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Abstract: We propose an adaptive weighted high frequency iterative algorithm for a fractional-order
total variation (FrTV) approach with nonlocal regularization to alleviate image deterioration and to
eliminate staircase artifacts, which result from the total variation (TV) method. The high frequency
gradients are reweighted in iterations adaptively when we decompose the image into high and low
frequency components using the pre-processing technique. The nonlocal regularization is introduced
into our method based on nonlocal means (NLM) filtering, which contains prior image structural
information to suppress staircase artifacts. An alternating direction multiplier method (ADMM) is
used to solve the problem combining reweighted FrTV and nonlocal regularization. Experimental
results show that both the peak signal-to-noise ratios (PSNR) and structural similarity index (SSIM) of
reconstructed images are higher than those achieved by the other four methods at various sampling
ratios less than 25%. At 5% sampling ratios, the gains of PSNR and SSIM are up to 1.63 dB and
0.0114 from ten images compared with reweighted total variation with nuclear norm regularization
(RTV-NNR). The improved approach preserves more texture details and has better visual effects,
especially at low sampling ratios, at the cost of taking more time.

Keywords: compressed sensing; total variation; fractional-order differential; nonlocal regularization; ADMM

1. Introduction

Compressed sensing (CS) [1,2] is an emerging framework for data acquisition and reconstruction,
which permits us to reconstruct the original sparse or compressible signals from only a small
number of linear measurements. CS has been exploited in image processing, such as 3D video [3],
medical imaging [4], single-pixel imaging [5]. This is based on the principle that, through optimization,
the sparsity of a signal can be recovered from far fewer samples than required by the Nyquist–Shannon
sampling theorem when the measurement matrix satisfies the restricted isometry property (RIP) [6].
There is an attractive advantage that CS-based methods decrease data storage and transmission costs
significantly for systems requiring large data. The most notable application, the single-pixel imaging
system, reconstructed images from only a small amount of data from a single photodetector, with the
result that it implements the mixing of image signals with a random mask such as the Hadamard
matrix generated by a digital micromirror device (DMD) [7].

More specifically, the CS model reconstructs the image x ∈ Rn from measurements y and it can be
expressed as:

min
x
‖Ψx‖ s.t. y = Ax (1)
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where Ψ is transformation domain, A ∈ RM×N represents measurement matrices. The image x can be
recovered by an inverse problem:

x̂ = argmin
x

1
2
‖Ax− y‖22 + µΨ(x) (2)

where Ψ(x) is a sparse prior, µ is the regularization parameter, which can control the trade-off between
the regularization and data fidelity. Sparse prior knowledge [8] plays an important role in signal
reconstruction. Generally, the current CS algorithms exploit the prior knowledge of original images
under some suitable transformation such as DCT [9], wavelets [10], and total variation model [11,12].
The most popular approach is TV owing to the advantages of preserving image edges and reconstruction
performance, which can be defined as:

‖∇x‖TV =
n∑

i=1

√
(Dxxi)

2 + (Dyxi)
2 (3)

where Dx and Dy denote horizontal and vertical difference operators, respectively.
TV models sets the same penalty for all gradients, which fails to preserve image details accurately

and often leads to undesirable serious staircase artifacts. So many improved solvers have been
proposed such as TVAL3 [13], TVNLR [14], RTV-NNR [15]. Li CB et al. proposed TVAL3, introducing
an augmented Lagrangian method and an alternating technique with a nonmonotone line search
to preserve edges. Zhang et al. [14] used an improved nonlocal regularization constraint operator,
reducing reconstruction errors significantly by averaging the weights of TV regularization. Candes [16]
proposed a reweighted TV, which penalized the gradients in each iteration adaptively with the weights
wi. The model can be expressed as:

‖∇x‖RTV =
n∑

i=1

wi

√
(Dvxi)

2 + (Dhxi)
2 (4)

where weights w can be defined as:

wt+1
i =

1
‖Dxt

i‖2 + ε
(5)

Weights w are updated by x in each iteration, setting the different penalty for different regions.
The parameter ε is a small positive constant to avoid division by zero. The regions which have large
gradients (e.g., texture details) have small penalty and the others have large penalty. This method
preserves the image edges effectively.

To improve the quality of reconstructed images, another strategy is nonlocal regularization based
on nonlocal means (NLM) filtering. This strategy is effective for preserving image details and sharp
edges by exploiting structural information. Dong [17] proposed a nonlocal low-rank regularization
method using a smooth surrogate function for the rank as structured sparsity instead of the convex
nuclear norm. This method combines nonlocal self-similarity and low rank to eliminate redundant
information and artifacts. However, the reconstructed images are over-smoothed owing to the average
tendency of different similar patches.

In this paper, we propose an adaptive reweighted fractional-order TV with nonlocal regularization
for image reconstruction. This approach improves the TV model and only weights the high frequency
gradients by extracting the high frequency components (e.g., texture details) from the images using
pre-processing technique [18]. Fractional-order differential operators are introduced into the TV
model replacing integer-order differential operators, enhancing high frequency components of images.
We adopted the Grünwald–Letnikov (G-L) model using four different directions to handle the
fractional-order gradients. Prior knowledges are exploited by introducing the nonlocal regularization
constraint as structural information. An efficient augmented Lagrangian is developed to solve the above
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problem. ADMM is used to decompose this objective function into four sub-problems. We evaluate
reconstruction performance by using peak a signal-to-noise (PSNR) and structural similarity index
(SSIM) compared with other TV-based CS reconstruction methods.

We decompose the low and high frequency components, analyze the fractional differential model
with different directions and give the definitions of nonlocal regularization in Section 2 of this paper.
In Section 3, we describe equations of the proposed models. In Section 4, experimental results
demonstrate the effectiveness of the proposed models. In Section 5, we give the conclusion.

2. Related Works

2.1. Fractional-Order Differential Model

We introduce a fractional-order differential operator into TV-based algorithm. A fractional-order
gradient, regarded as a generalization of the integer-order gradient, is composed of the fractional-order
derivative at different directions. Here, we use the Grünwald–Letnikov (G-L) model [19,20] for image
reconstruction and this model can be defined as:

G
a Dv

t f (x) = lim
h→0

1
hv

[ t−a
h ]∑

k=0
(−1)m

×Cv
k × f (t− kh) (6)

where v is fractional orders of function, t and a are the upper and lower boundaries of independent
variables respectively, and h is the differential step-size.

The total variation model of the image X can be viewed as the sum of two-dimensional discrete
signal gradients in Equation (3). Fractional-order differential operators are introduced into the TV
model, and the new model can be expressed as:

‖∇
vx‖FTV =

√
(Dv

xx)2 + (Dv
yx)2 (7)

where Dv
x, Dv

y represent fractional-order gradients in horizontal and vertical directions respectively:
Dv

xx =
k−1∑
k=0

(−1)kCv
kxi−k, j

Dv
yx =

k−1∑
k=0

(−1)kCv
kxi, j−k

(8)

More specifically, we use four different directions to handle fractional-order gradients simply,
corresponding to negative x and y axes, positive x and y axes, which the approximate extensive
backward difference and the forward difference can be deduced easily. If the higher accuracy is
required, more different directions (i.e., eight directions or sixteen directions) can be used with time
costs permitting. In Equation (8), the corresponding coefficients Cv

k are expressed as:



Cv
0 = 1

Cv
1 = −v

Cv
2 =

v(v−1)
2

...

Cv
k = (−1)k Γ(v+1)

Γ(k+1)Γ(v−k+1)

(9)
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According to Equation (9), four different expressions can be written as:

Dv
x− = Cv

0xi, j + Cv
1xi−1, j + Cv

2xi−2, j + · · ·+ Cv
k−1xi−k+1, j

Dv
y− = Cv

0xi, j + Cv
1xi, j−1 + Cv

2xi, j−2 + · · ·+ Cv
k−1xi, j−k+1

Dv
x+ = −Cv

0xi, j −Cv
1xi+1, j −Cv

2xi+2, j − · · · −Cv
k−1xi+k−1, j

Dv
y+ = −Cv

0xi, j −Cv
1xi, j+1 −Cv

2xi, j+2 − · · · −Cv
k−1xi, j+k−1

(10)

The fractional differential model enhances high frequency components more effectively,
which preserves image details meanwhile losing some low frequency components.

2.2. Adpative Reweighted Total Variation Model

Natural images can be decomposed into smooth regions (low frequency components) and texture
details (high frequency components), such as Lena in Figure 1. There is a fuzzy contour in Figure 1a,
and it contains the most of image energy. Sharp edge textures can be seen in Figure 1b, which is crucial
for visual effects. Equation (4) sets the different penalty for different gradients to preserve image edges
without considering the structural information that results in the false textures and artifacts.
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Figure 1. De-high and De-low frequency images of Lena: (a) low frequency components; (b) high
frequency components.

We propose a new adaptive reweighting strategy for total variation model to solve the problem
which loses the high frequency parts of the images. Decomposing low and high frequency components is
a critical technique for the new strategy. Image x is decomposed into the smooth regions (low frequency)
xL and image details (high frequency) xH. We only weight the high frequency components xH in
iterations. The new TV model can be defined as:

‖∇>x‖RTV =
∑

i∈xL

|Di>xL|+
∑

i∈>xH

wi|DixH | (11)

To extract the low frequency components of images, we can solve the following deconvolution problem:

argmin
ZL

1
2
‖x− fL ⊗ZL‖

2
2 + κ

∑
d
‖gd ⊗ZL‖

2
2 (12)
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where fL is a 3× 3 low pass filter and all coefficients are 1/9, ⊗ denotes convolution operation. ZL is a
low frequency feature map, and gd= [1, − 1] is the horizontal and vertical gradient operator. κ is a
user-defined parameter. The solution of Equation (12) can solved by fast Fourier transform (FFT):

ZL = F −1
(

F
∗( fL) ◦ F (x)

F ∗( fL) ◦ F ( fL) + κ
∑

d F
∗(gd) ◦ F (gd)

)
(13)

where F and F −1 is FFT and inverse FFT, ‘∗’ denotes complex conjugate, and ‘◦’ denotes
component-wise multiplication.

Therefore, the low and high frequency components can be expressed as:{
xL = fL ⊗ZL

xH = x− xL
(14)

We only employ the high frequency components to update the weights:

wt+1
i =

1

‖xt
H‖

2
2 + ε

(15)

2.3. Nonlocal Regularization Model

For nature images, there are lots of same image patches in different regions and the same patches
may be far apart in space domain, that is the nonlocal similarity. The similarity between two patches
depends on the similarity of intensity gray levels by measuring Gaussian weighted Euclidean distances.
We consider a nonlocal regularization model [21,22] based on nonlocal self-similarity to obtain more
appropriate weight coefficients.

Given an image x =
{
x(i)|i ∈ Ω

}
, the estimate value x̂(i) for a pixel i can be defined as:

x̂(i) =
∑

j∈S(i)

ωi jx( j) (16)

where S(i) is a i-centered search window Ls × Ls, x( j) is the intensity at pixel j. Ni and N j denote the
center pixel of similarity window ds × ds. The weights wi j depending on the similarity between gray
value vectors P(Ni) and P(N j), can be defined as:

W(i, j) = ωi j =
1

Z(i)
exp

(
−‖P(Ni) − P(N j)‖

2
2,α/h2

)
(17)

where h is an attenuation factor, altering the decay of the exponential function, and α is a standard
deviation for Gaussian kernels. Z(i) is a normalizing constant, defined as:

Z(i) =
∑
j
exp

(
−‖P(Ni) − P(N j)‖

2
2,α/h2

)
(18)

The nonlocal regularization (NR) model is expressed as:

NR(x) = ‖x−Wx‖22 (19)

3. Reweighted Fractional-Order TV Method with Nonlocal Regularization

In this section, we consider two strategies to improve the TV method for solving texture deficiency.
First, low frequency and high frequency components of images are decomposed by Equations (13)
and (14). Fractional differential operators are introduced into the TV model by using four different
directions to handle fractional-order gradients approximately. We defined the FrTV weights by using
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Equation (15) and only adaptively reweight the high frequency gradients. Second, the nonlocal
regularization constraint is employed as structural information to eliminate staircase artifacts.

The proposed method can be expressed as the optimization problem:

argmin
x

1
2
‖Ax− y‖22 + λ

{∣∣∣DvxL
∣∣∣+ w

∣∣∣DvxH
∣∣∣}+ β‖(I−W)x‖22 (20)

where λ and β are regularization parameters, w is the high frequency parts weights and W is a
regularization matrix. It is difficult to solve directly due to the non-differentiability. To solve this
problem efficiently, we add constrained auxiliary variables:

argmin
x

1
2‖Ax− y‖22 + λ{|ZL|+ w|ZH |}+ β‖(I−W)u‖22

s.t.x = u, DvxL = ZL, DvxH = ZH
(21)

The corresponding augmented Lagrangian converting constrained Equation (21) into
unconstrained objective functions:

L(u, x, ZL, ZH) = argmin
x

1
2‖Ax− y‖22 + λ{|ZL|+ w|ZH |}+ β‖(I−W)u‖22

+α
2 ‖u− x + a‖22 +

γ1
2 ‖ZL −DvxL + b‖22 +

γ2
2 ‖ZH −DvxH + c‖22

(22)

where a, b, c are the Lagrangian multipliers, α, γ1, γ2 are corresponding meta-parameters. We solve
the Equation (22) by solving Equations (23) and (24) iteratively:(

ut+1, xt+1, Zt+1
L , Zt+1

H

)
= argmin

u,x,ZL,ZH

L

(
ut, xt, Zt

L, Zt
H

)
(23)


at+1 = at

−

(
xt+1
− ut+1

)
bt+1 = bt

−

(
DvxL

t+1
−ZL

t+1
)

ct+1 = ct
−

(
DvxH

t+1
−ZH

t+1
) (24)

Alternating direction method of multipliers (ADMM) is drawn into decomposing four
sub-problems using a variable splitting technique. We update each parameter iteratively until
convergence. Assuming other parameters are fixed, u problem can be expressed as:

ut+1 = argmin
u

β‖(I−W)u‖22 +
α
2
‖u− xt + at

‖
2
2 (25)

Equation (25) has the closed form solution. Derivative Equation (25) and make derivative zero,
we can obtain the solution:

ut+1 = α
[
β(I−W)T(I−W) + αI

]−1(
xt
− at

)
(26)

Fixing u, x, ZH, the sub-problem ZL is equivalent to:

Zt+1
L = argmin

ZL

λ|ZL|+
γ1

2
‖ZL −DvxL

t + bt
‖

2
2 (27)

According to the Shrinkage-like lemma, solving Equation (22) with respect to ZL gives a closed-form
solution at the t-th iteration:

ZL = sign(DvxL − b) ·max
(∣∣∣DvxL − b

∣∣∣− λI
γ1

, 0
)

(28)
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The sub-problem ZH has the similar expression with the same lemma:

ZH = sign(DvxH − c) ·max
(∣∣∣DvxH − c

∣∣∣− λw
γ2

, 0
)

(29)

According to Equation (14) and fixing the other parameters, the last sub-problem x can be
expressed as:

xt+1 = argmin
x

1
2
‖Ax− y‖22 +

α
2
‖ut
− x + at

‖
2
2 +

γ2

2
‖Dvx−ZL

t
−ZH

t + ct
‖

2
2 (30)

For Equation (30), taking the derivative and finding zero of the derivatives, we can get the solution:

xt+1 =
(
ATA + αI + γ2DvTDv

)−1(
ATy + α

(
ut + at

)
+ γ2DvT(ZL + ZH + c)

)
(31)

Calculating Equation (31) directly will cost much time, so we find the solution by conjugate
gradient method. The complete procedure of the improved method is shown in Algorithm 1.

Algorithm 1 The proposed algorithm

Input: the measurement y, the measurement matrix A
Initialization:

Initialize image x̂ using standard DCT recovery method
Set parameters a, b, c, λ, β, α, γ1, γ2

Outer loop: t = 1, 2, 3, · · · , T
Compute regularization matrix W by Equations (17) and (18)
Decompose the low frequency components xL and high frequency components xH
Compute weights w
Inner loop: τ = 1, 2, 3, · · · , Γ
Update u using Equation (26)
Update low frequency gradients ZL and high frequency gradients ZH using Equations (28) and (29)
Update x using Equation (31)
End for
Update the Lagrangian multipliers a, b, c using Equation (24)

End for
Output: the reconstructed image x

4. Experimental Results and Analysis

The improved algorithm is compared with the other CS algorithms by evaluating the reconstructed
performance on ten standard natural images with size 256 × 256, which are from the university of
southern California image library. The original images are shown in Figure 2. In general, we quantify
the reconstruction quality in terms of PSNR and SSIM. PSNR and SSIM are defined as:

PSNR= 10lg
(

2552

MSE

)
, MSE =

1
mn

m−1∑
i=0

n−1∑
j=0
‖I(i, j) −K(i, j)‖2 (32)

SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(33)

where MSE is the mean square errors between original images I(i, j) and reconstructed images K(i, j).
µx and µy are gray mean of original images and reconstructed images, σx and σy are variance of original
images and reconstructed images, σxy is covariance. C1 and C2 are constant.

In our experiments, a Gaussian random matrix is used as a measurement matrix. We select the most
appropriate parameters as follows: Ls = 13, ds = 7, h = 0.3, λ= 1.8, β= 0.9, α = γ1 = γ2= 1, κ= 30,
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ε= 0.1 empirically. The Lagrangian multipliers a, b, c are initialized to zero matrices. The proposed
algorithm is compared with four algorithms, i.e., BCS-TV [23], TVNLR, NLR-CS, RTV-NNR. We obtain
the experimental results at various sampling ratios (5%, 10%, 15%, 20%, 25%, 30%). All the experiments
are performed on the Lenovo computer with Inter(R) Core (TM) i5-10210U CPU (1.6 GHz) and 16 G
memory, running Windows 10 and Matlab 2012a.
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4.1. The Influence of Fractional-Order v

The optimization of the parameters plays a vital role in image processing to obtain satisfied
reconstructed results within acceptable time. Fractional-order differential operators can enhance high
frequency components comparing with integer-order differential model. We analyze the effect of
the parameter v on reconstruction performance to get the best quality. The image Barbara is used to
evaluate the performance at 30% sampling ratios and several different fractional orders are chosen.
The results are shown in Figures 3 and 4. For each v, we obtain the reconstructed images and the
residual images. It is obviously that when v < 1, images reconstructed by the proposed method
lost many texture details and the contour can be seen in residual images. When v = 1, this method
computes the integer order gradients and cannot preserve details effectively. When v > 1, high
frequency components are enhanced and reconstructed images have better visual effects. We cannot
see the contour in residual images. However, when v is close to 2, PSNR reduce significantly and
reconstructed images are fuzzier because texture details are enhanced excessively and become the
noise. To obtain the best results, we set v = 1.4 in our experiments.
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4.2. Experimental Results

We evaluate the performance of the proposed model by comparing with other four algorithms.
The PSNR values by using several algorithms are listed in Table 1. It is obviously that, for each image,
BCS-TV has the worst reconstruction performance. NLR-CS, RTV-NNR and our proposed method
are much better than other two methods. The proposed algorithm achieves significant performance
improvements outperforming the four other algorithms and the gains are up to 7.54 dB, 7.15 dB, 3.41 dB
and 1.63 dB respectively in Table 1. In the low sampling ratios, the proposed algorithm recovers more
image information than others and gets the best visibility.
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Table 1. Peak signal-to-noise ratios (PSNR) comparisons of five algorithms (unit: dB).

Image Method
Sampling Ratios

0.05 0.1 0.15 0.2 0.25 0.3

Lena

BCS-TV 23.34 25.71 28.08 29.61 30.94 31.82
TVNLR 24.42 26.47 28.62 30.33 31.31 32.22
NLR-CS 26.68 28.70 30.46 32.02 33.58 34.67

RTV-NNR 27.82 30.11 31.81 33.34 34.77 36.00
Proposed 29.64 31.34 32.73 33.97 34.92 35.85

Barbara

BCS-TV 20.18 22.75 24.61 26.12 27.55 28.95
TVNLR 21.26 23.01 24.72 26.68 28.33 29.69
NLR-CS 24.31 26.04 27.69 29.22 30.67 31.99

RTV-NNR 26.09 27.88 29.50 31.12 32.72 34.15
Proposed 27.72 29.42 30.86 32.01 33.18 34.20

Cameraman

BCS-TV 20.43 23.29 25.47 27.82 29.96 31.14
TVNLR 21.26 23.89 25.90 28.08 30.19 31.64
NLR-CS 24.12 26.29 28.05 29.87 31.60 33.07

RTV-NNR 25.83 27.77 29.42 31.08 32.70 34.21
Proposed 27.30 28.92 30.46 31.73 32.75 33.84

Monarch

BCS-TV 19.94 22.34 24.92 26.80 28.46 30.00
TVNLR 20.83 23.27 25.98 27.58 29.16 31.02
NLR-CS 23.91 26.29 28.10 29.78 31.35 32.81

RTV-NNR 25.36 27.46 29.31 31.19 33.04 34.66
Proposed 26.62 28.34 30.06 31.59 33.01 34.47

Parrots

BCS-TV 26.64 28.83 30.59 31.83 32.94 34.01
TVNLR 27.30 29.54 31.26 32.79 34.30 35.66
NLR-CS 29.66 31.64 33.46 35.03 36.63 38.11

RTV-NNR 30.35 32.32 34.15 35.74 37.33 38.85
Proposed 31.14 32.98 34.57 36.02 37.41 38.63

Clock

BCS-TV 24.75 27.52 29.30 31.04 32.44 32.78
TVNLR 25.49 28.35 30.29 31.98 32.56 33.67
NLR-CS 27.80 29.76 31.55 33.17 34.68 35.90

RTV-NNR 29.01 31.13 32.84 34.34 35.76 36.92
Proposed 30.48 32.23 33.89 35.21 36.34 37.10

House

BCS-TV 24.12 27.51 29.50 31.23 32.43 33.36
TVNLR 26.97 29.82 31.52 33.17 34.32 35.24
NLR-CS 28.77 30.91 32.68 34.03 35.26 36.40

RTV-NNR 29.33 31.32 33.12 34.75 35.84 36.63
Proposed 30.60 32.29 33.70 35.15 36.29 36.94

Boats

BCS-TV 22.26 24.29 26.44 27.98 28.98 30.22
TVNLR 22.88 24.95 27.08 28.72 29.90 31.03
NLR-CS 25.05 26.94 28.75 30.28 31.66 32.84

RTV-NNR 26.52 28.33 29.99 31.42 32.96 34.04
Proposed 28.11 29.71 31.13 32.39 33.36 34.17

Chart1

BCS-TV 15.97 19.33 22.46 26.84 30.70 33.43
TVNLR 16.04 21.48 25.69 29.72 33.84 36.82
NLR-CS 21.12 25.31 28.93 32.46 35.66 38.35

RTV-NNR 22.71 26.55 30.04 33.39 36.37 39.07
Proposed 23.19 27.20 30.33 33.25 36.04 38.44

Chart2

BCS-TV 16.48 20.81 23.91 26.25 28.07 29.99
TVNLR 17.74 21.73 25.45 28.04 29.79 30.69
NLR-CS 20.42 24.08 27.53 30.41 32.95 35.22

RTV-NNR 22.10 25.65 28.90 31.75 34.14 36.23
Proposed 23.67 26.78 29.92 32.48 34.54 36.39
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We arbitrary choose four images (Lena, House, Boats and Chart2) and plot the PSNR curves
as shown in Figure 5. At low sampling ratios, our algorithm has achieved the higher PSNR and
improvements. When sampling ratios increase, the performance of RTV-NRR is closed to the proposed
algorithm. The reason for this trend is that the magnitude of high frequency components is enhanced
effectively by our proposed algorithm, while the magnitude of low frequency components is reduced,
which fortunately has little effect on the visibility of the images.
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Intuitively, the visual results of the two images are shown in Figure 6 and the residual images
(difference between original images and estimated images) are shown in Figure 7. Selecting portions
of reconstructed images in red boxes and enlarging them, we compare them at 5% sampling ratios
to appear significant differences. The quality of images reconstructed by BCS-TV and TVNLR are
much worse than from the other three algorithms. Many block artifacts can be seen in Figure 6a,b.
From Figure 7a,b, the smooth regions are preserved well but the texture details are lost a lot, therefore
BCS-TV and TVNLR have bad visual effects. Images reconstructed by NLR-CS are better and have
better visual effects. But this algorithm suffers from over-smoothed effects owing to the average
tendency of different similar patches. Our proposed algorithm has the best visibility compared with
other algorithms in Figure 6. This method preserves image texture details and eliminates staircase
artifacts by using the fractional-order differential method and nonlocal regularization. We can hardly
see the intact contour in residual images in Figure 7e. Experimental results demonstrate that our
proposed method enhances high frequency components (image details) significantly.

Moreover, we acquire SSIM for the sampling ratios of 5% in Table 2. Table 2 shows that BCS-TV
and TVNLR are much worse than others and the SSIM of the proposed algorithm are better than the
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other algorithms for every image. Compared with the second-best method RTV-NNR, our proposed
algorithm outperforms by up to 0.0114.

To demonstrate that our proposed algorithm is better for enhancing high frequency components,
we decompose the original images and reconstructed images into smooth regions and texture details
by using Equations (13) and (14). The texture details of reconstructed images are shown in Figure 8.

Electronics 2020, 9, x FOR PEER REVIEW 12 of 15 

 

other algorithms for every image. Compared with the second-best method RTV-NNR, our proposed 
algorithm outperforms by up to 0.0114. 

To demonstrate that our proposed algorithm is better for enhancing high frequency components, 
we decompose the original images and reconstructed images into smooth regions and texture details 
by using Equations (13) and (14). The texture details of reconstructed images are shown in Figure 8. 

     

     

Figure 6. Reconstructed images by five methods for a sampling ratio of 5%. 

     
 

     
(a) BCS-TV (b) TVNLR (c) NLR-CS (d) RTV-NNR (e) Proposed 

Figure 7. The residual errors obtained by five methods. 

Table 2. The values of the structural similarity index (SSIM) for the different images (ratio: 0.05). 

Image BCS-TV TVNLR NLR-CS RTV-NNR Proposed 
Lena 0.8122 0.8178 0.8492 0.8502 0.8616 

Barbara 0.8083 0.8127 0.8394 0.8569 0.8671 
Cameraman 0.7974 0.8034 0.8280 0.8363 0.8390 

Monarch 0.7632 0.7692 0.7848 0.7931 0.7992 
Parrots 0.8587 0.8632 0.8753 0.8832 0.8926 
Clock 0.8613 0.8680 0.8814 0.8947 0.8982 
House 0.8703 0.8775 0.8937 0.9061 0.9082 
Boats 0.8089 0.8197 0.8316 0.8430 0.8538 

Chart1 0.6285 0.6320 0.6577 0.6783 0.6850 
Chart2 0.6593 0.6627 0.6804 0.6922 0.7008 

(a) BCS-TV (b) TVNLR (c) NLR-CS (d) RTV-NNR (e) Proposed 

Figure 6. Reconstructed images by five methods for a sampling ratio of 5%.

Electronics 2020, 9, x FOR PEER REVIEW 12 of 15 

 

other algorithms for every image. Compared with the second-best method RTV-NNR, our proposed 
algorithm outperforms by up to 0.0114. 

To demonstrate that our proposed algorithm is better for enhancing high frequency components, 
we decompose the original images and reconstructed images into smooth regions and texture details 
by using Equations (13) and (14). The texture details of reconstructed images are shown in Figure 8. 

     

     

Figure 6. Reconstructed images by five methods for a sampling ratio of 5%. 

     
 

     
(a) BCS-TV (b) TVNLR (c) NLR-CS (d) RTV-NNR (e) Proposed 

Figure 7. The residual errors obtained by five methods. 

Table 2. The values of the structural similarity index (SSIM) for the different images (ratio: 0.05). 

Image BCS-TV TVNLR NLR-CS RTV-NNR Proposed 
Lena 0.8122 0.8178 0.8492 0.8502 0.8616 

Barbara 0.8083 0.8127 0.8394 0.8569 0.8671 
Cameraman 0.7974 0.8034 0.8280 0.8363 0.8390 

Monarch 0.7632 0.7692 0.7848 0.7931 0.7992 
Parrots 0.8587 0.8632 0.8753 0.8832 0.8926 
Clock 0.8613 0.8680 0.8814 0.8947 0.8982 
House 0.8703 0.8775 0.8937 0.9061 0.9082 
Boats 0.8089 0.8197 0.8316 0.8430 0.8538 

Chart1 0.6285 0.6320 0.6577 0.6783 0.6850 
Chart2 0.6593 0.6627 0.6804 0.6922 0.7008 

(a) BCS-TV (b) TVNLR (c) NLR-CS (d) RTV-NNR (e) Proposed 

Figure 7. The residual errors obtained by five methods.

Table 2. The values of the structural similarity index (SSIM) for the different images (ratio: 0.05).

Image BCS-TV TVNLR NLR-CS RTV-NNR Proposed

Lena 0.8122 0.8178 0.8492 0.8502 0.8616
Barbara 0.8083 0.8127 0.8394 0.8569 0.8671

Cameraman 0.7974 0.8034 0.8280 0.8363 0.8390
Monarch 0.7632 0.7692 0.7848 0.7931 0.7992
Parrots 0.8587 0.8632 0.8753 0.8832 0.8926
Clock 0.8613 0.8680 0.8814 0.8947 0.8982
House 0.8703 0.8775 0.8937 0.9061 0.9082
Boats 0.8089 0.8197 0.8316 0.8430 0.8538

Chart1 0.6285 0.6320 0.6577 0.6783 0.6850
Chart2 0.6593 0.6627 0.6804 0.6922 0.7008
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Figure 8. The texture details of reconstructed images obtained by five methods.

It is clear that our proposed algorithm preserves the most textures in Figure 8 and we can see the
complete edge contour. The other four algorithms lost many details, resulting in the terrible visibility in
Figure 8. Furthermore, we compare the average relative errors and SSIM of texture details in Figure 9.
For every image and sampling ratio, our algorithm has the smallest relative errors and the best SSIM of
high frequency components. These results demonstrate that our proposed algorithm enhances the
texture details significantly. Compared with other methods, our algorithm lost some low frequency
components, but fortunately it has little effect on the visibility of images. We also compare the average
reconstruction time at different sampling ratios in Figure 10 and it is shown that our algorithm costs a
little more time than TVNLR, NLR-CS and RTV-NNR, but less than BCS-TV, which we will improve in
the future.
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5. Discussion and Conclusions

We propose a reweighted fractional-order total variation (TV) algorithm with the nonlocal
regularization model in order to eliminate staircase artifacts and preserve texture details.
We decomposed the images into high and low frequency components and only reweighted the
high frequency gradients. The nonlocal regularization model contains prior structural information
to suppress staircase artifacts and recover texture details. It is crucial for choosing the appropriate
parameters which tends to affect the reconstruction performance and we make trade-offs between all
parameters and the reconstruction time. The experiment results demonstrate that the proposed method
has the better PSNR and SSIM than the other four methods when the sampling ratio is lower than
25%. The PSNR gains are up to 7.54, 7.15, 3.41 and 1.63 dB from ten images, compared with BCS-TV,
TVNLR, NLR-CS and RTV-NNR, respectively. Texture details are preserved, and staircase artifacts
are eliminated effectively. Our proposed algorithm enhances the high frequency components at the
cost of losing some low frequency components, which has almost no effect for visibility. However,
this method has a slightly longer duration than the TVNLR, NLR-CS and RTV-NNR methods. In the
further research, we will apply this approach to a single-pixel imaging system for calculating the image
of an actual object, owing to its excellent reconstruction quality at low sampling ratios.
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