electronics @\py

Article
Dynamic OverCloud: Realizing Microservices-Based
IoT-Cloud Service Composition over Multiple Clouds

Jungsu Han ¥, Sun Park 2 and JongWon Kim %*

1 School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST),

Gwangju 61005, Korea; jshan@nm.gist.ac.kr

Al Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
sunpark@nm.gist.ac.kr

Correspondence: jongwon@nm.gist.ac.kr; Tel.: +82-62-715-2219

check for
Received: 22 May 2020; Accepted: 7 June 2020; Published: 11 June 2020 updates

Abstract: With the expansion of cloud-leveraged Information and Communications Technology (ICT)
convergence trend, cloud-native computing is starting to be the de-facto paradigm together with
MSA (Microservices Architecture)-based service composition for agility and efficiency. Moreover,
by bridging the Internet of Things (IoT) and cloud together, a variety of cloud applications are
explosively emerging. As an example, the so-called IoT-Cloud services, which are cloud-leveraged
inter-connected services with distributed IoT devices, dynamically utilize geographically-distributed
multiple clouds since mobile IoT devices can selectively connect to the near-by cloud resources for
low-latency and high-throughput connectivity. In comparison, most public cloud providers may
cause vendor lock-in problems that limit the inter-operable service compositions. Thus, in this paper,
we propose a new overlay approach to address the above limitations, denoted as Dynamic OverCloud,
which is a specially-arranged razor-thin overlay layer that provides users with an inter-operable and
visibility-supported environment for MSA-based IoT-Cloud service composition over the existing
multiple clouds. Then, we design a software framework that dynamically builds the proposed
concept. We also describe a detailed implementation of the software framework with workflows.
Finally, we verify its feasibility by realizing a smart energy loT-Cloud service with the suggested
operation lifecycle.

Keywords: cloud-native; multiple clouds; microservices architecture; service composition; loT-Cloud
service; visibility; DatalLake

1. Introduction

Cloud-based ICT technology, dominated by hyper-scale cloud giants such as Amazon, Microsoft,
and Google, is becoming the core piece of future ICT infrastructure [1]. Also, with the growing
popularity of the Internet of Things (IoT), various IoT services are rapidly increasing in the field
of home, healthcare, factory, and farm. With this kind of cloud growth, a service composition
for developing cloud applications is evolving toward an MSA-based service composition with the
concept of cloud-native computing. A service composition refers to a combination of steps such as
resource provisioning, resource placement, function deployment, and function stitching to complete
an entire service [2]. Microservices are defined as small-sized functions that may be deployed and
scaled independently of each other, and they may employ different middleware stacks for their
implementation [3]. In particular, legacy services based on monolithic architecture are being migrated
to containerized MSA, in order to adapt to technology changes and reduce time-to-market [4]. For the
MSA-based service composition, adopting containerization over virtual machines (VMs) is gradually
increasing, since it has benefits over traditional VMs in the cloud in terms of size and flexibility.

Electronics 2020, 9, 969; d0i:10.3390/ electronics9060969 www.mdpi.com/journal/electronics


http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-1680-9771
http://www.mdpi.com/2079-9292/9/6/969?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9060969
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 969 2 of 20

Most cloud vendors already provide tools to support the MSA-based service composition, which
may cause vendor lock-in. The cloud vendor lock-in problem means the situation where users are too
dependent on one cloud provider and cannot move around among cloud vendors without substantial
costs, legal constraints, and technical incompatibilities [5]. The lock-in problem is evident in that
applications developed for specific clouds cannot easily be migrated to other cloud platforms [6,7].
The heterogeneous nature of cloud APIs is not technically compatible, and it leads to interoperability
and portability challenges [8]. And, diversified cloud applications are moving towards broader
distribution across multi-clouds and the inclusion of various IoT devices, as evident through IoT
networking integration in the context of edge computing [9]. Especially application’s mobility and
interoperability are critical issues in the next-generation mobile networks. With the evolution of edge
clouds/mobile networks, agile and flexible service operations based on interoperability will emerge as
an important requirement in the future.

For this reason, we propose a new approach called Dynamic OverCloud, which enables a
specially-arranged razor-thin overlay layer extending our previous work in [10]. The specific
contributions of this paper are summarized below.

e  First, we define the concept of the Dynamic OverCloud approach, which is an additional layer
located between the service and resource layers. Dynamic OverCloud provides a consistent
overlay layer in a cloud-agnostic way. We design its components such as Interface Proxy, Dev+Ops
Post, Cloud-native Clusters, Assembled DatalLake, and Visibility Fabric to enable an inter-operable
and visibility-supported environment for MSA-based service composition over multiple clouds.
And, we also design a software framework that dynamically builds Dynamic OverCloud.

e  Second, to make concrete our proposed concept, we implement the software framework by
adopting a workflow scheme to specify its order of realization. The workflow scheme is a set
of dependent or independent tasks represented in the form of a Directed Acyclic Graph (DAG),
where the nodes represent the tasks and a directed edge denotes the dependency between the
corresponding tasks to achieve the automated, flexible provisioning [11,12]. The implemented
software framework facilitates automated and effective Dynamic OverCloud provisioning by
describing well-defined tasks with the workflow.

e  Third, to verify the feasibility of Dynamic OverCloud, we suggest an operation lifecycle with
the implemented software framework to guide IoT-Cloud service composition using Dynamic
OverCloud. Then, we apply a use case of smart energy IoT-Cloud service by following the
operation lifecycle. We appear that the instance of Dynamic OverCloud is dynamically deployed
with the software framework in an automated and efficient way. We also confirm that Dynamic
OverCloud provides users with functionalities such as multi-layer visibility and persistent storage
that assist inter-operable service composition.

The rest of this paper is organized as follows. In Section 2, we briefly summarized related work.
We then design the concept of Dynamic OverCloud in Section 3. Section 4 discusses the implementation
of the software framework with the workflows. In Section 5, we verify smart energy IoT-Cloud service
by following the operation lifecycle over multiple clouds. Finally, we conclude this paper in Section 6.

2. Related Work

The cloud vendor lock-in is a challenging issue that requires substantial efforts to overcome
the existing barriers for operating and developing cloud applications [13-15]. Many kinds
of researches have been adopted to solve the vendor lock-in issue for cloud interoperability.
The resource-oriented federation option, called as cloud service broker (CSB) can help developers
to select the most appropriate cloud provider(s) in terms of functionality and quality of service
(QoS) requirements [16]. Karim et al. [17] proposed a vendor-independent cloud provisioning tool that
utilizes ontology-based semantic reasoning to acquire the best available cloud resources for cloud users.
Kyriakos Kritikos et al. [18] proposed a cross-level and multi-cloud application adaption architecture,



Electronics 2020, 9, 969 3 0f 20

which allows us to specify advanced adaption rules and histories for multi-cloud applications. In [19],
CloudMF relies on a model-driven approach. It has the principle of “model once, generate anywhere”
for the management of multi-cloud applications. In [20], Merle et al. propose Open Cloud Computing
Interface (OCCI), open standards for managing any kinds of cloud resources. OCCI is a RESTful API
for all types of cloud management tasks. It acts as a service front-end to a cloud provider’s internal
management framework. Sandobalin et al. [21] propose ARGON, which is an infrastructure modeling
tool for cloud provisioning that leveraged Model-Driven Engineering to provide a uniform, cohesive,
and seamless process with which to support the DevOps approach. OpenStack TripleO is open-source
software for OpenStack deployment & management tools. It uses terms of Overcloud and Undercloud
to build cloud (Overcloud) for any purpose given by the prepared OpenStack cloud (Undercloud) [22].

Meanwhile, researches on lightweight virtualization have been conducted by considering the
characteristics of cloud applications for the MSA-oriented service composition. Nane Kratzke proposed
a concept called lightweight virtualization cluster (LVC) relying on operating system virtualization
to overcome subliminal generated vendor lock-in [23]. In similarly, Hadley et al. proposed a
MultiBox framework for vendor-independent multi-cloud deployments. The suggested framework
allows its users to deploy and migrate almost any application in its normal state with minimal
computational and network resources overheads [24]. It is noticeable to overcome vendor lock-in of
multi-clouds deployment using container technologies. In [25], the authors propose the CloudLaunch
for discovering and launching cloud applications on multiple cloud providers. It allows MSA-based
service composition with each application having its customizable user interface and control over the
launch process while preserving cloud-agnosticism so that authors can easily make their applications
available on multiple clouds with minimal effort. A commercial software, Terraform, Consul, Vault,
and Nomad provided by HashiCorp, serves automated resource provisioning in terms of infrastructure
as a code over multiple clouds as well as supports the service composition [26].

However, most of the above works are lacking in an attempt to systematically resolve both vendor
lock-in and the dynamic service composition issues. The efforts to systematically address multiple
issues from a comprehensive point of view are insufficient in researches since researches mostly
focus on addressing specific issues individually, such as cloud interoperability and the MSA-based
service composition. For example, in the case of the work [16], it still supports only the purpose of
helping to choose cloud resources by focusing on cost-efficient algorithms. In [17-21], researches
tackle the issues for cloud interoperability, but they do not directly address the MSA-based service
composition. In [22], it only focuses on the management of limited OpenStack-based clouds, instead of
focusing on multi-clouds management for cloud interoperability. In [23,24], though they tackle vendor
lock-in issues by leveraging the containerization concept, they do not go deep to MSA-based service
composition. In [25], they deal with interoperability with multiple clouds in a similar direction to
our research. They leverage not only virtual appliance but also container appliance. However, they
do not directly tackle service composition with the MSA concept. In [26], it provides a full-package
range from laa$S to PaaS in cloud computing. This solution is suitable for big enterprises who want to
solve everything at once. However, in terms of IT-operation capabilities, it can be a costly burden for
developers of small services who quickly develop and realize the service based on a microservices
architecture. Besides, the above software and our work differ in scope. We focus more on providing
MSA-based service composition in terms of IoT-Cloud service. However, looking at the direction of
commercial software or other researches, we observe that our work that addresses both the cloud
interoperability and the service composition is the right direction to move on. To summarize the
relevant works mentioned above, we organize Table 1.



Electronics 2020, 9, 969 4 0of 20

Table 1. Comparison of existing works on interoperability and service composition.

Research Work Interoperability = Multiple Clouds MSA-Based Service Composition =~ Open-Source
[17] Yes Yes No No
[18] Yes Yes No No
[19] Yes Yes No Yes
[20] Yes Yes No Yes
[21] Yes Yes No No
[22] Yes No No Yes
[23] Yes No Partially yes Yes
[24] Yes Yes Partially yes No
[25] Yes Yes Partially yes Yes
[26] Yes Yes Yes Partially yes
Dynamic OverCloud Yes Yes Yes Yes

3. Dynamic OverCloud: Design

In this section, we describe an overall design of Dynamic OverCloud based on requirements for
realizing loT-Cloud service composition over multiple clouds. Also, we design a software framework
to build the proposed concept dynamically.

3.1. Requirements

To satisfy the inter-operable and visibility supported specialized overlay layer that provides
IoT-Cloud service composition with underlying clouds, the following requirements are discussed,
as depicted in Figure 1.

R3. MSA-based Inter-operable Service Composition

_+*" Cloud application ™

’,r"lc_loudapplicali;; \\\ ;’1 O O “‘.* -------------- Q
{3 O WL S

L2 i 0 e
o O_O"_.—” ______

. | ————
o | e

R2. Cloud-native Computing ‘ 7_7
" Rd. Datalake

R1. Dynamic Razor-thin Layer .q

Aupqisip, papoddns sakel-yniy gy

- P e 5 b S

Multi clouds (e.g. Amazon AWS, OpenStack, Google Cloud ..)

Figure 1. Requirements to solve the problem.

e R1. Dynamic Razor-thin Layer: Cloud interoperability is a critical mission to provide developers
with flexible and powerful resources by avoiding vendor lock-in problem. The IoT-Cloud
services are recommended to dynamically utilize near-by resources among multi-clouds for
low-latency and high-throughput connectivity. Building an additional razor-thin layer that can
be dynamically configured over multiple clouds is a simple way to meet requirements that
satisfy these characteristics of the IoT-Cloud service. In particular, the additional layer should be
lightweight and require less overhead. It also should work smoothly on any clouds.

¢ R2. Cloud-native Computing: Developers want to quickly and easily develop and validate cloud
applications regardless of the underlying infrastructure. Cloud-native computing has changed



Electronics 2020, 9, 969 5 0f 20

the way we deploy our services into the infrastructure since containerization enables developers
to make lightweight isolation that can easily and quickly deploy their codes to realize services.
Cloud-native computing mainly provides computing/networking/storage resources over the
underlying infrastructure on top of Kubernetes orchestration. With the features of Container
Networking Interface (CNI) and Container Storage Interface (CSI), containers that have stateless
properties can be flexibly connected with the persistent storage in a standard way of cloud-native
computing defined by CNCF(Cloud Native Computing Foundation).

e R3. MSA-based Inter-operable Service Composition: For performing IoT-Cloud services on
cloud-native computing, We need service composition in the form of microservices architectures.
Thus, service composition should remove the risk of any friction or conflict between dependency
problems by taking advantage of containers. Besides, considering the mobility and geographical
characteristics of IoT-Cloud services, scalability and fault-tolerance should also be considered for
inter-operable service compositions.

e R4. DataLake: Collecting and Managing data is the most valuable thing for developing and
validating services. Many kinds of data, such as service domain data (e.g., machine temperature,
the humidity of a room, and so on), are generated by service composition. Also, operation data
(e.g., resource utilization, path, links, logs and, etc.) to understand the situation of both services
and infrastructures are generated. Raw data is also needed to perform specific functionalities.
These data should be systemically stored and managed to get new insights at any time. In other
words, we need integrated storage that leverages existing storage or configures new storage to
keep their valuable data.

e R5. Multi-layer supported Visibility: Multi-layer visibility across resource, flow, workload
layers is required for both developers and operators. From an operator’s point of view, visibility
measurement, collection, and associated visualization are essential for the continued operation
of their infrastructure, so that operators can gain timely insights into the operational status of
resources and associated flows [27]. The developer’s point of view is that they also need a visibility
solution to understand the situation of their services and enable better workload placement and
optimized resource utilization for better service compositions.

3.2. Overall Design of Dynamic OverCloud

Based on the above requirements, we propose a new cloud-leveraged software concept called
Dynamic OverCloud, as depicted in Figure 2. Dynamic OverCloud is an additional layer located
between services and resource layers to provide a consistent environment in a cloud-agnostic way.

To satisty the R1, we carefully design the Dynamic OverCloud overlay layer concept. The key
feature of the Dynamic OverCloud layer is to ensure cloud interoperability at given underlay clouds.
Leveraging cloud resources that are not dependent on particular cloud infrastructure is a challenging
issue due to the characteristics of clouds [28]. Most of PaaS and Saa$S services provided by cloud
vendors are primarily dependent on specific providers. Therefore, instead of the whole effort for
cloud interoperability, we leverage the minimal IaaS-level APIs for allocating cloud resources from
cloud vendors. Also, for the R1, containerization is used to facilitates lightweight provisioning of
Dynamic OverCloud with less overhead on any Linux-based cloud environment. Besides, we design
a workflow-driven software to automatically perform overall tasks on the provisioning of Dynamic
OverCloud in an efficient manner.

To handle the R2, we design Cloud-native Clusters as a component of Dynamic OverCloud.
They are a collection of logical resources capable of cloud-native computing. They provide users with
computing /networking/storage resources to running their services. Allocated resources are in the
form of containers to facilitate microservices architecture.



Electronics 2020, 9, 969 6 of 20

/’ Cloud apphcatlon \\ /’{jﬁar%; e
Q """"" M SA based loT-Cloud ¢
____________ S Service Compositon ~»
V3
[ Service J Pa—— L A
Composition / W q /
/ O_ B
. Fé
L Dyn;mlc_ OverCloud J /// Dev+Ops Post Cloud-native Clusters Assembled Datalake ~ Visibility Fabric
rovisionin ) ,
4 v Dynamic OverCloud 5

\L ________________________ ﬁ ____________________

| Northbound APIs (Dynamic OverCloud) |

Interface Proxy g”a Workflow Engine

| Southbound APIs (Underlay Clouds) |

@@@

Multi clouds (e.g. Amazon AWS, OpenStack, Google Cloud ..

Figure 2. Overall concept of Dynamic OverCloud.

To cover the R3, we design Dev+Ops Post in Dynamic OverCloud, which enables inter-operable
service compositions by using Cloud-native Clusters. Dev+Ops Post also leverages other components
to gain the storage and visibility needed for service composition.

For the R4, we define Assembled DataLake in Dynamic OverCloud. Assembled DataLake is a
collection of an integrated datastore where data is flexible and connected in Dynamic OverCloud. It can
store a variety of data depending on the purposes. It also supports persistent volume to complement
the stateless characteristics of containers.

To satisfy the R5, we design Visibility Fabric, a collection of delicate visibility points that can
facilitate the support of the multi-layer visibility in Dynamic OverCloud. It checks the status of the
resources in Dynamic OverCloud and helps to understand the situation of services.

Figure 3 illustrates the components and their functionalities of Dynamic OverCloud. Dynamic
OverCloud consists of Dev+Ops Post, Cloud-native Clusters, Assembled DataLake, and Visibility
Fabric. For the communication between users and underlay clouds, Interface Proxy is designed.
The components are described in detail below.

e Interface Proxy: Interface Proxy is a communication channel between users and underlay clouds.
Northbound APIs interpret the user’s requirement and generate information to forward them
to Interface Core. Southbound APIs acquire cloud resources of underlay clouds based on the
generated data. Note that Interface Proxy is not a dynamically generated entity each time, but it is
a shared entity for multiple users. Dynamic OverCloud APIs run automatically basic operations
of Dynamic OverCloud based on the Dynamic OverCloud workflows description. All of the
transactions of Dynamic OverCloud APIs are stored in the Dynamic OverCloud Repository.
For example, when a user deploys Dynamic OverCloud, the related data such as Dynamic
OverCloud ID, specifications of Cloud-native Clusters, Assembled DatalLake, and Visibility Fabric
are stored to the Dynamic OverCloud repository.

e  Dev+Ops Post: Dev+Ops Post is provisioning and orchestration entities in conjunction with other
components. It automatically provisions other components following requirements. Orchestration
tools in Dev+Ops Post support container orchestration with visibility and persistent storage
capabilities in a cloud-native way. It also coordinates Cloud-native Clusters as primary resources



Electronics 2020, 9, 969 7 of 20

in Dynamic OverCloud. Based on the operational data in the Assembled DataLake, Operational
Visualization gives users a visual representation to grasp the overall situation of their services.

e  Cloud-native Clusters: Cloud-native clusters provide users with pre-prepared resources for the
container-based service composition, unlike cloud resources offered by underlay clouds. It can
be any containers using container runtime engines that are compatible with the standard of
CNCE It also leverages CNI and CSI to provide users with complete ICT resources (Computing,
Networking, and Storage). In the user’s point of view, Cloud-native Clusters are a logical pool of
resources supporting containers supervised by container orchestration.

e Assembled DataLake: Assembled Datalake consists of time-series databases and distributed
persistent storage for operation/service data. Time-series databases primarily store operational
data that includes visibility and log data from Visibility Fabric to catch the status of Dynamic
OverCloud. Service-domain data that is generated by running applications are stored in
distributed persistent storage. Since, running application on Dynamic OverCloud is in the
form of containers, distributed persistent storage should be compatible with containers. In the
case of the existing storage that can be compatible with Kubernetes orchestration, it can be used
as a persistent volume of containers.

e  Visibility Fabric: Visibility Fabric provides resource, flow, and workload layer visibility to
understand the overall situation of Dynamic OverCloud with the help of visibility solutions.
For that, it injects visibility data collectors into Cloud-native Clusters in the form of a lightweight
agent. Visibility Fabric supports dynamic resource-centric visibility rather than fixed topology
due to the nature of Dynamic OverCloud. It also covers the view of workloads that understand
the relations of functions for performed services, as well as the view of resources and flow that
checks the status of resources and networking in Dynamic OverCloud.

[
'
'
'

' Dev + Ops Post
Northbound APls Provisioning Dynamic OverCloud  Cloud-native Container Operational
(Dynamic OverCloud) ] | Provisioning Orchestration Visualization
Interface Assembled DataLake Visibility Fabric
Proxy Times series Databases ~ Existing/Distributed Persistent | | oo Visiilty  Flow Visibiity  Workload Visibilty

(for Operations) Storages (for Services)

Dynamic OverCloud

Repositon g
resie Cloud-native Clusters
Dynawic kOﬂverCIoud Container Container Runtime Container
OIKIIOWS Networking Interfaces Engine Storage Interfaces
Southbound APls Dynamic OverCloud
(Underlay Clouds) ~ T e et

L Allocating resources @ @ @ Underlay
' N
»

Multi clouds (e.g. Amazon AWS, OpenStack, Google Cloud ..)

Figure 3. Dynamic OverCloud components design.
3.3. Software Framework Design of Dynamic OverCloud

Based on overall designed Dynamic OverCloud, we design a software framework that enables
Dynamic OverCloud provisioning, as shown in Figure 4. The software framework mainly uses
Interface Proxy and Dev+Ops Post components. To handle the software framework, we carefully
design Interface Proxy Core additionally. Northbound APIs are a communication channel between
users and the software framework. The requests that come from Northbound APIs go to the Interface
Proxy Core. It internally communicates with Southbound APIs to acquire cloud resource authority
from UnderCloud. Southbound APIs understand pre-defined plugins that wrap laaS-level APIs



Electronics 2020, 9, 969 8 of 20

provided by cloud vendors. For the support of multiple users, we leverage ID authentication tools.
Final provisioning requests are forward to Dev+Ops Post with workflow description. After the
API requests, the software framework manages all of the transactions by storing them to Dynamic
OverCloud Repository.

Dev+Ops Post automatically builds and coordinates other components of Dynamic OverCloud,
depending on the associated workflows. Dev+Ops Post uses containerization to make components of
Dynamic OverCloud as light as possible and to build a lightweight environment that is not affected by
a specific UnderCloud. Once Cloud-native Clusters are ready by Dev+Ops Post, distributed storage
that can be connected to Cloud-native Clusters with the help of CSI are prepared. Visibility Fabric
injects visibility collectors to Cloud-native Clusters. After that, it continually sends operation visibility
data to Assembled DataLake in the format of time-series data.

Dynamic OverCloud Users

1Y 2l SR ----y
| Q C, R, U, D base operations tz i

RESTful API requests ( Workflow execution \|
(ID, # of Clusters, : with parameters |
v flavor, provider) I (Resource IPs, Keypair) J Dev + OpS :

|
Northbound APls | Update the Status of Post :
(Dynamic OverCloud) | DynamicOverCloud. . = ! I
= I Initialize Assembled DataLake Initialize Visible Fabric |
= i I
Interface Request / | fo\ N : 4 ! 2 |
Prox Response | ID Authentication | | N g (s !
“ y | i | ! Assembled | SEaifns Visibility I

| Cloud-native B

Cna o ; | DataLake | Clusters Fabrlc :
g > : r'y |
< H |
Dynarmic OverCloud Interface Proxy Core : | |
i v |
Workflows > I Service | [Persistent Inject Visibility |
@ < 4 Allocate / : Data | Storage, Cloud-native <« Collector :
| | Deallocate !
Dynamic OyerCIoud Cloud : CI usters !
Repository v | Resources | . :

|
Southbound APl | Dynamic OverCloud !

.

(UnderClowdy -~ oo mT oo e e e -

A
Cloud Authentication / Acquire resource authority @ @ eee @
i >

Multi clouds (e.g. Amazon AWS, OpenStack, Google Cloud ..)

Figure 4. Design of software framework for building Dynamic OverCloud.

The workflow engine manages all operations of the software framework by describing workflows.
The workflows can be performed automatically and in parallel according to the description. Thus, all of
the procedures can have the advantage of automation and efficient handling in the software framework.

4. Dynamic OverCloud: Implementation

In this section, we provide an implementation of the proposed Dynamic OverCloud. First,
we describe the components” implementation for the software framework. Then, we implement
Dynamic OverCloud Workflow so that the designed software framework works for automated
and efficient provisioning. The implementation can be found on Github (https://github.com/K-
OverCloud/Dynamic-OverCloud) for everyone’s use.

4.1. Software Framework Components’ Implementation

Before we implement the designed software framework, we develop the software framework
components first. Figure 5a shows the detailed Dynamic OverCloud components implementation.
In Dev+Ops Post, we leverage Kubernetes for preparing cloud-native computing. Kubernetes can
be run on any Linux-based environment [29]. However, it has mainly difficulty managing the
Kubernetes cluster based on hybrid clouds since the main IPs in VMs are usually in a private network.
For simplicity, rather than implementing the multi-clouds federation, we specially configure the
advertising IP that is recognized as the external IP to build Kubernetes cluster over hybrid clouds.


https://github.com/K-OverCloud/Dynamic-OverCloud
https://github.com/K-OverCloud/Dynamic-OverCloud

Electronics 2020, 9, 969 9 of 20

To observe the overall status of Dynamic OverCloud, we leverage open-source-based visualization
tools such as Chronograf, Grafana, and Prometheus for operation visualization [30,31].

For the Cloud-native Clusters, several container runtime engines are available. Among them,
we choose the Docker since it mostly covers diversified applications range from 3-tier to IoT-Cloud,
ML/DL, and partially HPC. CNI and CSI are used as assistance in conjunction with the Kubernetes to
provide networking and storage resources. Since Cloud-native Clusters are mainly small and simple,
we choose the Weave Net plugin with CNI for networking. For the storage resources in Cloud-native
Clusters, we leverage Rook [32], a storage orchestrator in cloud-native computing. It internally uses
CNI to adopt storage plugins.

_________________________________________ ~
4
I S .' Dev+Ops Post B - ; 1
I : 3 : i @ chronograf 3 1
1 > kubernetes = > Dynamic OverCloud ! 15 Grafana ! 1
b Kubemnetes kubeadm ! Automated Provisioning - ‘“’ i
1 i Pty Kubemetes | Kubernetes ;. =Prometheus ; I
P (Con o ;Deployment P thon \ Flask H " e ol q
Deployment Tool i 1
] i Orchestration) DePIoY ! B : Operational Visualization :
___________________________ i 7 —ye—" s s A e A
1 I z : Deploy 1
I v Initialize Assembled Datalake Initialize Visibility Fabric v Visualization 1
| Assembled DataLake nmee Visibility Fabric |
SR -8 S L T T S isibility
i ; " SmartX MultiView F K P
H > mal ultiView Framewor
| | BROOK ! #InfluxDB | ) :
1 ' i i : i . T i
" i ce Cloud-native ! i $prometheus | i i SFIOLU i ‘V @ Aoy i 1
! D|Ss|v|buted Storage ;! ; : Resource Dia it ;! weave (&, envoy .
! Storage Orchestrator ; ! Time-series Databases  ; : i; i Seope i
1 (R RO <\l e e i G : I ! Collector : : Elow,Deta Collector; ! Workload Data Collector : I
I TAilizd fesmam st imms s b s s s e Mo S St e i s S
1 v ‘Kubernetes Cluster ]
| Cloud-native Clusters |
: P P i I
i : i i
i i : a
1 Orchestrate Containers : i : i CNI : < Inject Visibility Collectors I
i .
i L 5 ) I
1 i Docker (Container ! i Container Storage ! i Container Networking !
1 i_._RufmeEngine) | i i _ _iteface _ i i __|Infeface !
1 1
L (a) .
Northbound APIs ©_ Dynamic
Dynamic OverCloud od OverCloud
€ [
: : 3 pLJthOﬂ L Flask o Workflows
] ! i :
: : Stofe/ | 4 Allocate / Deallocate stantiation .
! KEYSTONE | Retrieve v . Clean Up Initiate Dev+Ops Post,
: ] Data i i
'OpenStack Keystone! » Interface Proxy Core Maintenance '”Jecr‘-wﬁ_‘“‘ﬁ"’"— ——————— -
; (Authentication) : < . T materials Dev + Ops 1
= - S = i1 Select ] Post
= Store /’ = pgthon L’BASH * Exec\{te v, workflow 1
i N Retrieve Y pperationsyr === T 1 Assembled Visibility
i Mysad i Data Resource status i rY i ] DatalLake Fabric I
' 1 v (Resource IPs, Keypair) H ! 1
i i i i et
i p Southbound APIs i MisTRAL | ! S e I
: Dynamic OverCloud | (Dynamic OverCloud) i OpenStack Mistral ! 1 -
e @i python sk iy ) 1. EETEOW
* " Cloud Authentication

/ Acquire resource authority

@ @ @ I 77 openSource tools
.ee (b)

Figure 5. Components Implementation: (a) Dynamic OverCloud, (b) Interface Proxy.

For the Assembled DataLake, we deploy persistent storage with Rook. We use Ceph for storage
provider options in Rook since it is highly stable and supports various solutions for block storage, object
storage, and shared filesystems. Instead of using Rook to provision persistent storage dynamically, it is
also possible to configure existing storage as a persistent volume in Cloud-native Clusters. Various
storage plugins on Kubernetes can be found in [33]. After preparing the persistent storage, we deploy
time-series databases by leveraging InfluxDB and Prometheus for operational data. Since time-series
databases in Cloud-native Clusters make use of persistent storage, the order of implementation should
be carefully considered.

For the Visibility Fabric, we apply the developed visibility software called as SmartX MultiView
Framework in previous our work [34]. SmartX MultiView Framework has multiple stages such as
Visibility Collection, Validation, Staging, Visualization to get operational status. We leverage Telegraf,



Electronics 2020, 9, 969 10 of 20

Sflow, Weave Scope, and Envoy as a visibility collector to get metrics and events from Cloud-native
Cluster with the help of the SmartX MultiView Framework [35,36]. Visibility collectors are injected to
Cloud-native Clusters in the form of Kubernetes pods.

Figure 5b shows the implementation of Interface Proxy. We use Python and Flask to implement
the Northbound/Southbound APIs as the RESTful API for Dynamic OverCloud users. For the
Interface Proxy Core, we implement its functionalities using bash and python scripts. For the
Dynamic OverCloud Repository, we use MySQL to store the transactions. To implement the automated
procedure of basic operations, OpenStack Mistral is used to a workflow engine. It is independent
of the OpenStack environment so that it can perform a workflow service without specific cloud
constraints. We use a reverse workflow scheme in the form of DSL (Domain Specific Language)
provided by OpenStack Mistral. The reverse workflow can depend on each task so that they can work
in parallel while synchronizing between tasks. DSL is a YAML Ain’t Markup Language (YAML) format.
The workflow engine performs the specified tasks according to the description of DSL. For each task in
the workflow, we implement a bash/python script with automated provisioning tools. Interface Proxy
Core injects implemented bash/python scripts that can be executed through SSH into Dev+Ops Post
by complying with the selected workflow. Detailed workflows are covered in the following subsection.

4.2. Dynamic OverCloud Workflows Implementation with the Software Framework

The developed components are performed by defined workflows to complete with the software
framework. As shown in Figure 6, we implement the Dynamic OverCloud Workflows for basic
operations such as instantiation, clean-up, and maintenance. The blue rectangles in Figure 6 represent
tasks in workflows that are implemented with python/bash scripts. These tasks are executed as a
unit of work in the workflow. That is, the collection of the tasks between the Interface Proxy Core
are actual workflows in the form of DSL. The implemented workflows are executed in the internal
process of the RESTful AP, so the user does not need to know the details of the workflows. Note that
we only deal with OpenStack, Amazon AWS, and Hybrid cloud(OpenStack and Amazon AWS)
for the implementation.

Cloud Auth,
Dynamic
OverCloud ID

#of Instance, Flavor, Cloud type, Cloud Auth
Northbound APIs
#of Instance, Flavor, Cloud type, Auth Token
Interface Proxy Core
#of Instance, Flavor, Cloud type, Auth Token Dynamic Dynamic
Southbound APIs Dynamic OverCloud ID OverCloud ID OverCloud ID

(Cloud Resource Allocation)) -
Dynamic OverCloud ID Southbound APls Dynamic OverCloud Operational Data
Dev+Ops Post Cloud Resource Deallocation Status Acquisition Acquisition

Provisioning Return Status (Success or Fail) Interface Proxy Core
Dynamic OverCloud ID Status of Dynamic Resource Visibility Data

Cloud-native Clusters gVET(C‘OUf D(#I sf (CPU, Memory,.., )
Provisioning lusters, ID, IPs)

Dynamic OverCloud ID, Cloud Auth

Interface Proxy
Northbound APIs
Dynamic OverCloud ID

Interface Proxy Core
Maintenance

Cloud Auth
@ Auth Token Auth Token,
IPs

Kubernetes
with Kubeadm

Distributed
Storage
(Rook) /
Time-series
databases
Provisioning

Assembled Datalake
Provisioning

Interface Proxy Core

Update

(Dynamic OverCloud ID,

Dev-+Ops Post IP,

Cluster IPs,

Instance IDs,

Visibility Fabric User,..)
Provisioning

Return Status
Return Status (Dynamic OverCloud status,
(Success or Fail) Resource Visibility Data)

Visibility
Collectors with
MultiView
Framework

Dynamic OverCloud ID
i User

Update
(Dynamic OverCloud ID,
Dev-+Ops Post IP,
Cluster IPs,

Instance IDs,

User,.) @) (b) (c)

Retum Status
(Dev+Ops Post IP, Dynamic OverCloud ID,..)

Figure 6. Dynamic OverCloud Workflows: (a) Instantiation, (b) Clean up, (c) Maintenance.

For Figure 6a, we carefully implement several tasks. In the cloud resource allocation tasks,
we implement cloud resource allocation by leveraging cloud provider’s IaaS-level APIs. Once the cloud
authentication is confirmed, it allocates cloud resources depending on cloud types. After allocating
cloud resources, it creates transaction data such as Dynamic OverCloud ID, allocated resource IPs.



Electronics 2020, 9, 969 11 of 20

The Dynamic OverCloud ID is used as an input parameter for the following tasks. In Dev+Ops Post
and Cloud-native Clusters provisioning tasks, we implement automated Kubernetes deployment
with the Kubeadm tool. The implemented script makes use of the Dynamic OverCloud IDs to find
allocated IPs and SSH key data from the Dynamic OverCloud Repository. For Assembled DatalLake
provisioning, we implement automated deployment for persistent storage by leveraging Rook. We also
develop time-series database provisioning after the persistent storage provisioning. In Visibility
Fabric provisioning task, we deploy visibility collectors with the SmartX MultiView framework on the
Cloud-native Clusters. When all tasks are completed, the final transaction is stored in the Dynamic
OverCloud Repository and the results are forwarded to the user. Since Assembled DatalLake and
Visibility Fabric tasks proceed in parallel with the help of reverse workflow, automated and efficient
provisioning is possible.

Figure 6b,c are quite simple rather than the Figure 6a. For the Cloud Resource Deallocation task
in Figure 6b, we leverage cloud provider’s APIs to deallocate cloud resources. Likewise, the Dynamic
OverCloud ID is used to find the information related to allocated resources. After deallocating cloud
resources, transactions are updated. For Figure 6¢, two tasks are developed. In the Dynamic OverCloud
Status Acquisition task, we implement the script to find and return the transaction information related
to the given Dynamic OverCloud ID. For the Operation Data Acquisition task, we develop the script
to retrieve resource visibility data from time-series databases in Assembled Datalake based on the
Dynamic OverCloud ID. These two tasks are also executed simultaneously.

5. Dynamic OverCloud: Feasibility Verification with Operation Lifecycle

In this section, we introduce an operation lifecycle using the proposed Dynamic OverCloud for
realizing IoT-Cloud service composition. Then, we verify service composition with the operation
lifecycle by selecting a real-world IoT-Cloud service scenario. After that, we discuss the feasibility of
Dynamic OverCloud.

5.1. Operation Lifecycle on Dynamic OverCloud

To guide the process from provisioning Dynamic OverCloud to service realization, we suggest
an operation lifecycle, as depicted in Figure 7. The provisioning stage is done automatically with
the help of the implemented software framework, but Dynamic OverCloud users must manually
perform the stages of service composition and service verification. Thus, the Dynamic OverCloud
user should comply with following Operation Lifecycle to utilize Dynamic OverCloud for service
composition effectively.

Dynamic Reae Dynamic Ready for Dynamic Running Dynamic
OverCloud Ex enrnent OverCloud Dynamic OverCloud targeted OverCloud
Operator P User OverCloud User service User

Clean up / N
modify service2

Assembled i e p :
. RESTful API Service Service Service Service Tuning
Mutiple Ciouds | nteifece Proy Request Datalake discovery stitching monitoring (optional)
i Provisioning l T T
Initialization Dev+Ops Post C'g‘l“”fa’“’e Visibilty Fabric Service Service
Provisioning s Provisioning matchmaking placement
(Experimental Playground) Provisionin
Provisioning Stage Service Composition Stage Service Verification Stage
[ ] Users [ ] Results | ‘ Manual Execution l:l Automated Execution

Figure 7. Operation Lifecycle for service realization.



Electronics 2020, 9, 969 12 of 20

Before starting the operation lifecycle, we should prepare the experimental environment. In this
step, users should acquire cloud credentials to create bare metal/virtual machines with an isolated
tenant network. For the ready to use of Interface Proxy, we install and configure a database and a
workflow engine. Also, we configure the credentials of targeted clouds to use of resources.

Provisioning Stage: This stage is to build Dynamic OverCloud for the ready to use.
It automatically provisions Dynamic OverCloud step by step with the workflow engine based on the
user’s requirements.

The user should call RESTful API request with parameters as depicted in Table 2. When the
API request comes in, Interface Proxy executes the appropriate workflow depending on the request
parameters to build Dynamic OverCloud. After building Dynamic OverCloud, the user receives a
response result, as shown in Figure 8. By accessing the Dev+Ops Post with the given SSH key, the user
is ready to use Dynamic OverCloud. Multiple dashboards that are given by the API response are also
available to assist the users in utilization.

Table 2. Provisioning API specification.

Parameter Description
Provider Cloud type (OpenStack, Amazon, heterogeneous)
Number The number of cloud-native clusters
Size Instance flavor
OpenStack.number  The number of cloud-native clusters (heterogeneous)
OpenStack.size Flavor (heterogeneous)
OpenStack.post Dev+Ops Post location (yes, no)
Amazon.number The number of cloud-native clusters (heterogeneous)
Amazon.size Flavor (heterogeneous)
Amazon.post Dev+Ops Post location (yes, no)

“overcloud ID”: “10fd3e7c-5298-4880-9904-480aace97302”,
“weave_url”: “http://SDev+Ops Post IP:32080",
“devops_post™: “$Dev+Ops Post IP”,
“chronograf_url”: “http://$Dev+Ops Post IP:8888",
Q] | — BEGIN RSA PRIVATE KEY----- o= END RSA PRIVATE KEY---",
“prometheus url™: "http://$Dev+Ops Post IP:30921",
“rook_url”: “http:// $Dev+Ops Post [P:32524”,
“logical_cluster”: [ “ $Cluster IP #1”,
“ $Cluster IP #2”,

1.

"smartx-multiview”: “http://$Dev+Ops Post IP:3006/menu”

¥
Figure 8. Example response of Provisioning API.

Service Composition Stage: This stage is to do service composition to validate user’s services.
Since the service composition is limited to Cloud-native Clusters, we utilize the steps of service
composition on the Kubernetes environment defined in our previous work [37]. For IoT-Cloud service
composition, the following four steps are considered.

First, the service discovery step should be considered for a developed service. A service based
on MSA is essential to recognize and communicate with each other. In Kubernetes, we find functions
by using the metadata in the service description. To discover functions from outside, we use the
service object in Kubernetes. It chooses multiple options such as node port and the ingress IP to expose
functions. Thus, we should carefully write the service description by using these functionalities to
satisfy service discovery.

Second, finding and matching the resources is important to accord with the most suitable
requirements of the service function among the various resources. Each function for composition
has a different resource requirement and the location of the target resource to be executed. In this
step, we find the most appropriate resources to distribute each of the functions of the desired service.
We select the factors and apply them by writing in the service description.



Electronics 2020, 9, 969 13 of 20

Third, after service matchmaking, service placement should be considered. If there is a required
precedence function in the service, it should be arranged in order. The service distribution should be
done after checking the node status of the previously matched functions. At this time, the relation of the
separated functions must be specified in order to prevent a crash between the functions. The service
distinguishes functions through attached labels and distributes the functions by separating them
through the namespace in the description of the service to be deployed.

Lastly, the distribution functions are linked according to the service specification. This linkage enables
us to transmit and receive data of mutually connected functions by defining the connection relationship of
functions. When the dependency of the service function is satisfied, we define the relationship between the
functions by specifying the label and the selector in the Kubernetes description.

Service Verification Stage: In this stage, we check whether the service is performing normally or
not, and have troubleshooting if a problem occurs. After the service stitching, the targeted service is
operated. However, continuous monitoring and service management are needed. Service monitoring
in a cloud-native computing environment should be at the level of modularized service functions.
The service is maintained by continuously checking the status of service functions and taking action
accordingly. In addition, maintaining continuous service is necessary by taking action if the status of
the service functions is abnormal. Service tuning in the cloud-native computing environment improves
qualities by re-distributing and re-stitching modularized functions.

5.2. IoT-Cloud Service Realization with Operation Lifecycle

To verify the proposed Dynamic OverCloud, we select smart energy loT-Cloud service as a
real-world service scenario since it covers range from 3-tier and IoT to machine learning. Smart energy
service uses Raspberry Pi 2 to collect temperature, humidity, and power consumption of the server
room and collects the server’s system temperature. If the service detects an abnormality such as a high
temperature or excessive power consumption of the server, it changes servers to a power-saving mode
or notifies a server administrator. It also has visualization and monitoring on a dashboard via a web
browser [38]. We make use of the designed Lifecycle workflow of Dynamic OverCloud to realize the
IoT-Cloud service as follows.

Before starting the operation lifecycle, we prepare an experimental playground, as shown in
Figure 9. In this step, users should acquire cloud credentials to create bare metal/virtual machines
with an isolated tenant network. For the ready to use of Interface Proxy, we install and configure
a database and a workflow engine. Also, we configure the credentials of targeted clouds to use of
resources.

amazon
@ Power (16) webservices
O Management (1G)

@ ControlData (10G) KR{&X)JET Amazon AWS Cloud %
Supermicro

Interface Proxy

S 9 S 9
'° as;;l_)erry as;;t_)erry Supermicro Supermicro Supermicro Supermicro
4 ' ' . SYS-E200-8D SYS-E200-8D
B8

SYS-E300-9A SYS-E200-8D

s & 2 = tack Supermicro Supermicro Supermicro Supermicro
o r
@ Rasptary | @y openstack. § SYS-E300.9A ‘ isvs-Ezoo.so ‘ §SYS-E200-8D ‘ !ws&zoo-ao ‘
i i

loT Devices with Sensors OpenStack Cloud

Figure 9. Experimental playground for IoT-Cloud service over multiple clouds.



Electronics 2020, 9, 969 14 of 20

To verify Dynamic OverCloud with the implemented software framework, we prepare the
multi-clouds playground shown as Figure 9. Using multiple clouds, we use Amazon AWS for the public
cloud and build our private OpenStack-based cloud. We use six SuperServer E200-8D (Xeon-D 1.9Ghz,
6-cores, 32GB memory, 512G SSD) and two SuperServer E300-9A (Xeon-D 2.2Ghz, 4-cores, 32GB
memory, 512G SSD) boxes to build the OpenStack cloud and all of servers are manufactured by
SuperMicro, headquarters in the United States. One server with the SuperServer E200-8D model plays
the role of Interface Proxy. In addition, we configure four Raspberry Pi 2, which is manufactured
by Raspberry Pi Ltd from England, to realize the smart energy service. For the networking of the
playground, we use three networking planes by categorizing heterogeneous traffics based on their
characteristics; a power plane and a management plane for operators; a control/data plane for Dynamic
OverCloud users.

For preparing Interface Proxy, we configure OpenStack Mistral engine and MySQL. Note that
OpenStack Mistral can be run any environment without dependencies of the OpenStack cloud. Before
running APIs, we should define parameters within the configuration file. The parameters we fill out
are listed in Table 3.

Table 3. Interface Proxy configuration parameters.

Initial Parameters

Database MySQL host, password
OpenStack OpenStack ID, password, Keystone url
Amazon AWS Amazon AWS access key, secret access key

Workflow engine OpenStack Mistral host, ID, password

5.2.1. Provisioning Stage

In order to allocate cloud resources in Amazon AWS and OpenStack clouds built in the previous
stage, we call implemented Dynamic OverCloud API with the following command.

$ curl —-X POST -H “Content-Type: application/json” —d ‘{“provider”: “heterogeneous”,
“OpenStack”: {“number”: “2”, “size”: “ml.logical”, “post”: “no”}, “Amazon”: {“number”:
“3”, “size”: “c5d.2xlarge”, “post”: yes”}}" http:/ /Interface_Proxy_IP:6125/overclouds

This command is the simplest way to build Dynamic OverCloud at once. It means that we build
Dynamic OverCloud with two virtual machine instances with m1.logical size on OpenStack cloud and
three virtual machines with c¢5d.2xlarge size on Amazon AWS cloud. Dev+Ops Post will be deployed
on Amazon AWS, and size is fixed to cover significant computing power. When the API request comes
in, Interface Proxy selects the appropriate workflow according to the user’s input request and performs
it automatically. At that time, UnderCloud allocates one additional virtual machine for Dev+Ops
Post. After the provisioning of resources, scripts are executed automatically in virtual machines to
construct the components of Dynamic OverCloud. Dev+Ops Post executes implemented scripts by
synchronizing the task order according to the workflow description. After the provisioning of the
Dynamic OverCloud, API returns the following information.

$ { “devops_post”: “IP”, “ssh”: “PRIVATE_KEY”, “logical_cluster”: [ “IP1”, “IP2”, “IP3”, “IP4”,
“IP5”], “overcloud_ID”: “ID”, “Prometheus_url”: “URL”, “rook_url”: “URL”, “chronograf_url”:
“URL”, “weave_url”: “URL”, “smartx-multiview”: “URL"}

After that, we create an ssh-key file by pasting the ssh tuple’s content to access Dev+Ops Post
and Cloud-native Clusters using the SSH. In the Dev+Ops Post, we see the Kubernetes and pods in
Dev+Ops Post, as shown in Figure 10. We confirm five Cloud-native Clusters and several pods to
assist the functionalities of Dynamic OverCloud.

To observe the overall resource status of Dynamic OverCloud, we use web visualization URLs.
By using the tuple of chronograf_url of the output of the API call, we access resource-layer visualization.



Electronics 2020, 9, 969 15 of 20

It is implemented through data collection of Telegraf, a database of InfluxDB, and visualization of
Chronograf. The collected metrics are basic resources status such as CPU, disk, diskio, kernel, memory,
process, swap, system.

For checking persistent storage, we access the Ceph web dashboard. Ceph dashboard shows five
object storage daemons (OSDs) to make a total 605G storage pool for service data. Rook orchestrates
back-end storage drivers such as Ceph in a cloud-native environment. Note that Rook basically uses
the local storage on virtual machines to make the dynamic distributed storage pool. However, we can
deploy Ceph storage with only dedicated nodes by using the label properties of Kubernetes.

ubuntu@ip-

logical-cluster-1
logical-cluster-2

ubuntu@ip-1
NAMESPACE
default
default

-system
-system
-system
-system
-system
-system
-system
-system
-system
-system
-system
-system
-system
-system
-system
-system
-system
-system
-ceph-
-ceph-
-ceph-

system
system
system

-0 wide
VERSION
vl.12.
vl.12.
vl.12.
vl.12.
vl.12.
vl.12.

:~$ kubectl get nodes
STATUS  ROLES AGE
Ready  <none> 3m25s
Ready <none> 3m34s
Ready master 3m56s
Ready <none> 3m22s
Ready <none>  3m3ls
Ready <none>  3m26s

INTERNAL-IP

:~$ kubectl get pods --all-namespaces
NAME
ambassador-85478b9f6d-qztpc
prometheus-operator-6c6cc6f56d-5dbee
prometheus-prometheus-@
coredns-576cbf47¢7-qlzhn
coredns-576cbf47c7-s5416
etcd-ip-:
kube-apiserver-ip
kube-controller-manager-ip-
kube-proxy-dbtxx
kube-proxy- jwcév
kube-proxy-kf75x
kube-proxy-kfvzv
kube-proxy-1ltpdf
kube-proxy-wqjfc
kube-scheduler-
weave-net-5d6jp
weave-net-lppgd
weave-net-nbl2c
weave-net-xdpgx
weave -net - xmb5w
weave-net-zqdnh
rook-ceph-agent
rook-ceph-agent
rook-ceph-agent

-2pmes
-blwnm
-bgeng

-ceph-
-ceph-
-ceph-
k-ceph-
k-ceph-

system
system
system
system
system

rook-
rook-
rook-

ceph-
ceph-
ceph-

agent-m7pmd
agent-qxdf2
operator-7dd46f4549-86bkp

discover-6bndc
discover-bkgtx

rook-
rook-

EXTERNAL-IP

<none>
<none>
<none>
<none>
<none>
<none>

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

05-IMAGE

Ubuntu 16.04.
Ubuntu 16.04.
Ubuntu 16.04.
Ubuntu 16.04.
Ubuntu 16.04.4
Ubuntu 16.04.

AGE
2m59s
3mbs
2m32s
3m50s
3m50s
2m51s
3m5s
3mlos
3m39s
3m50s
3m36s
3md0s
3m45s
3m48s
2m59s
3m32s
3m32s
3m32s
3m32s
3m32s
3m32s
2m20s
2m20s
2m20s
2m20s
2m20s
2m40s
2m20s
2m20s

Figure 10. Status of Cloud-native Clusters in Dev+Ops Post of Dynamic OverCloud.

5.2.2. Service Composition Stage

In this stage, we leverage the developed smart energy IoT-cloud service to apply the service
composition. First, the functions in the smart energy service are Python scripts developed with a
microservice architecture shown as Figure 11. All of the functions are in the form of a Docker container.

The detailed implementation is written in our previous work [37].

Communicator

0

mongoD)

Monitoring:
Weather

Monitoring: Data Collector
Temperature/

Humidit \@

EdgeX
Command

§g kafka
>

Kafka Broker 3

=

EdgeX
MetaData

J]
Device Agent

EdgeX
Consu

EdgeX
CoreData

chronograf
s D Senice
2 Visualization
: Kafka Broker 1
j
Kafka Broker 2 \
i;}.........l""

J
Datalake

Data Sender

EdgeX
Logging

Q)
ML Training

O
ML Training

o
ML Training

~Y

&
>

=]
openstack.

EDGEXXFOUNDRY

ML Inference
Server

Jupyter Hub

amazon
webservices

Figure 11. Implemented smart energy IoT-Cloud service function diagram.



Electronics 2020, 9, 969 16 of 20

For the service discovery step, the functions of smart energy service are divided into internal
discovery and external discovery according to the access policy. The smart energy service has Kafka,
DataLake, and Visualization functions that service discovery is done according to the internal access
policy by describing metadata of service. In contrast, the Communicator, EdgeX service, Data collector,
and ML functions, which are external discovery approaches, utilize NodePort on Kubernetes.

In the step of the service matchmaking, the Kubernetes deployment controller is used to make
requests and limits on required resources by specifying them in the YAML file. For example,
the Communicator function matches computing resources with 200 Milli-cores CPU and 64 Mega-byte
memory requirements. Through this process, appropriate nodes can be matched with functions by
considering needs.

In the service placement step, specific labels are assigned to Cloud-native clusters. We use the label
to distribute service functions to the appropriate Cloud-native clusters. For example, the ML training
functions that need high-performance computing are placed to Cloud-native Clusters, where are
Amazon AWS cloud. We also proceed through the grouping of dependent functions. The grouping is
done through the namespace, which is intended to prevent conflicts between the distributed functions.

Finally, in the service stitching step, the connections between functions are defined using the
Kubernetes Selector in the YAML file. Also, we use the Kubernetes NodePort to connect with each
other. For example, the inference function uses NodePort through service discovery to support
inference requests based on RESTful APL. It sends six consecutive datasets with five fields, such as
external temperature, external humidity, server room temperature, server room humidity, and weather
information, to the connected port in JSON format.

5.2.3. Service Verification Stage

In this stage, we should check the status of the container-based functions using the basic
open-source visualization tool. In Dynamic OverCloud, many visualization tools are basically
provided with the help of Visibility Fabric. Typically, workload-layer visibility focuses on the
visualization of your container status and traffic connectivity in MSA-based service composition.
Weave Scope is a representative tool to get the status of containerized functions. Figure 12 shows a
graph-based visualization of the relationship between workloads depending on service stitching by
accessing weave_url.

¥ weavescope Q search Processes Containers Pods Hosts & B P Live Pause
name by DNS name eave Ne
o s CPU  Memory
by Image S
L] L] L] L L] L] L]
edgex-core-co.. edgex-core-da.. edgex-support.. edgex-core-m.. consumer-dl-in. consumer-dl-in... consumer-di-in...
1 container 1 container 1containe 1 container 1container 1 container 1 container
P
/
/
<’
L ] L L] L ]
api-server-79c edgex-core-co...  edgex-mongo-.. kafka-broker-2... =~
1 container 1 container 1 containe 1 container
L] L]

kafka-broker-3... kafka-broker-1-.

1 container 1 container

kafka-zookeep...

1 container

chronograf-7f5.

1 container

influxdb-5bc66...

1container

Figure 12. Workload-layer visualization in the smart energy service.



Electronics 2020, 9, 969 17 of 20

In another way, the service may have its service visibility. In our service case, we have web-based
visualization to easily grasp the situation of the server room, as shown in Figure 13.

If there are problems among the inter-connected functions, we can seamlessly update functions
as well as inter-connection by changing the Kubernetes Deployment description. Also, we can apply
re-distribution policies when there are ongoing problems.

SmartEnergy Dashboard

Server Room Status

Temperature

#1
Alr Candmamr Air Condmomr/

10
Humidity
#3 #4 #5 #6
Sever Rack Sever Rack Sever | Sever | Sever |Network
Rack Rack Rack Rack

Figure 13. Visualization of the smart energy service.

5.3. Discussion

We verify the feasibility of the proposed Dynamic OverCloud by realizing the developed smart
energy service. Thanks to the Kubernetes orchestration, the step of service composition can be done
regardless of the underlying infrastructure. Once you build Dynamic OverCloud on hybrid clouds,
you can easily place functions by considering the properties of the service. For example, in our smart
energy service case, functions that should be adjacent to IoT devices are placed in our OpenStack
cloud. In contrast, other functions that require a lot of computing are placed in the Amazon AWS cloud
for efficient performance. Also, Kubernetes supports seamless updates using rolling updates, canary
deployment. Based on these capabilities, users do the relocatable service composition on multi-clouds.

In the case of the vendor lock-in, Dynamic OverCloud currently supports OpenStack and Amazon
AWS clouds. However, there is no need for much effort to support other clouds since we only
wrap the minimal APIs for allocating/deallocating cloud resources from cloud providers. Also,
All of the components of Dynamic OverCloud are fully open-source software. Thus, based on
Kubernetes characteristics without vendor lock-in, we expect Dynamic OverCloud to satisfy more
cloud interoperability by applying other clouds in the future.

To prove the efficient provisioning with the software framework, we run APIs to create and delete
Dynamic OverCloud on the experimental playground. For performance comparison, we additionally
execute instantiation and clean-up operations without workflow. Figure 14 shows the average times
when instantiation and clean up are performed ten times. We verify that the instantiation operation
with workflow could be done less than 7 minutes. In particular, provisioning time shows less overhead
since all of the processes are in parallel by utilizing the workflow’s characteristics.



Electronics 2020, 9, 969 18 of 20

oW workflow ®W/O workflow

[ I
o o u o
o & o o

w
o
(=]

Average elapsed time (seconds)
— - N N
o w o wv
o o o o

%
o

" 'R ['H

o

Clean up Clean up Clean up Instantiation Instantiation Instantiation
(Amazon) (OpenStack + (OpenStack) (Amazon) (OpenStack + (OpenStack)
Amazon) Amazon)

Figure 14. Time measurements of Dynamic OverCloud provisioning.
6. Conclusions

In this paper, we propose a new approach called Dynamic OverCloud that dynamically
constructs inter-operable and visibility supported isolation to enable containerized MSA-based service
composition. To verify the proposed concept, we design Dynamic OverCloud and software framework
based on requirements. Then, we implement the proposed Dynamic OverCloud. To verify the
feasibility of the proposed concept, we realize smart energy service with the operation lifecycle. Since
we reflect automation and efficiency as much as possible into Dynamic OverCloud by using workflows,
the user can dynamically deploy Dynamic OverCloud for their service verification. We also expect
that anyone can easily apply Dynamic OverCloud to their environment without additional cost since
Dynamic OverCloud is implemented by leveraging open-source software.

Although we verify the proposed concept with Smart energy service, this research has potential
to be leveraged for various cloud applications across different domains such as SDN/NFV testbed for
4G/5G networks. In the future, we plan to expand and verify our software framework to apply the
proposed concept in 5G mobile network environment.

Author Contributions: Conceptualization, ].H., S.P. and ] K.; Investigation, ].H.; Software, ].H.; Supervision, ] K.;
Validation, J.H.; Writing—original draft, ].H.;Writing—review & editing, J.H., S.P. and J.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by GIST Research Institute (GRI) grant funded by the GIST in 2020 and
Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No.2019-0-01842, Artificial Intelligence Graduate School Program (GIST)).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Han, J.; Kim, J. Analytics-leveraged Box Visibility for Resource-aware Orchestration of SmartX Multi-site
Cloud. In Proceedings of the 30th International Conference on Information Networking (ICOIN 2016),
Kota Kinabalu, Malaysia, 13-15 January 2016.

2. Hwang, M.; Lee, K.; Yoon, S. Software Development Methodology for SaaS Cloud Service. |. Inst. Internet
Broadcast. Commun. 2014, 14, 61-67. [CrossRef]

3.  Hasselbring, W. Microservices for scalability: Keynote talk abstract. In Proceedings of the 7th ACM/SPEC
on International Conference on Performance Engineering, Delft, The Netherlands, 12-18 March 2016.


http://dx.doi.org/10.7236/JIIBC.2014.14.1.61

Electronics 2020, 9, 969 19 of 20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Balalaie, A.; Heydarnoori, A.; Jamshidi, P. Migrating to cloud-native architectures using microservices:
An experience report. In Proceedings of the European Conference on Service-Oriented and Cloud Computing,
Taormina, Italy, 15-17 September 2015.

Josep, A.D.; Katz, R.; Konwinski, A.; Gunho, L.E.E.; Patterson, D.; Rabkin, A. A view of cloud computing.
Commun. ACM 2010, 54, 50-58.

Opera-Martins, J.; Sahandi, R.; Tian, F. Critical analysis of vendor lock-in and its impact on cloud computing
migration: A business perspective. J. Cloud Comput. 2016, 5, 4. [CrossRef]

Sitaram, D.; Manjunath, G. Moving to the Cloud: Developing Apps in the New World of Cloud Computing; Elsevier:
Burlington, VT, USA, 2011.

Rodero-Merino, L.; Vaquero, LM.; Gil, V.; Galan, F; Fontan, J.; Montero, R.S.; Llorente, .M. From
infrastructure delivery to service management in clouds. Future Gener. Comput. Syst. 2010, 26, 1226-1240.
[CrossRef]

Pahl, C.; Lee, B. Containers and clusters for edge cloud architectures—A technology review. In Proceedings
of the 3rd International Conference on Future Internet of Things and Cloud, Rome, Italy, 24-26 August 2015.
Han, J.; Kim, J. Design of SaaS OverCloud for 3-tier SaaS compatibility over cloud-based multiple boxes.
In Proceedings of the 12th International Conference on Future Internet Technologies, Fukuoka, Japan,
14-16 June 2017.

Georgakopoulos, D.; Hornick, M.; Sheth, A. An overview of workflow management: From process modeling
to workflow automation infrastructure. Distrib. Parallel Databases 1995, 3, 119-153. [CrossRef]

Singh, V.; Gupta, I; Jana, PK. A novel cost-efficient approach for deadline-constrained workflow scheduling
by dynamic provisioning of resources. Future Gener. Comput. Syst. 2018, 79, 95-110. [CrossRef]
Opara-Martins, J.; Sahandji, R.; Tian, F. Critical review of vendor lock-in and its impact on adoption of cloud
computing. In Proceedings of the International Conference on Information Society (i-Society 2014), London,
UK, 10-12 November 2014.

Miranda, J.; Murillo, J.M.; Guillén, J.; Canal, C. Identifying adaptation needs to avoid the vendor lock-in effect
in the deployment of cloud SBAs. In Proceedings of the 2nd International Workshop on Adaptive Services
for the Future Internet and 6th International Workshop on Web APIs and Service Mashups, Bertinoro, Italy,
19 September 2012.

Toivonen, M. Cloud Provider Interoperability and Customer Clock-In. In Proceedings of the Seminar
(No. 58312107), Helsinki, Finland, 5 August 2013.

Badidi, E. A cloud service broker for SLA-based SaaS provisioning. In Proceedings of the International
Conference on Information Society (i-Society 2013), Toronto, ON, Canada, 24-26 June 2013 .

Karim, B; Tan, Q.; Villar, J.; de la Cal, E. Resource brokerage ontology for vendor-independent Cloud Service
management. In Proceedings of the IEEE 2nd International Conference on Cloud Computing and Big Data
Analysis (ICCCBDA), Chengdu, China, 28-30 April 2017.

Kritikos, K.; Zeginis, C.; Politaki, E.; Plexousakis, D. Towards the Modelling of Adaptation Rules and
Histories for Multi-Cloud Applications. In Proceedings of the CLOSER, Heraklion, Greece, 2—4 May 2019.
Ferry, N.; Chauvel, F; Song, H.; Rossini, A.; Lushpenko, M.; Solberg, A. CloudMF: Model-driven
management of multi-cloud applications. ACM Trans. Internet Technol. 2018, 18, 1-24. [CrossRef]

Merle, P; Barais, O.; Parpaillon, ].; Plouzeau, N.; Tata, S. A precise metamodel for open cloud computing
interface. In Proceedings of the 2015 IEEE 8th International Conference on Cloud Computing, New York,
NY, USA, 27 June-2 July 2015.

Sandobalin, J.; Insfran, E.; Abrahao, S. Towards Model-Driven Infrastructure Provisioning for Multiple
Clouds. In Advances in Information Systems Development; Springer: Cham, Switzerland, 2019; pp. 207-225.
OpenStack TripleO. Available online: https://docs.openstack.org/tripleo-docs/latest/install /introduction/
architecture.html/ (accessed on 3 May 2020).

Kratzke, N. Lightweight virtualization cluster how to overcome cloud vendor lock-in. J. Comput. Commun.
2014, 2, 1. [CrossRef]

Hadley, J.; Elkhatib, Y.; Blair, G.; Roedig, U. Multibox: Lightweight containers for vendor-independent
multi-cloud deployments. In Proceedings of the Workshop on Embracing Global Computing in Emerging
Economies, Almaty, Kazakhstan, 26-28 February 2015.

Afgan, E.; Lonie, A.; Taylor, J.; Goonasekera, N. CloudLaunch: Discover and deploy cloud applications.
Future Gener. Comput. Syst. 2019, 94, 802-810. [CrossRef]


http://dx.doi.org/10.1186/s13677-016-0054-z
http://dx.doi.org/10.1016/j.future.2010.02.013
http://dx.doi.org/10.1007/BF01277643
http://dx.doi.org/10.1016/j.future.2017.09.054
http://dx.doi.org/10.1145/3125621
https://docs.openstack.org/tripleo-docs/latest/install/introduction/architecture.html/
https://docs.openstack.org/tripleo-docs/latest/install/introduction/architecture.html/
http://dx.doi.org/10.4236/jcc.2014.212001
http://dx.doi.org/10.1016/j.future.2018.04.037

Electronics 2020, 9, 969 20 of 20

26.
27.

28.

29.
30.
31.
32.
33.

34.

35.

36.
37.

38.

Terraform. Available online: https://www.terraform.io/ (accessed on 3 May 2020).

Usman, M.; Risdianto, A.C.; Han, J.; Kim, J. Inter-correlation of Resource-/Flow-Level Visibility for
APM Over OF@ TEIN SDN-Enabled Multi-site Cloud. In Proceedings of the International Conference
on Heterogeneous Networking for Quality, Reliability, Security and Robustness, Seoul, Korea, 7-8 July 2016.
Li, Q.; Wang, Z; Li, W.H.; Li, J.; Wang, C.; Du, R.Y. Applications integration in a hybrid cloud computing
environment: Modelling and platform. Enterp. Inf. Syst. 2013, 7, 237-271. [CrossRef]

Kubernetes. Available online: https://kubernetes.io/ (accessed on 3 May 2020).

Grafana. Available online: https://grafana.com/ (accessed on 3 May 2020).

Prometheus. Available online: http://prometheus.io/ (accessed on 3 May 2020).

Rook. Available online: http://rook.io/ (accessed on 3 May 2020).

Kubernetes Storageclass. Available online: https:/ /kubernetes.cn/docs/concepts/storage/storage-classes/
(accessed on 3 May 2020).

Usman, M.; Risdianto, A.C.; Han, J.; Kim, J. Interactive visualization of SDN-enabled multisite cloud
playgrounds leveraging smartx multiview visibility framework. Comput. . 2019, 62, 838-854. [CrossRef]
Envoy. Available online: http://envoyproxy.io/ (accessed on 3 May 2020).

Weave Scope. Available online: https://github.com/weaveworks/scope/ (accessed on 3 May 2020).

Lee, S;; Han, J.; Kwon, J.; Kim, J. Relocatable Service Composition based on Microservice Architecture
for Cloud-Native IoT-Cloud Services. In Proceedings of the Asia-Pacific Advanced Network, Putrajaya,
Malaysia, 22-26 July 2019.

Kim, S.; Kim, J. Designing smart energy loT-Cloud services for mini-scale data centers. In Proceedings of the
KICS 2017 Winter Conference, Jeongseon, Korea, 18-21 January 2017.

® (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


https://www.terraform.io/
http://dx.doi.org/10.1080/17517575.2012.677479
https://kubernetes.io/
https://grafana.com/
http://prometheus.io/
http://rook.io/
https://kubernetes.cn/docs/concepts/storage/storage-classes/
http://dx.doi.org/10.1093/comjnl/bxy103
http://envoyproxy.io/
https://github.com/weaveworks/scope/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Dynamic OverCloud: Design
	Requirements
	Overall Design of Dynamic OverCloud
	Software Framework Design of Dynamic OverCloud

	Dynamic OverCloud: Implementation
	Software Framework Components' Implementation
	Dynamic OverCloud Workflows Implementation with the Software Framework

	Dynamic OverCloud: Feasibility Verification with Operation Lifecycle
	Operation Lifecycle on Dynamic OverCloud
	IoT-Cloud Service Realization with Operation Lifecycle
	Provisioning Stage
	Service Composition Stage
	Service Verification Stage

	Discussion

	Conclusions
	References

