Additionally, we show
the superior performance of our model based on quantitative measures, such as Bilingual Evaluation
Understudy (BLEU) [7], Metric for Evaluation of Translation with Explicit Ordering (METEOR) score [8],
and Consensus-based Image Description Evaluation (CIDEr-D) [9].
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Figure 1. Context aware video caption generation is required to describe situationally complicated
video in more precise and natural manner. We apply a consecutively-connected DNC architecture to
understand the context in the video.



Electronics 2020, 9, 1162 3 of 15

Context Aware Video Caption Generation

The context aware video caption generation regards how much the generated output is relevant to
its context. In Figure 1, the generated sentence includes ‘new tool’ which indicates our proposed model
understands that the ‘tool’ of current input scene is ‘new’ one. Additionally, another generated sentence
includes ‘then’, which indicates the proposed model understands causality of events. Such abilities
only can be accomplished by context aware caption generation.

From the current scene, 3D CNN extracts valuable information as feature map. Based on the
extracted feature map, the DNC memorizes current scene information and passes through its current
state to the next DNC. The second DNC uses not only current input information but also initialized
by previous DNC state information. Finally, the second DNC comprehends contextual relationships
between previous states and the current input by understanding the current input based on previous
states. Such a process accumulates consecutively, therefore, the final DNC can accommodate context of
the events.

2. Related Works

The early video captioning studies focused on extracting semantic content, such as subject, verb, or
object, and associate them with visual elements in the scenes [10–12]. For instance, there is a study [11]
that constructs a factor graph model to obtain the confidence of semantic contents and finds the optimal
combination of them for sentence template matching. However, such an early model only works for
specific videos and the number of possible expressions is limited. In contrast, recent research [13,14]
shows that the deep learning based approach is effective for video-based language modeling tasks
when it is trained with large dataset including vast amounts of linguistic information.

The earlier studies on deep learning-based video captioning use mean pooling on the feature
map from the pre-trained convolutional neural network (CNN) to obtain feature representations of
every input video frame and apply RNN for language modeling [14]. However, this method is limited
only for video clips with short and static backgrounds. With the success of neural machine translation
(NMT), the LSTM-based encoder-decoder structure, which is known as the sequence-to-sequence
model, is also applied for video captioning [5]. They obtain semantic representations of video frames
from the pre-trained CNN and provide them as input to the LSTM encoder to obtain the final hidden
states. Then they optimize the loss function of the LSTM decoder for one-step ahead prediction to
generate subsequent words. However, since the sentence generation of a decoder only depends on the
output of an encoder, they cannot obtain good performance for long videos. In order to address this
problem, the attention mechanism [15] is introduced to video captioning [16]. Through the attention
mechanism, RNN can generate each word based on soft attention over the temporal segments of a
video. There is a study that adopts such soft attention and visualizes the activated attention region
when it generates a word for image captioning [17]. They apply the CNN feature map vector ai and the
LSTM hidden state ht−1 to the attention model [15] and obtain the attention weight αt,i which indicates
a relation between them. Then they train the LSTM decoder with the weighted sum of CNN feature
map as an initial state to implement the soft attention.

For longer and coherent captioning, researchers also try to consider context information [13,18].
They introduce a hierarchical RNN to encode both local and global contexts of a video. In their model,
the first level of hierarchy learns local temporal structure of each subsequence and the second level of
hierarchy learns global temporal structure between subsequences [18]. They also applied attention to
each layer of the hierarchy to obtain a richer representation for the video captioning which successfully
increased the performance score of METEOR and BLEU. There is another type of hierarchical structure
which stacks RNN for considering contextual information over the RNN for sentence generation [13].
In that model, the higher-level RNN combines its contextual hidden states with the embedded sentence
generated from the lower-level RNN to decide an initial state for the generation of the next sentence.

The closest work to our model is the dense video captioning which generates captions for every
event in the videos [19]. They adopt Deep Action Proposals (DAPs) [20] in order to estimate the start and
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end time of each event in the video and train DAP with the video captioning model. To reflect the past
and future event contexts to the current video caption generation, they apply the attention mechanism
to the hidden states of the LSTM which encodes each sub video clip to show its improvement in
overall context understanding. There is a recent study that introduces descriptiveness-driven temporal
attention which is an improved version of the temporal attention [21]. They applied holistic attention
score which represents descriptiveness of each clip composing a video to increase the attention weights
of descriptive clips.

Previous works applied attention mechanism and hierarchical structure to include the contextual
information in video captioning. However, the context awareness requires to memorize both the
sequence of important events and the relationship between them.

In this paper, we propose a new method that can overcome such limitations of previous video
captioning models by leveraging external memory (DNC) for context understanding [6]. Our model not
only can generate natural captions for each event in a video but also reflects context information between
related events for coherent captioning. There is a recent study that introduces descriptiveness-driven
temporal attention which is an improved version of the temporal attention [21]. They applied holistic
attention score which represents descriptiveness of each clip composing a video to increase the attention
weights of descriptive clips.

Previous works applied attention mechanism and hierarchical structure to include the contextual
information in video captioning. However, the context awareness requires to memorize both the
sequence of important events and the relationship between them.

In this paper, we propose a new method that can overcome such limitations of previous video
captioning models by leveraging external memory (DNC) for context understanding. Our model not
only can generate natural captions for each event in a video but also reflects context information
between related events for coherent captioning.

3. Video Captioning with DNC

3.1. Differentiable Neural Computer (DNC)

Differentiable neural computer (DNC) started from a Turing machine. Turing machines are abstract
modern computer structures which show that all computations are possible given the appropriate
external memory and algorithms [4]. Google Deep Mind proposed the Neural Turing Machine (NTM),
a system that combines neural networks and external memory to implement a differentiable Turing
machine, and in 2016, a Nature paper proposed an improved version of the NTM model, DNC. In their
paper, they demonstrated that DNC can effectively learn how to use memory to deal with complex and
structured data such as Q&A (bAbI), family tree, and London’s subway maps [6]. DNC consists of a
controller and a memory, and the controller transmits a control signal to the memory unit in an interface
vector. The interface vector contains several parameters related to memory operation, and each
parameter determines the weighting factor, which is the degree involved in reading or writing memory.
In the process of finding the correct answer through learning, the controller is trained to output an
interface vector that gives the optimal weighting factor. In other words, the controller learns how to
determine the weighting factor that determines where, in what order, and how much information
is read or written in memory, all of which are determined by the interface vector. Each component
included in interface vector is shown in Table 1.

DNC can perform content-based addressing to find useful information by calculating the similarity
between the content of a memory and a key vector, and location-based addressing to search for
information in the order entered in memory or in reverse order, regardless of similarity. This is why
DNC is able to respond flexibly in understanding the complex nature of data:

ct = C(M, k, β)[i] =
exp(D(k, M[i, ·])β)∑
j exp(D(k, M[ j, ·])β)

(1)
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D(u, v) =
u·v
|u||v|

(2)

where ct ∈ [0, 1] means content-based weighting, and is determined by the cosine similarity between
the key vector belonging to the interface vector and the information vector in memory. DNC allows
content-based weighting to flexibly determine from the data how much to read or write to the
information in memory:

wr,i
t = πi

t[1]b
i
t + π

i
t[2]c

r,i
t + πi

t[3] f i
t (3)

ri
t = MT

t wr,i
t (4)

Equation (3) calculates read weighting wr,i
t ∈ [0, 1], which determines how much information

in memory is read, and Equation (4) calculates read vector ri
t, which means information read from

memory through context-based addressing. πi
t[1], π

i
t[2], and πi

t[3] mean three read modes: backward,
content-based, and forward, and read mode is assigned to each read head. Read weighting wr,i

t is
defined as a weighted sum of each read mode vector, backward weighting bi

t, content-based weighting
cr,i

t , and forward weighting f i
t . Finally, R read vectors ri

t are obtained through the matrix product of
memory matrix Mt and read weighting wr,i

t :

ww
t = gw

t

(
ga

t at +
(
1− ga

t

)
cw

t

)
(5)

Mt = Mt−1
(
E−ww

t eT
t

)
+ ww

t vT
t (6)

Equation (5) shows write weighting ww
t ∈ [0, 1] to determine how much information to allocate to

memory, and Equation (6) shows the update process of memory matrix Mt at is allocation weighting,
which introduces a usage vector, which is a value related to the frequency of memory usage, so that
the usage vector has a small value, that is, a large value at a memory address that has not been
used. The allocation gate ga

t ∈ [0, 1] in Equation (5) is learned to have a large value when memory
allocation occurs. It enables flexible memory allocation by determining the superiority of location-based
addressing and content-based addressing. Finally, the memory erases the information from memory
by subtracting the multiplication of erase vector et and write weighting ww

t from the previous memory
matrix Mt−1, and the information is allocated to memory by adding the multiplication of write vector
vt and write weighting ww

t as shown in Equation (6).

Table 1. Components of interface vector.

Notation Name Notation Name

kr,i
t Read keys vt Write vector
βr,i

t Read strength f i
t Free gates

kw
t Write key ga

t Allocation gate
βw

t Write strength gw
t Write gate

et Erase vector πi
t Read modes

3.2. A Single DNC-LSTM-Based Video Caption Model

Our proposed model sequentially connects and trains a single video caption generation model
with DNC for temporal context awareness. As shown in Figure 2, a single video caption generation
model is an encoder-decoder network integrated with DNC memory. It encodes a video clip with
pre-trained 3D-CNN and generates sentences from the information stored in DNC memory by using
an LSTM decoder.

We use a 4096-dimensional feature map obtained from the pre-trained 3D-CNN [1] to extract
spatial-temporal features of a video. For this process, we divide video sequences into a number of
small video clips with each 16 frames (δ = 16) and extract feature vectors for each clip. For more
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temporally coherent feature extraction, we apply this method on every video clip by overlapping eight
frames as follows:

f eaturest = Φ
(

f ramesδ(t−0.5):δ(t+0.5)

)
(7)

where f eaturest are the extracted features at time step t, f ramesδ(t−0.5):δ(t+0.5) are the selected frames in
the current video clip, and Φ(·) is the 3D CNN which generates a 4096-dimensional feature map from
the last fully-connected layer.
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the DNC for each time step and stored in the DNC memory. After encoding all input, the final DNC
output is used as the initial state of the LSTM decoder for caption generation.

After this process, to reflect the previous information in the memory of the DNC to current
information, we concatenate the read vector, which reflects the contents of past DNC memory with the
current input feature vector and provide them as input to the DNC controller. Since the input to the
DNC controller includes the sequence of 3D CNN features, input xt on (time step) = t is as follows:

xt = concat(rt−1, f eaturest), t ∈ [0, T] (8)

where rt is the read vector at the time step t. The DNC output of last time step T, which is the
concatenation of read vector rT and controller output vector vT, is projected on the output space.
This value is used as the initial state sdec

0 of LSTM decoder as in Equation (9). The decoder is trained to
generate sentences based on the value of sdec

0 :

sdec
0 = WDNC

out concat(rT, vT) (9)

where WDNC
out ∈ R

dh×(dread+dcontrollerout ), dh is the number of LSTM decoder hidden unit, dread is the size of
read vector and dcontrollerout is the size of LSTM controller output vector. The decoder has the LSTM
structure which takes input of embedded words as shown in Equation (10). In Equation (11), the output
of LSTM at each time step hdec

t predicts the one-hot vector of a next word by applying the Softmax
function to the outcome of the fully connected output layer with the nodes of vocabulary size as:(

cdec
t , hdec

t

)
= sdec

t = LSTMdec
(
sdec

t−1, Wdec
embwin

t

)
(10)
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preddec
t = so f tmax

(
Wdec

predhdec
t

)
(11)

where Wdec
emb ∈ R

demb×Vocab, Wdec
pred ∈ R

dh×Vocab and cdec
t is the LSTM decoder cell state where Vocab is the

size of the vocabulary and demb is the size of the word embedding vector of the decoder. The win
t is the

one-hot vector with the size of vocabulary and is fed as an input to each decoder step. We can obtain
the vector by shifting the target sentence by one step for the one-step ahead prediction. The Wdec

emb is
the word embedding matrix and the Wdec

pred is a matrix for projection of LSTM output to a vocabulary
size vector.

The loss function is defined by the cross-entropy between the LSTM output vector and the one-hot
vector of a target word, and optimized by the Back-Propagation Through Time (BPTT) algorithm
as follows:

lossdec = −
1
T

1
N

1
Vocab

×

∑
t

∑
i

onehot
(
wtarget

t

)
× log

(
preddec

t

) (12)

where i ∈ [0, Vocab], t ∈ [0, L], and N is the size of the mini-batch. Since composing long video samples
with several mini-batches can cause excessive zero-padding, we set N = 1 in our proposed model.
The wtarget

t is tth word of the target sentence which is converted to the one-hot vector of vocabulary
size. The DNC learns optimal memory operations to generate a target sentence and the LSTM decoder
learns to generate sentences when the video scene representation is given.

Through the association operation which is based on the similarity between the given data and
stored information in a memory, the DNC can retrieve information stored in the memory. In our
proposed model, we take advantage of such characteristic of the DNC for understanding the context of
complex and long videos.

3.3. Consecutive DNC-Based Video Caption Model

In this paper, we have two hypotheses:

1. The information stored in external DNC memory has its own unique context information.
2. The temporal contextual information can be obtained through the connections of (1) over time.

Based on the above hypotheses, the main idea of our model is to provide a temporal context to
the video caption generation by passing various components involved in DNC memory operations
and its mechanism to the next stage of DNC.

In other words, we can utilize abstracted information of accumulated input data in DNC memory
and the values involved in the memory I/O operation as a medium for context awareness. Under this
assumption, we define the context vector Contextk of kth sub-scene with an input sequence length T
as follows:

Contextk =
(
Mk

T, uk
T, pk

T, Lk
T, ww,k

T , wr,k
T , rk

T

)
(13)

where k ∈ [0, K]. The meaning of each component of the Contextk is follows:

• Memory matrix Mk
T: Abstractive representation of the input data updated by content-based

addressing and location-based addressing.
• Usage vector uk

T: Frequency of usage. The more frequently the memory is used, the larger
the value.

• Precedence vector pk
T: Memory allocation priority. When a memory block is assigned with data,

it decreases. It differentiates memory allocation priority to reduce interference between the
memory blocks.

• Link matrix Lk
T: The order of each memory block usage. Lk

T[i, j] becomes larger if the jth memory
block, right after the ith memory block is more frequently used.

• Write weight ww,k
T : The degree of a given input data is reflected to memory. The larger the value,

the more information is stored in memory.
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• Read weight wr,k
T : The degree of information read from memory. The larger the value, the more

information is read from memory and reflected in an output.
• Read vector: Information read from a memory through three types of read modes—content-based,

forward, and backward.

As shown in Figure 3, each DNC memory for each sub-video clip is initialized with the context
vector Contextk generated from its previous DNC for context awareness. Based on this structure,
we sequentially train each LSTM decoder for coherent caption generation. If we represent the model
in Section 3.1 as G(·), the (k− 1)th context vector as Contextk−1, feature sequence obtained from the
3D-CNN for kth sub-scene as f eaturesk

0,··· ,(T−1)
and the result of sentence generation as preddec,k

0,··· ,(L−1)
,

then, our entire video captioning model can be described as Equation (14).

preddec,k
0,··· ,(L−1)

= G
(

f eaturesk
0,··· ,(T−1), Contextk−1;θ

)
(14)
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Each event stage is identical to the single DNC model. However, the state of the kth DNC is initialized
with the final state of the (k− 1)th DNC. Therefore, the consistency in context can be preserved.

Based on the BPTT algorithm, our model is trained by sequentially optimizing the cross-entropy
loss function between the sentence preddec,k

0,··· ,(L−1)
from each sub-scene and a target sentence wtarget,k

0,··· ,(L−1)
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over all sub-scenes as shown in Equation (15). The DNC and the LSTM share their model parameters
over every stage k for context understanding and sentence generation:

lossdec,k
context = −

1
T

1
N

1
Vocab

×

∑
t

∑
i

onehot
(
wtarget,k

t

)
× log

(
preddec,k

t

) (15)

where i ∈ [0, Vocab] and t ∈ [0, L]. The proposed model learns how to read or write various connection
patterns between each sub-scene to the external memory and flexibly utilize the context information
for video captioning. In addition, by reading the context information accumulated in the memory
through a DNC read vector, and provide it as the initial state of the LSTM decoder for training, it is
possible to generate the sentences with context understanding.

4. Experimental Results

For the performance evaluation, we compare our model with other state-of-the-art video captioning
approaches [14,19,21–23] with respect to the context awareness. We have performed four experiments
with the ActivityNet Caption dataset [19]. First is learning the curve comparison, which indicates that
the proposed model is computationally efficient, as shown in Figure 4. Second is the ‘without context’
experiment, which indicates the efficiency of DNC itself. Third is the ‘with context’ experiment,
which indicates how our proposed consecutive DNC outperforms other approaches. Finally, the last
experiment is a qualitative evaluation for generated caption examples, which indicates that our results
include more relevant contextual information. Since the goal of our approach is understanding the
context of the video without explicitly searching for event-wise correlation, dense video captioning
models are not appropriate for comparison. Therefore, we select only video captioning models
which considers context from video for our experiment. We also show the effect of the DNC memory
connections over time in our model. In our experiments, we focus on the context awareness of generated
captions. To evaluate the model performance independent of sub-scene localization, we assume that
event localization is already performed. The 3D CNN feature sequences are extracted based on the
specified start and end time of each sub-scene in the ground truth dataset, and used for training and
testing of our model.
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Figure 4. An example of the ActivityNet caption dataset. Each caption description is related with not
only the current scene but also past situations. Therefore, the ActivityNet dataset is suitable to show
the context awareness performance of our proposed model.
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The dataset used in our experiments is ActivityNet Caption dataset [19] which is based on
ActivityNet version 1.3 [24] and consists of about 20,000 YouTube videos. Each video has an average
length of 180 s and each datum sample includes the captions which are composed of start/end time
and description of the sub-scenes. Each sample includes three sub-scenes in average and each caption
is a sentence consisting of average 13.5 words. The captions are prepared while considering the causal
relationships between events. The number of training/validation/test videos are 10,024/4926/5044,
respectively, and the total number of sentences is 100,000.

4.1. Model Training

To extract the spatio-temporal features from a video, we apply a pre-trained 3D CNN which is
trained on sports 1M dataset [1]. For this process, we define 16 video frames as one clip and input
them to the 3D CNN to extract a 4096-dimension feature vector of the last fully-connected output
layer. In order to extract detailed features, slide-windowing is performed on the video samples by
overlapping eight frames at a time. For sentence preprocessing, the PTB tokenizer included in the
Stanford CoreNLP tool [25] is used. The word dictionary for converting words to integers is constructed
based on the sentences contained in the training and validation datasets. Each word is converted to a
one-hot vector, and then converted to a dense vector expression by multiplying the word with a matrix
for word embedding, and is used as input to the decoder.

The DNC controller uses LSTM with 256 hidden units. In addition, the number of DNC memory
blocks is 256, the size of the vector stored in a memory is 64 dimensions, and the read head for the
read vector is four, in total. The read vector of the DNC is projected to a vector with a size of 1024 to
obtain a final output, and this vector is used as the initial state of the LSTM decoder. The number of
hidden units of the LSTM decoder is set to 1024, and each word is converted into a 300-dimension
embedding vector. To avoid over-fitting, we apply the dropout [26] with 0.3 ratio on every I/O layer of
the LSTM layers.

For training, the ADAM optimization algorithm is used, and the learning rate is set to 2× 10−4 and
the momentum decay parameters β1 = 0.9 and β2 = 0.999 are used according to the method proposed
in [27]. As shown in Equation (15), the cross-entropy between the output of the LSTM decoder and the
one-hot vector of a target word is used for the loss function. Since configuring video consisting of
multiple sub-scenes into multiple mini-batches can results in excessive zero-padding, we set the size of
mini-batch as 1.

After training the kth scene, to provide the context information accumulated in the DNC to the
(k + 1)th scene, we construct a Contextk tuple as described in Equation (13) and set it as the initial
value of the DNC memory for the training of the (k + 1)th scene. The same procedure is performed
sequentially for all following sub-scenes. We measure the loss and 4-g BLEU score (B@4) of the training
data for every 100th time point and check the progress by measuring the loss and BLEU score of the
validation data for every 1000 time point. After six epochs of training, when the loss and BLEU scores
are converged for validation data, we finish the training process. In our experiment, the entire training
takes 12 h with the computing power of NVIDIA QUADRO GV100 of 5120 CUDA cores, 640 tensor
cores and 32GB GPU memory.

For the evaluation of a single DNC based captioning model, it is not connected with any other
DNC memories over time and the Contextk tuple is also not used. The initial value of the single DNC
model is always set to default so that the caption can be generated only from the current input video
sequences without any consideration for the context between events. All other conditions are same,
and the training is continued for six epochs and finished. Figure 5 shows the learning curve of our
model conditioned on ‘with context’ and ‘without context’. Both learning curves which are almost
similar indicate that even though we additionally include our proposed model, it does not increase
the problem complexity. Each line with the color of blue and brown represents the BLEU score of
training and validation, respectively, and each green and orange correspond to the loss of training and
validation, respectively.
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4.2. Performance Comparison with Other Approaches

Tables 2 and 3 show the results of the quantitative performance comparison between the proposed
model and other models in the video captioning field with the ActivityNet Caption dataset. For the
performance measurements, BLEU [7], METEOR [8], and CIDEr-D [9] are used.

In the ‘without context’ comparison, [14,22] trained each sub-scene and its caption as a single
sample, and the context between the scenes is disconnected as in the case of ‘without context’ condition
in our model. In LSTM-YT [14], feature maps from the pre-trained VGG network are extracted and the
result of mean pooling over the time axis is used as the initial state of the LSTM decoder. S2VT [22] has
an encoder-decoder structure in which the mean pooling is replaced with an LSTM encoder. Those two
models are well-known approaches which use CNN-extracted features for caption generation, but not
considering contextual information. Those models only consider temporal sequential information in
their structures. Therefore, those approaches are suitable for ‘without context’ comparison to show the
caption generation performance of a single DNC model. H-RNN [23] uses two RNNs, one for a sentence
generator, and the other for determining an initial state of a generator for the next sub-scene description.
TempoAttn [19] presented the dataset used in this experiment, and we adopt their model as a baseline
of comparison for our study. In order to reflect the past and future contexts to the current sentence
generation [19], applied an attention mechanism to the hidden states of the LSTM which encodes each
scene for context understanding. DVC [21] is the most recent study to have applied a holistic attention
score on an attention mechanism to distill descriptive video clips. Those three selected models are
known as context aware approaches. Those models consider specific structures to address context
information. Therefore, we can show how much our proposed model generates contextually more
relevant results in quantitative and qualitative evaluation compared to those models. The evaluation is
performed for [14,22] with the condition of ‘without context’ and [19,21,23] ‘with context’, respectively.

Table 2. Comparison with other video caption generation models not considering context for the
Activity Captions validation set with ground truth proposals. Bold numbers indicate the best results
compare to other approaches.

BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR CIDEr-D

LSTM-YT [14] 18.40 8.76 3.99 1.53 8.66 24.07
S2VT [22] 18.25 8.68 4.02 1.57 8.74 24.05

Without context (ours) 21.4 10.3 5.72 3.51 8.56 23.87

As shown in Table 2, compared to [14,22] with LSTM, the proposed DNC-based ‘without context’
model produces an overall higher score for BLEU and comparable scores for METEOR and CIDEr-D.
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In this result, we can see that using DNC as a video encoder instead of LSTM can improve the video
captioning performance in terms of BLEU.

Table 3. Comparison with other video caption generation models considering context for Activity
Captions validation set with ground truth proposals. Bold numbers indicate the best results compare
to other approaches.

BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR CIDEr-D

H-RNN [23] 18.41 8.80 4.08 1.59 8.81 24.17
TempoAttn [19] 18.13 8.43 4.09 1.60 8.88 25.12

DVC [21] 19.57 9.90 4.55 1.62 10.33 25.24
With context (ours) 23.4 11.9 6.88 4.37 9.57 28.08

The comparison results in Table 3 show that our proposed model outperforms all other models in
terms of BLEU and CIDEr-D score considerably. Additionally, our model’s METEOR score is superior
to the baseline Temporal Attention model [19] and the H-RNN model [23], but slightly lower than
DVC [21]. Moreover, compared to the proposed ‘without context’ model result in Table 2, the proposed
‘with context’ model shows significant improvement in performance. The quantitative analysis results
indicate the excellence of the proposed consecutive DNC structure for context awareness. Since the goal
of our model is not dense captioning, but context-aware captioning, quantitative analysis is not sufficient
to measure how well the context is reflected in the generated descriptions. Therefore, we will show a
more detailed result of our proposed model through qualitative analysis. In Figure 6, we compare the
generated captions of our ‘with context’ model, ‘without context’ model and TempoAttn [19]. Figure 6a
shows that TempAttn repeats the same description for the second scene, although the scene has already
changed. However, for the same case, our model generates the sentences with words of contextual
meaning, such as the endings and beginnings, which are marked in bold, implies that our description
contains more context-related words than other models. In the case of the ‘without context’ model,
even though the gymnast’s performance is already finished in the last scene, it cannot recognize the
situation and generates an incorrect description, “beginning performing”. In contrast, the ‘with context
model’ generates more natural and coherent sentences compared to all other models by using the words
with contextual meaning, such as “then”, “the new tool” (different from a previous tool), “the same
product” (same as a previous one), etc.
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Figure 6. Comparison between generated captions. Our proposed model, consecutive DNC
(‘with context’), and without consecutive connection of DNC (‘without context’) are compared to
TempoAttn. ‘GT’ represents ground truth: (a) is a gymnast example and (b) is a tile work example.

According to the qualitative analysis, we can easily understand that the frequent usage of pronouns
or conjunctions for contextual expressions can be found compare to other approaches. In order to
come out of various concatenations, the connection must be natural considering the context, so we can
realize that the context is well considered even though it is disadvantageous in some cases of numerical
evaluations. Furthermore, the performance of the consecutive DNC captioning model with contextual
connection is superior to the single DNC captioning model without context consideration. This result
demonstrates the effectiveness of the contextual connection of the DNC-based caption generation
model in learning temporal context.

5. Conclusions

In this paper, we propose a new video captioning model that comprehends video with context
information and generates natural and coherent captions. We showed the superior captioning
performance of our model for the video with context information when compared to other
state-of-the-art video captioning models. Our model leverages the external memory (DNC) for
the context information management in a single video captioning model and sequentially connects
several single captioning models to enhance temporal context understanding in video. This linking of
external memory (with context) via contextual information vector showed significant improvement in
video context understanding [14,19,21–23]. From those results, we can conclude that the introduction of
DNC memory for managing context information improves not only the performance of video captioning
but also the understanding of contexts in a video. In our future work, we will improve the feature
extraction method and include event localization method to our proposed model. Additionally, we will
combine Transformer [28] and BERT [29] with our proposed DNC based model for better performance.
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