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Abstract: A high efficiency architecture for ring learning with errors (ring-LWE) cryptoprocessor
using shared arithmetic components is presented in this paper. By applying a novel approach for
sharing number theoretic transform (NTT) polynomial multiplier and polynomial adder in encryption
and decryption operations, the total number of polynomial multipliers and polynomial adders used
in the proposed ring-LWE cryptoprocessor are reduced. In addition, the processing time of NTT
polynomial multiplier is speeded up by employing multiple-path delay feedback (MDF) architecture
and deploying pipelined technique between all stages of NTT processes. As a result, the proposed
architecture offers a great reduction in terms of the hardware complexity and computation latency
compared with existing works. The implementation result for the proposed ring-LWE cryptoprocessor
on Virtex-7 FPGA board using Xilinx VIVADO shows a significant decrease in the number of slices
and LUTs compared with previous works. Moreover, the proposed ring-LWE cryptoprocessor offers
higher throughput and efficiency than its predecessors.

Keywords: cryptoprocessor; pipelined; multiple-path delay feedback; ring-LWE; shared arithmetic
components

1. Introduction

Cryptographic algorithms are grouped into two categories named symmetric algorithms and public
key (or asymmetric) algorithms. The former uses a single key between two parties to enable a secure
communication, where the key is kept private from all other parties. Symmetric algorithms are widely
used because of its simplicity. However, a symmetric key algorithm requires an agreement between
sender and receiver on the secret key. Asymmetric, or public key cryptosystems use two different
keys called private keys and public keys. Whereas the private key is kept secret for the decryption
process, the public key is used for encryption and can be revealed to all other parties. The encryption
operation is conducted using a public key, and the encrypted message can only be decrypted using the
corresponding private key. The security of Rivest, Shamir, and Adleman (RSA) cryptosystems [1] and
elliptic curve cryptosystems (ECC) [2,3] are based on the difficulty of solving some number theoretic
problems and the difficulty of solving the elliptic curve discrete logarithm problems, respectively.
However, these problems can be solved by the algorithm proposed by Shor [4] in polynomial time
with quantum computers. Therefore, stronger security systems or post-quantum cryptosystems have
been proposed, and the National Institute of Standards and Technology (NIST) is standardizing them.
Among lattice-based cryptosystems for the post-quantum era, ring learning with errors (LWE) is a
promising candidate because its security proofs are based on the worst-case hardness of lattice problems
that there is no known quantum algorithm can efficiently solve [5]. A typical block diagram of a typical
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ring-LWE cryptoprocessor is shown in Figure 1. Input message m is encrypted into ciphertext (c1, c2)
using arithmetic computation on public key (a, p) and error polynomials e1, e2, and e3. Original message
m can be recovered from ciphertext (c1, c2) and private key r2 using the decryption operation.

Figure 1. Block diagram of a typical ring-LWE cryptoprocessor [6].

The ring-LWE problem has been discussed in recent studies, both in software and hardware [5,7–9].
In Reference [5], high-throughput ring-LWE cryptoprocessors are designed to perform ring-LWE
encryption and decryption operations. In Reference [7], an approach of integrating ring-LWE
cryptography into existing fingerprint authentication systems to fully protect the fingerprint data are
introduced. Authors in [9] present the implementation of ring-LWE encryption on IoT processors.

In the ring-LWE cryptosystem, lattices with an algebraic structure like polynomial multiplication
and addition are performed over a polynomial ring, typically Rq = Zq[x]/ f (x). Among these
operations, polynomial multiplication is the most complex one that can be efficiently performed
using number theoretic transform (NTT)-based polynomial multiplication [5]. NTT multiplier is a
modified version of fast Fourier transform (FFT) to work in a finite field without inaccurate floating
point or complex arithmetic to compute polynomial multiplication efficiently [10]. There are several
NTT multiplier architectures that deploy single-path delay feedback (SDF) or multiple path delay
commutator (MDC) structures in literature. For example, a high throughput multiplier using NTT
cores with radix-2 SDF architecture is presented in [11]. In Reference [5], authors introduce radix-2 and
radix-8 MDC architecture-based NTT cores for ring-LWE cryptoprocessors to obtain the encryption
throughput of gigabits per seconds and decryption throughput of megabits per second. However, these
architectures require large hardware resources and high computation time since the NTT polynomial
multipliers work separately and NTT operations are not fully optimized.

In this paper, a novel approach to efficiently use arithmetic components in ring-LWE cryptoprocessors
to achieve a high efficiency is presented. Specifically, the polynomial multiplier and polynomial adder
that participate in the ring-LWE encryption operation are reused in decryption phase to reduce hardware
complexity. Additionally, the NTT polynomial multiplier is designed using MDF architecture and deploying
pipeline technique among all stages of NTT and INTT transforms to mitigate hardware complexity and
speed up multiplication operations. Our contributions of this article are summarized as follows:

• We propose a ring-LWE cryptoprocessor architecture in which the same arithmetic components,
including one polynomial multiplier and one polynomial adder, are used in both encryption
and decryption operations to reduce hardware complexity. As a result, the proposed ring-LWE
cryptoprocessor requires less hardware resource than existing architectures to perform encryption
and decryption operation.
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• We deploy the polynomial multiplier using NTT multiplier with parallel based MDF architecture
to enhance the polynomial multiplication. Furthermore, the pipeline technique is applied in the
proposed design to reduce the system latency.

• We implement the proposed ring-LWE cryptoprocessor architecture on Xilinx Virtex-7 FPGA
board and compare the obtained results with its predecessors. Performance evaluation results
show that the proposed architecture offers a higher throughput and a better efficiency than others.

The remaining of this paper is structured as follows. In Section 2, brief discussions on the
ring-LWE cryptosystems are carried out. Section 3 presents the proposed algorithm and architecture
for ring-LWE cryptoprocessor. Section 4 provides the results of implementation and comparison, and
Section 5 includes conclusions.

2. Background

2.1. Ring-LWE Cryptosystem

The ring-LWE problem introduced by Regev [12] in 2005 is a machine learning problem that
is equivalent to the worst-case lattice problems. The ring-LWE cryptosystem operates over a ring
Rq = Zq[x]/ f (x), where f (x) is the irreducible polynomial of degree n, n is a power-of-two number,
and q is a prime number such that q ≡ 1 mod 2n. The common case of irreducible polynomial is
f (x) = xn + 1 that is presented in [11].

Polynomial multiplication and polynomial addition are employed to carry out the cryptographic
primitives of the ring-LWE cryptosystem. The procedures for key generation, encryption, and
decryption of ring-LWE cryptosystem are described as follows:

Key generation: This process generates the public key (a, p) and the private key r2. Polynomial a
is chosen uniformly and two polynomials r1 and r2 are selected from the discrete Gaussian distribution
χσ to compute the public key polynomial:

p← r1 − a× r2 (1)

Encryption: The input message m is encoded to get the polynomial me. If the ith coefficient of m is 1,
it is mapped to (q− 1)/2; otherwise, it is converted to 0. The cipher-text c1 and c2 are computed from the
given polynomials and three error polynomials e1, e2, and e3 that sampled from the Gaussian distribution:

c1 ← a× e1 + e2

c2 ← p× e1 + e3 + me
(2)

Decryption: The input message m is recovered from the pre-decoded polynomial md:

md ← c1 × r2 + c2 (3)

Depending on the value of each coefficient of the message md, the decoder maps it to a
corresponding binary bit to recover the original message m.

2.2. Arithmetic Operations over Ring

The arithmetic operations over the ring Rq = Zq[x]/ f (x) include modulo reduction, polynomial
addition, and polynomial multiplication. Given coefficients ai and bi in Rq, two polynomials a(x) and
b(x) over the ring can be defined as follows:

a(x) = a0 + a1x + a2x2 + · · ·+ an−1xn−1

b(x) = b0 + b1x + b2x2 + · · ·+ bn−1xn−1 (4)
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As mentioned previously, the polynomial multiplication requires the most processing time, and
the NTT-based algorithm is an efficient algorithm for performing this multiplication. Assume that ω is
a primitive nth root of unity, the NTT of each coefficient of a(x) is defined as:

Ai =
n−1

∑
j=0

ajω
ij mod p (5)

The inverse NTT (INTT) is calculated as:

ai = n−1
n−1

∑
j=0

Ajω
−ij mod p (6)

Let α and β be extended vectors of a(x) and b(x) by filling n zero elements. The multiplication of
two polynomials a(x) and b(x) can be computed based on NTT and INTT:

c(x) = a(x)× b(x)

= INTT2n
ω (NTT2n

ω (α)� NTT2n
ω (β))

(7)

where � is the point-wise multiplication.
To avoid zero padding in NTT polynomial multiplication, the negative wrapped convolution is

used. Assume that c is the negative convolution of a(x) and b(x), the negative wrapped convolution
can be expressed as:

ci =
i

∑
j=0

ajbi−j −
n−1

∑
j=i+1

ajbn+i−j (8)

Define a′ = (a0, ψa1, ..., ψan−1), b′ = (b0, ψb1, ..., ψbn−1), and c′ = (c0, ψc1, ..., ψcn−1), where
ψ2 ≡ ω mod p, the NTT polynomial multiplication becomes

c′ = a′ × b′ = INTTn
ω(NTTn

ω(a′)� NTTn
ω(b
′)) (9)

By using the negative wrapped convolution, the NTT multiplication can be calculated using only
n-coefficients.

The polynomial addition of two polynomials a(x) and b(x) is simply adding corresponding
coefficients of two polynomials and then doing modulo reduction (MR). In MR operation, the
coefficients of the resulting polynomial are reduced by modulus q. To execute this operation, a
few MR algorithms are presented in [5,13]. Since the parameters used in this paper are n = 512 and
q = 12, 289, the SAMS2 algorithm for q = 12, 289 that is presented in [5] is selected.

2.3. Discrete Gaussian Sampler

In ring-LWE cryptography, error polynomials sampled from a discrete Gaussian distribution χσ with
a standard deviation σ are required. This distribution uses the probability function described as follows:

Pr(E = i) =
1
S

e−
i2

2σ2 (10)

where E is the random variable on Z, S is the normalization factor, and i is an integer. By approximating
S to the probability density function can also be described using

Pr(E = i) =
1
S

e−
πi2

S2 (11)

In References [5,14,15], authors present several methods for performing discrete Gaussian
sampling. Among these methods, rejection sampling and inversion sampling are the popular ones [14].
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In practice, rejection sampling for a discrete Gaussian distribution is slow due to the high rejection rate
for the sampled values, which are far from the center of the distribution. The inversion method first
generates a random probability and then selects a sample value such that the cumulative distribution
up to that sample point is just larger than the randomly generated probability. Since the random
probability should be of high precision, this method also requires a large number of random bits.
The Knuth–Yao algorithm [14,15] uses a random walk model for sampling from any non-uniform
distribution. However, the output of Knuth–Yao algorithm is generated in an unpredictable time;
then, it is not a reliable sampler [5]. In this work, we deploy the linear feedback shift registers (LFSRs)
approach that was proposed in [16]. This approach offers a low-complexity with an approximated
uniform pseudo-random distribution; hence, it can be exploited to generate an accurate approximation
of a Gaussian distribution with low maximum auto-correlation.

3. Proposed Ring-LWE Cryptoprocessor Architecture Using Shared Arithmetic Components

3.1. Proposed Algorithm for the Ring-LWE Cryptoprocessor

The proposed shared arithmetic components based ring-LWE cryptography algorithm is described
in Algorithm 1. Two additional parameters enc and dec are used to control the encryption and decryption
operations. Encryption operation is enabled when enc = 1, and the multiplier Mult2 and adder Add3
participate in encryption phase. Input message m is encoded to get polynomial me. This encoded
message is then added with error polynomial e3 and stored in c21. Polynomials’ multiplications
c10 = a× e1 and c20 = p× e1 are calculated by Mult1 and Mult2, respectively. Ciphertext c1 is computed
by adding two polynomials c10 and e2 using polynomial addition function Add2, while c2 = c20 + c21 is
conducted by addition function Add3. Ciphertext (c1, c2) is then successfully carried out.

Algorithm 1: Proposed ring-LWE cryptography algorithm using shared arithmetic components
Input : a, p ∈ Zn

q , m ∈ {0, 1}n, ω ∈ Zq

Output : Ciphertext (c1, c2) ∈ Zn
q , or original messsage m

r1, r2 ← Gaussian sampler(s, n);
e1, e2, e3 ← Gaussian sampler(s, n);
while enc = 1 do

for i = 0 to n− 1 do
if m[i] = 1 then

me[i]← b q
2c ×m[i];

else
me[i]← 0;

end if;
end for;
c10 ← Mult1(a, e1); c20 ← Mult2(p, e1);
c21 ← Add1(me, e3); c1 ← Add2(c10, e2);
c2 ← Add3(c20, c21);

end while;
Return(c1, c2)
while dec = 1 do

md1 ← Mult2(c1, r2); md ← Add3(md1, c2);
for i = 0 to n− 1 do

if (b q
4c ≤ md[i] ≤ 3× b q

4c) then
m[i] = 1;

else
m[i] = 0;

end if;
end for;

end while;
Return(m)
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The decryption operation is enabled by the signal d_en. In this phase, multiplier Mult2 and
adder Add3 that participate in the encryption phase are reconfigured to perform operations over the
ring. Specifically, multiplier Mult2 calculates the multiplication between the cipher-text c1 and the
polynomial r2. The result of this multiplication is then transferred to adder Add3, where it is added
to the cipher-text polynomial c2 to return the pre-decoded polynomial md = c1 × r2 + c2. Finally, the
original message m is recovered from the pre-decoded message md using a decoder. The original
message m is recovered from the pre-decoded polynomial md using a decoder. If the i-th coefficient of
md satisfies the condition q/4 ≤ md[i] ≤ 3q/4, the corresponding i-coefficient of message m (m[i]) is
decoded to 1; otherwise, it is converted to 0. The detailed timing diagram of the proposed ring-LWE
crytoprocessors is shown in Figure 2.

Figure 2. Timing diagram of the proposed ring-LWE cryptoprocessor architecture.

When dec = 1, polynomial multiplication md1 = c1× r2 is computed using the same multiplication
resource Mult2 in encryption phase. Similarly, polynominal addition Add3 is reused to compute
polynomial addition md between polynomial md1 and ciphertex c2. Finally, the original message m is
retrieved by decoding message md.

3.2. Ring-LWE Cryptoprocessor Architecture Using Shared Arithmetic Components

The proposed ring-LWE cryptoprocessor architecture using shared NTT polynomial multiplier
and polynomial adder is illustrated in Figure 3, which consists of an encoder, a Gaussian sampler,
polynomial adders, polynomial multipliers, a decoder, and a controller. As can be seen, Multiplier 2
and Adder 3 are deployed to participate in both encryption and decryption operations. The detailed
architecture is described in Figure 4.
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Figure 3. Proposed top-level ring-LWE cryptoprocessor architecture.

Figure 4. Proposed ring-LWE cryptoprocessor architecture using shared arithmetic components.

The encryption operation computes the cipher-text (c1, c2). This operation is enabled by the
control signal enc. Initially, the input information m is encoded using an encoder. Each bit of the
message m works as the control signal of the corresponding MUX, where its inputs are 0 or (q− 1)/2.
The encoded message me is constructed by the outputs of these MUXs. The encoded message is then
added with the error polynomial e3 using the adder Add1, controlled by signals a1_e and a1_d, to get
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the value (me + e3). Multiplier Mult1 computes the product of the polynomial a and the error vector
e1, while multiplier Mult2 calculates the multiplication of the public key p and e1. These multipliers
are triggered by the control signals m1_e and m2_e, respectively. In the proposed architecture, we
use different architectures of NTT multiplier, which are discussed in the following part. Two control
signals m1_d and m2_d are assigned to 1 indicating that the multiplications at multipliers Mult1 and
Mult2 are completely executed. The output of multiplier Mult1 becomes the input of adder Add 2,
where it is added to the error vector e2 to form the ciphertext c1. Concurrently, the output of multiplier
Mult2 is added with the polynomial (e3 + me) to generate ciphertext c2, performed by adder Add3.
Upon control signals, a2_d and a3_d are equal to 1, and the encryption operation is fully accomplished.
The ciphertext (c1, c2) is carried out.

3.3. Proposed NTT Polynomial Multiplier Using MDF Architecture

To speed up the computation time and reduce the complexity of ring-LWE cryptoprocessors, a
novel NTT polynomial multiplier using MDF architecture is proposed. The MDF architecture can
provide a higher throughput rate with minimal hardware cost by combining the features of MDC and
SDF. In MDF architecture, the SDF architecture is extended by using a multi-path approach. In order
to achieve higher throughput rate, the number of data-paths can be increased to eight or even sixteen.

Theoretically, a NTT-based polynomial multiplier consists of three bit-reverse processes, two NTT
processes, one point-wise multiplication, and one INTT process. By using the reverse Cooley–Tukey
algorithm [17] in the NTT-based polynomial multiplication operation, three bit-reverse operations are
eliminated, as described in Figure 5a. Therefore, the computation time and hardware complexity are
greatly reduced. In addition, two NTT calculations for input polynomials are executed concomitantly
to mitigate the multiplication latency. The pipeline technique is also applied between all stages of
NTT multipliers to decrease critical path delay. In this work, the 8-parallel MDF architecture-based
NTT multiplier is deployed. This multiplier is employed in the ring-LWE cryptoprocessors to conduct
the encryption and decryption operations. The detail architecture of NTT core using 8-parallel MDF
architecture is illustrated in Figure 5b. In Figure 5b, 512-coefficients of input polynomial are divided
into eight parallel paths, each path consists of 64 coefficients. For example, path a1 of polynomial a(x)
in Figure 5b consists of coefficients a1, a9, a17, and so on. Two input polynomials a(x) and b(x) are
processed using NTT transform architecture. After obtaining the NTT transform of two polynomials
a(x) and b(x), the point-wise multiplication operation is calculated, followed by the INTT transform
to return the value of the multiplication operation. The architecture of INTT core is similar with NTT
core architecture, which consists of processing elements PE1 and PE2, as presented in Figure 5b. The
proposed PE1 and PE2 architectures for the NTT core are detailed in Figure 6.
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(a)

(b)

Figure 5. (a) NTT multiplier, and (b) proposed number theoretic transform (NTT) core architecture.

Figure 6. Proposed PE1 and PE2 architectures for the NTT core.
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4. Implementation Results and Comparison

The proposed architecture for ring-LWE cryptoprocessor is modeled in Verilog HDL, synthesized,
and implemented using Xilinx VIVADO 2017.4 on a Virtex-7 FPGA platform. The implementation
results of ring-LWE cryptoprocessor are summarized in Table 1.

Table 1. Performance comparison of different ring-LWE cryptoprocessors.

Proposed R8M [5] [6] [18] [19]

Devices Virtex-7 Stratix IV Virtex-7 Virtex-6 Virtex-6
LUTs (enc./dec.) 61,258/– 62,994/27,313 61,514/25160 5595/5595 1536/1536
Slices (enc./dec.) 23,707/– 56,435/32,019 42,374/23,495 4760/4760 953/953
Frequency (enc./dec.) (MHz) 284/330 226/216 269/315 250/251 277/276
Clock cycles (enc./dec.) 242/235 391/225 240/224 13,769/8883 13,300/5800
Time (enc./dec.) (µs) 0.85/0.71 1.73/1.04 0.89/0.71 54.86/35.39 47.90/21.00
Throughputa (enc./dec.) (Mbps) 8432/721 4465/492 8054/720 130/14 150/24
Efficiencyb (Kbps/LUT) 137 66 130 23 95

a Throughput = (Frequency × Number of bits)/Number of clock cycles. b Efficiency = Throughput/Number
of LUTs.

As can be seen from Table 1, the proposed architecture requires less hardware resources, calculated
in number of slices and LUTs, to conduct a completed ring-LWE encryption–decryption operation
compared with similar parallel multiplier-based ring-LWE architectures presented in [5,6]. Specifically,
to perform ring-LWE encryption and decryption operations, the proposed architecture uses only 23,707
slices and 61,258 LUTs, which is about 42% and 67.83% of that in [5], respectively. Additionally, the
encryption and decryption throughput of the proposed architecture are higher than that of architecture
in [6] and R8M architecture in [5]. The architectures in [18,19] require a small number of slices and
LUTs to perform encryption and decryption; however, these architectures require high latency to
complete ring-LWE encryption and decryption operations. Therefore, the values of throughput offered
by these architectures are smaller than 150 Mbps, as described in Table 1.

Efficiency presented in [20] can be used as a parameter to evaluate the performance of different
designs on various FPGA platforms. In detail, the efficiency parameter represents the throughput
value that one hardware unit (LUT) of an architecture can offer. As can be seen from Table 1, the
proposed ring-LWE cryptoprocessor architecture can offer a better value of efficiency compared with
that of other architectures. Specifically, the obtained efficiency value of the proposed architecture is
about two and seven times larger than that of architectures in [5,18], respectively. Comparison in
encryption time, decryption time, and efficiency is described in Figure 7.

Figure 7. (a) comparison in encryption and decryption time, and (b) comparison in system efficiency.
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5. Conclusions

A novel approach to improve encryption and decryption operation of ring-LWE cryptoprocessors
has been presented in this paper. By sharing the hardware resources, including polynomial multiplier
and polynomial adder, in both encryption and decryption phases, the hardware complexity of the
proposed architecture can be significantly reduced. Furthermore, the polynomial multiplication is
greatly enhanced by deploying an efficient NTT multipliers using MDF architecture and the pipeline
technique between all stages of NTT multipliers. As a result, the proposed ring-LWE cryptoprocessor
offers higher throughput and efficiency compared with that of existing works. Therefore, it can be
applied in hardware resource-limited systems that require high throughput and low latency.
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