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Abstract: Software uses cryptography to provide confidentiality in communication and to provide
authentication. Additionally, cryptographic algorithms can be used to protect software against
cracking core algorithms in software implementation. Recently, malware and ransomware have begun
to use encryption to protect their codes from analysis. As for the detection of cryptographic algorithms,
previous works have had demerits in analyzing anti-reverse engineered binaries that can detect
differences in analysis environments and normal execution. Here, we present a new symmetric-key
cryptographic routine detection scheme using hardware tracing. In our experiments, patterns were
successfully generated and detected for nine symmetric-key cryptographic algorithms. Additionally,
the experimental results show that the false positive rate of our scheme is extremely low and the
prototype implementation successfully bypasses anti-reversing techniques. Our work can be used to
detect symmetric-key cryptographic routines in malware/ransomware with anti-reversing techniques.

Keywords: cryptographic routine detection; anti-reverse engineered binaries; hardware tracing;
binary program analysis

1. Introduction

As security is considered a significant issue in modern software development, various security
techniques have been used to protect software products from the threats. Among them, one of the most
widely used of techniques is cryptography. Software uses cryptography to provide confidentiality in
communication and to provide authentication. Additionally, it can be used to protect software against
cracking core algorithms in software implementation.

Recently, malware [1,2] and ransomware [3,4] have begun to use encryption to hide important
information from analysis, e.g., ransomware encrypts user’s files and displays messages to persuade
users to pay. In order to alleviate the difficulties that analysts face and to increase analysis efficiency,
it is necessary to identify cryptographic routines in the target executable and to detect the correct
cryptographic algorithm.

There are roughly two approaches of executable analysis that analysts use to detect cryptographic
algorithms. The first is static analysis, which detects important features without execution such as
specific constant values or machine instructions used by cryptographic algorithms. These characteristics
are unique signatures of encryption algorithms, so a static approach is also called a signature-based
detection method [5]. Existing signature-based encryption detection tools include KANAL [6],
DRACA [7], FindCrypt2 [8], and Signsrch [9]. However, since static detection methods perform analysis
without executing a program, accurate analysis cannot be performed for polymorphic/metamorphic
malware [10] that uses self-modifying code (which alters its own instructions while it is executing)
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or code packing (which compresses malware code and combines the compressed data with a
decompression routine into a single executable) techniques. Therefore, a second analysis approach,
a dynamic analysis method, has appeared to address this problem.

Dynamic analysis, unlike static analysis, analyzes run-time behavior during program execution.
Therefore, dynamic analysis can analyze a program with a self-modifying code or code packing
techniques. Aligot [5], CryptoHunt [11], and K-HUNT [12] are cryptographic detection tools that
adopt dynamic analysis. However, for such dynamic analysis, the target executable must be executed
in a secure environment for analysis. The analysis process at this time takes a considerable amount of
time due to the creation of a separate execution environment. Additionally, the secure environment
is quite different from a runtime environment on an actual native machine [13]. The detection of
encryption algorithms using dynamic analysis hits a limit as the executable under analysis begins to
detect differences in these execution environments by applying anti-reversing techniques that execute
different behaviors than in normal execution. Recently, commercial packers, including Themida [14] and
Enigma [15], use anti-reversing and encryption techniques at the same time to protect executables [16].

To overcome this limitation, we present a symmetric-key cryptographic routine detection scheme
that uses hardware tracing. Hardware tracing [17,18] is the latest monitoring function supported by
CPU hardware and provides execution traces at the CPU level. At this time, because it does not build a
separate execution environment like dynamic analysis, it is possible to obtain a trace for the target
executable in runtime environment while evading anti-reversing techniques. In this paper, our scheme
detects the symmetric-key cryptographic routine from the executable by utilizing these characteristics
of hardware tracing.

However, hardware tracing has some limitations. First, it provides a very limited type of
information compared to existing analysis tools. The limited information includes timing, program
flow information, and program-induced mode-related information [18]. Because hardware tracing
records execution information for all instructions executed by the CPU, the size of the trace log is very
large, making it difficult to find the exact location of the information to be analyzed. To overcome this
limitation, our scheme uses the new feature of the latest CPUs—software trace instrumentation, which
allows the analyst to instrument directly into the hardware tracing record. This allows for the analysis
of the execution information of the cryptographic routine to generate a certain pattern using the limited
information provided by hardware tracing. In this paper, we generate these patterns and propose a
scheme of detecting cryptographic algorithms in the executable using the generated patterns.

The cryptographic algorithm can be divided into symmetric-key cryptography and public-key
cryptography. Among them, we focused on the symmetric-key cryptographic algorithm. The operation
of the symmetric-key cryptographic algorithm can be roughly classified into three processes: key
generation, data processing according to the block cipher mode of operation, and encryption round
functions. We found out that for most of symmetric-key cryptographic algorithms, these processes
perform fixed operations regardless of key or plaintext contents. Hence, we succeeded in using this
property to obtain the unique pattern for each of the symmetric-key cryptographic algorithms.

In this paper, we propose a symmetric-key cryptographic routine detection scheme using hardware
tracing. This method utilizes the characteristics of a symmetric-key cryptographic algorithm to create
a signature pattern that can specify the type of algorithm through hardware tracing. The signature
pattern of the encryption operation is generated for each widely used cryptographic library, and it is
then integrated and stored in the database. The patterns generated in this way can not only detect the
type of cryptographic algorithm but also detect the block cipher mode of operation.

Experiments were conducted on cryptographic libraries to verify the practicality of the scheme
proposed in this paper. As a result, patterns were generated and detected for each block cipher mode
of operation for nine types of symmetric-key cryptographic algorithms. In addition, we conducted
experiments on normal executables that do not perform encryption to measure the rate of false positives.
The experiment confirmed that the probability of incorrectly detecting a pattern was 0% when the
number of iterations of the encryption routine reached a certain threshold value. Finally, we conducted



Electronics 2020, 9, 957 3 of 21

experiments on target executables using anti-reversing techniques to verify whether our scheme could
bypass the anti-reversing techniques. Our experiments showed that the dynamic analysis tools that
previous works have relied on are detected by anti-reversing techniques, but the proposed scheme
successfully bypassed them.

This paper is organized as follows. First, in Section 2, we mathematically define the problem
that our scheme is trying to solve. Section 3 introduces related works. Section 4 describes the
proposed scheme. Section 5 explains the implementation of the proposed scheme. Section 6 shows the
experimental results, and we conclude in Section 7.

2. Problem Definition

In this section, we mathematically define the problem that we focus on. The problem is defined as
follows (which is based on [19]).

Let B denote a binary string (e.g., a text section in a Linux or Windows executable). Let B[i] denote
the ith byte of B. A cryptographic routine (CR) in a binary B is a list of bytes corresponding to machine
instructions in either a cryptographic routine from the original compiled language or a cryptographic
routine introduced directly by the compiler; this is denoted as Equation (1). Note that there are points
where the bytes are not continuous.

CR =
{
B[i], B[i + 1], . . . , B[i + j], B[i + m], B[i + m + 1], . . . , B[i + n]

}
. (1)

CR performs the cryptographic operation, which is an implementation of a certain algorithm.
The function NAMEROUT(), which outputs the name of the cryptographic algorithm performed by CR
is defined in Equation (2):

NAMEROUT(CR) = “Name o f CR′s cryptographic algorithm, ”

NAMEROUT

(
CROPENSSLXAES128CBC

)
= “OPENSSLXAES128CBC

.”
(2)

where CR_OPENSSL_X_AES_128_CBC is the cryptographic routine for the OpenSSL version X of
the AES cryptographic algorithm (key size: 128, block cipher mode of operation: CBC). In order

to evaluate cryptographic routine detection algorithms, we define the ground truth in terms of oracles.
The routine oracle, OROUT(), is an oracle that, given a binary B, returns a list of names of cryptographic
algorithms in B, where each NAMEROUT(CRi) is the name of the algorithm of (higher-level) ith

cryptographic routine. This function can be expressed as follows:

OROUT(B) =
{
s1 = NAMEROUT(CR1), . . . , sn = NAMEROUT(CRn)

}
. (3)

The definition of the problem we are trying to solve is as follows. The cryptographic routine
detection (CRD) problem is to output the complete list of names of algorithms of the cryptographic
routines {s1, s2, . . . , sk} given binary B compiled from a source containing k cryptographic routines.

Suppose that there is an algorithm A_CRD(B) for the CRD problem that outputs S = {s1, s2, . . . , sk}.
Then, the set of true positives (TP), the set of false positives (FP), the set of false negatives (FN), and the
set of true negatives (TN) are as follows:

TP = S∩OROUT(B),

FP = S−OROUT(B),

FN = OROUT(B) − S,

TN = OROUT(B)
c
− S.

(4)
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We also define recall and false positive rate (FPR) as follows:

Recall = |TP|/(|TP|+ |FN|),

FPR = |FP|/(|TN|+ |FP|).
(5)

3. Related Work

In this section, we summarize previous works related to our scheme. In Section 3.1, we first
describe the previous works on cryptographic algorithm detection. The methods of identifying
cryptographic algorithms can be largely classified into static and dynamic detection. In Section 3.2,
we summarize the research conducted using the hardware tracing function. In addition, there have
been various recent studies [20–24] to detect ransomware. However, these studies aim not to detect the
cryptographic algorithm used by ransomware, but to detect ransomware by taking advantage of the
feature that ransomware uses encryption.

3.1. Cryptographic Algorithm Detection

Static detection is a cryptographic algorithm detection method that uses static analysis.
The research conducted using the static detection method is as follows. First, KANAL [6] is a
cryptographic identification tool that works as a plug-in for PEiD. PEiD is a tool that identifies
packers, compilers, etc. KANAL defines a signatures (that are compatible with PEiD) to identify
cryptographic algorithms.

DRACA [7] is a tool that detects encryption algorithm in the executable files. The tool is
implemented as an 80 × 86/Win32 command line tool, but it can be used for the Unix ELF (executable
and linkable format) binary, the Java applet, and the PE (portable executable) file.

FindCrypt2 [8] is a plug-in for IDA Pro, one of the popular disassemblers, that searches for
constants known to be associated with the code’s encryption algorithm. Signsrch [9] is also a plug-in
for IDA Pro that detects not only encryption algorithms but also compression algorithms, multimedia,
and other known strings and anti-debugging techniques based on signatures. Users can also add their
own signatures for detection.

These tools must update signatures whenever new or modified encryption algorithms
appear. Because they do not execute programs when analyzing, it is not effective for analyzing
polymorphic/metamorphic code that has self-modifying code or code packing techniques.

In addition, some of the studies that have analyzed cryptographic algorithms have done so
without executing a target use deep learning. Hill et al. [25] introduced a new approach to classify
cryptographic primitives in compiled binary executables using deep learning.

Next, dynamic detection is a cryptographic algorithm detection method that uses dynamic analysis.
It uses debugger and DBI (dynamic binary instrumentation) [26] for analysis. The cryptographic
detection studies adopting the dynamic detection method are as follows. Calvet et al. proposed
Aligot [5], which analyzes the parameter values of cryptographic functions to identify them.
Input/output, given as a parameter to the encryption function, is used. First, it creates a loop
of data flow for the target binary, and then it assigns input/output parameters to it. The same process
is performed for the cryptographic reference implementations. Finally, the encryption algorithm is
detected by comparing the two assigned results.

In the study of Xu et al. [11], the semantics of possible encryption algorithm was captured using
bit-precise symbolic loop mapping [11] from the target binary and reference implementation. They
proposed CryptoHunt, a method to detect encryption algorithms by comparing two sets of formulas
from loop mapping results after significantly reducing comparison candidates through guided fuzzing.

Lestringant [27] identified cryptographic primitives and modes of operation from a target
executable. For this, the trace segments generated through DBI are represented and used as a DFG
(data flow graph).



Electronics 2020, 9, 957 5 of 21

In the study of Li et al. [12], they first defined the insecure crypto key that could be exposed to a
threat and then proposed K-HUNT, a method for identifying whether the encryption function used in
the target executable uses an insecure key.

The above studies detected most encryption algorithms or identified insecure keys. However,
since these techniques use DBI like Intel Pin [28], which inserts code when the target binary is running,
there are significant limitations to detection if the target binary contains anti-reversing techniques.

3.2. Hardware Tracing

In this section, we describe the previous studies using hardware tracing. Hardware tracing is the
tracing function supported by the CPU. The hardware tracing function supported by the ARM CPU is
called ARM CoreSight [17]. CoreSight is an ARM CPU-only hardware feature that provides a solution
to debug and trace in complex SoC (system on chip) designs [17]. Intel Processor Trace is another
hardware trace function supported by Intel CPUs [18]. Intel Processor Trace is an extension of the Intel
architecture that uses CPU hardware features to capture information about software execution [18].

The research conducted through ARM CoreSight is as follows. First, Lee’s work [29] used the
ARM CoreSight Program Trace Macrocell (PTM) to detect a code reuse attack (CRA). PTM, a component
of CoreSight, allows for the execution of an application running on an ARM processor to be extracted
through an external debugger. Since most CRAs violate the normal operation of a program, they
are detected by continuously monitoring and analyzing the execution trace of the victim application
using PTM.

In [30], Peña-Fernandez et al. used ARM CoreSight PTM to detect program bugs or errors on a
commercial off-the-shelf (COTS) ARM microprocessor architecture. Existing techniques for detecting
or mitigating errors use a software approach and thus cannot directly access the various resources of
processors, and they have a limitation in that a significant performance penalty occurs. This study
overcame this limitation by using ARM CoreSight, a hardware monitoring feature.

The following are studies that used the Intel Processor Trace function. In the study of [31–33],
the control flow integrity (CFI) of the program was verified using branch information provided by
Intel Processor Trace.

A simple implementation of Intel Processor Trace (PT) on Linux is simple-pt [34], which decodes
the information provided by the Intel Processor Trace and provides a function trace or instruction
trace of the target executable. However, the code has not worked properly since the kernel page-table
isolation (KPTI) Linux kernel patch caused by the Spectre vulnerability; this issue has yet to be
resolved [35].

In [36], they developed a Windows device driver that can analyze the vulnerability of a program
using Intel Processor Trace. Then, they combined it with DynamoRIO [37], another popular DBI, to
develop a new fuzzing tool, WinAFL. Because it uses Intel Processor Trace, unlike DBI (which needs to
emulate the execution environment to create the control flow graph required for fuzzing), it is possible
to fuzz in a much faster time than the fuzzing tool made of only DynamoRIO.

In [38], they proposed a method to provide an automatic method to bypass anti-debugging
techniques by combining the information provided by DBI and the branch information provided
by Intel Processor Trace. This method uses the feature that the Intel Processor Trace is not affected
by anti-debugging.

In [39], they created an image of the target malware’s branch information and target address
information provided by the Intel Processor Trace, and then they used deep learning to create malware
models for malware detection.

4. Proposed Scheme

This section describes the scheme for detecting the cryptographic algorithms proposed in this
paper. First, Section 4.1 introduces the features and capabilities of the hardware tracing used by the
scheme proposed in this paper. Section 4.2 describes the proposed scheme in detail.
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4.1. Hardware Tracing Features and Capabilities

The hardware tracing directly generates a trace of the executable from the CPU hardware without
any software interference. Since generated traces are so large and complex and have limited type of
information, it is difficult to analyze information without the separate decoding of information and
synchronization with an executable [18].

In this paper, therefore, we carried out the detection of a symmetric-key cryptographic algorithm
with only limited information provided by hardware tracing. Regardless of the CPU manufacturer,
the information that hardware tracing provides in common is the execution flow information for the
target executable.

For ARM processors, the Program Flow Trace (PFT) architecture is supported for the execution of
the flow trace [40]. The PFT architecture outputs the branch information traces necessary to reconstruct
program flows. The module of ARM CoreSight that implements this PFT structure is called Program
Trace Macrocell (PTM). The PTM trace generates an atom for the direct branch. An E atom is generated
if the branch instruction passes its condition, and an N atom is generated if the branch instruction
fails its condition. Additionally, the PTM trace generates a target address packet for indirect branches,
exceptions, processor state change commands, etc [40].

For Intel ×86-64, TNT packets are generated through Intel Processor Trace [18]. TNT packets
indicate whether the corresponding branch was taken or not taken when the condition branch
is executed.

We significantly reduced the amount of the analysis log by limiting the information we intended
to analyze in the branch information of the execution flow, but the amount of information was
still enormous because branch instructions could be included in most operations that software can
perform, as can cryptographic routines. To solve this problem, we needed to instrument the part we
wanted to analyze in the traces created by hardware tracing. For this paper, we used software trace
instrumentation [41,42].

Software trace instrumentation is a function that enables software to perform instrumentation on
traces generated by hardware tracing. In other words, the software allows the analyst to pinpoint the
location of the information he/she wants to analyze by using instrumentation at the desired location.

For ARM, CoreSight’s Module Instrumentation Trace Macrocell (ITM) supports SoftWare
Instrumentation Trace (SWIT) generation. When instrumentation is performed in a software application,
SWIT packets are generated in the CoreSight’s traces [41].

Intel introduced the PTWRITE as a software trace instrumentation feature for Processor Trace [42].
PTWRITE is an instruction that reads the data stored in the source operand and sends them to the Intel
Processor Trace hardware to be encoded into PTW packet [42]. This feature requires the PTWRITE
assembly instruction to be inserted into the source code of the target executable and then built. Then,
when the file is executed through Intel Processor Trace, PTWRITE packets are logged in the trace when
the PTWRITE is executed. This allows the analyst to find and analyze the range of packets in the
desired portion of the packet log from a very large packet log by inserting the PTWRITE instruction
into the source code part.

The C code of Figure 1a demonstrates the insertion of a PTWRITE instruction as inline assembly
into the source code of a simple program. Figure 1b shows the packet log output after building
Figure 1a. As shown in Figure 1, even though it is a very simple program that only performs simple
addition and loop iteration, it can be seen that it generates a packet log of very large size up to 2.0 MB,
and PTWRITE packets are recorded in the packet log. It can also be seen that four and six branches are
executed before and after PTWRITE packets generated within the trace, respectively, which exactly
corresponds to the number of branches in the source code before and after the PTWRITE instruction
inserted in Figure 1a.

The scheme proposed in this paper is intended to overcome the limitations of hardware tracing and
detect the symmetric-key encryption algorithm by utilizing the features and capabilities of hardware
tracing, as discussed above.
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Figure 1. Simple PTWRITE example. (a) C code with PTWRITE inserted; (b) generated trace of (a).

4.2. Symmetric Cryptographic Routine Detection Scheme

Figure 2 is an overview of the scheme proposed in this paper. We describe Figure 2 by dividing
(1), (2), and (3) into Sections 4.2.1–4.2.3, respectively. Steps (1) and (2) correspond only to the pattern
generation located at the top of Figure 2, and Step (3) includes both the pattern generation and
cryptographic detection located at the bottom of Figure 2. Briefly speaking, Step (1) is the procedure
for making an instrumented cryptographic library, Step (2) is the procedure for generating patterns
for cryptographic routines using hardware tracing, and Step (3) is related to detecting cryptographic
algorithms by using generated patterns.

Figure 2. Overview of the proposed scheme.
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4.2.1. Making Instrumented Cryptographic Library

Step (1) of Figure 2 corresponds to instrumenting work on the cryptographic libraries. The making
process is follows. First, the source codes were collected for each version by selecting various
cryptographic libraries that could invoke encryption algorithms. Next, the location of the cryptographic
routine to be analyzed was found in the source code of the collected library.

The parts we were interested in and wanted to analyze are as follows: cryptographic key generation
(e.g., (sub-)keys for AES-256bit), code for block cipher mode operation (e.g., ECB/CBC/OFB), code for
encryption/decryption routines (including round functions and encrypting/decrypting functions) In
this paper, we call the latter two parts as block cryptographic routines.

After collecting the source codes for widely used cryptographic libraries, software trace
instrumentation was performed on the specific routines we were interested in, e.g., in OpenSSL
version X, for the AES-128-CBC algorithm, we inserted a special instruction (e.g., PTWRITE) at the
beginning and at the end of the following functions: key generation, block cipher mode of operation,
and encryption/decryption. Then, in Step (2), after the execution trace was generated, we could easily
find this special instruction in the log and could find the execution trace of the cryptographic routines
(i.e., this instruction had a role of bookmark, as shown in Figure 2).

4.2.2. Hardware Tracing and Generated Pattern Integration

Step (2) went through the process of performing hardware tracing and integrating generated traces
for the libraries where software trace instrumentation was performed. To do this, the instrumented
libraries were compiled first (using the source code in Step (1)). At this time, various compilers were
used for each version in the build process. In the generated trace, the execution information that we
were interested in was information about the branch because the branch information may have varied
depending on the code chunk generated by the compiler. Therefore, the instrumented library build
was performed with various compilers to include branch patterns in the database that may have varied
depending on the compiler.

Then, hardware tracing was generated on library code (built with various compilers that performed
instrumentation). Note that the trace contained the special instruction (just as a bookmark) where
analysis was required. In the trace w.r.t. each specific symmetric-key cryptographic routine, we
observed a unique pattern for branch information, regardless of key contents or plaintext contents.
The generated patterns may or may not have been the same, depending on the version of the encryption
library. Therefore, if the same pattern was found, we integrated traces for optimization.

The reason that the cryptographic routine formed a constant branch pattern in the pattern
generation process was due to the characteristics of the symmetric-key encryption algorithm.
A characteristic of symmetric-key encryption algorithm was that key generation, data processing
according to the block cipher mode of operation, and the performed encryption round functions were
fixed by definition of the algorithm. As we observed, the pattern varied depending on how each
library was implemented, but the pattern within a specific version of a library was fixed regardless
of key values or plaintext input. For example, a list of actions performed by the DES symmetric-key
encryption algorithm included initial/final permutation or computation, P-box, straight P-box, S-box,
parity drop, and shift left operation. What these actions had in common is that they only replaced or
change input data according to the set rules, but they did not change the plaintext or key contents.

The problem was that it is difficult to generate meaningful patterns when cryptographic routines
contains very small number of branches. To solve this problem, we generated patterns not only for
the core encryption routine but also for the block cipher mode of operation. We combined these two
procedures and now call them block cryptographic routine patterns.

The block cipher mode of operation was designed to encrypt plaintext input of an arbitrary
length larger than the size received by the encryption algorithm. Examples for them include ECB,
CBC, CFB, OFB, and CTR modes. In our experience, these block cipher modes of operation produced
different branching results. Therefore, the proposed scheme extracted/used the pattern of the block
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cryptographic routine to identify specific cryptographic algorithms. In this way, the proposed scheme
not only generated a meaningful pattern that could distinguish the cryptographic algorithm but also
enabled the detection of a block cipher mode of operation.

For this reason, branch patterns could be found in trace acquired through hardware tracing. If we
take a look at the trace in Step (2) in detail, the generated trace consisting of ‘T,’ ‘N,’ and ‘*’ characters
can be seen. In that trace, * is the software trace instrumentation bookmark, T means the ‘branch is
taken,’ and N means the ‘branch is not taken.’

In Figure 2, we can see two strings consisting of T and N between *-pair: (a) and (b). First, in the
string (a), “NNNTT” was repeated twice in the whole trace. In addition, though it is not shown
in Figure 2 due to a lack of space, the same cryptographic algorithm traces using a different block
cipher mode operation could also be seen to repeat the same (a) string. Thus, the (a) string was a key
generation pattern that could specify the type of cryptographic algorithm.

The next string between another two * characters was (b). Unlike the key generation pattern
(a), string (b) took the form of a T and N character with a specific rule that could be represented as
a regular expression. Analyzing the string (b), it can be seen that it started with “NTTT,” and then
“NTTTTTT” repeated at least k times and ended with the “NTNT” string. This was represented by the
meta-character of a regular expression as "NTTT(NTTTTTT){k,}NTNT". The string (b) had an initial
pattern, an intermediate repeated pattern, and another pattern at the end, indicating that it took the
form of a typical encryption routine consisting of an initial process, an intermediate encryption process
and a final padding process. In addition, string (b) was located between two string (a), which was a key
generation pattern. Thus, it can be seen that string (b) was a pattern of a block cryptographic routine.
At this time, k was the number of iterations in the middle of the block cryptographic routine, depending
on the size of the input plaintext. In the proposed scheme, the value of k was set to threshold, which
maximized the detection and minimizes false positive rate.

For example, suppose that we obtained the trace “...TNTNT*NNNTT*TNNTNT...
*NTTTTNTTTTTTNTTTTTTNTTTTTTNTNT*NT...” as seen in Figure 3. First, we extracted two pattern
chunks in between * (PTWRITE)-pairs: “NNNTT” and “NTTTTNTTTTTTNTTTTTTNTTTTTTNTNT.”
The first one corresponded to key generation and the second one was a block cryptographic
routine pattern. Then we could build a regular expression for these patterns: “NNNTT” and
“NTTT(NTTTTTT){k,}NTNT,” which are illustrated in groups #1 and #2 of Figure 3.

Figure 3. An example for the regular expression of the generated trace [43].

4.2.3. Making Database with Generated Patterns and Detecting the Cryptographic Algorithm

Now, in Step (3) in Figure 2, the patterns generated in Step (2) were stored in the database, and the
cryptographic algorithm was detected from the target executable using the stored patterns. In the
database of Step (3), the stored trace with a part enlarged could be seen. In that trace, cryptographic
library, type of cryptographic algorithm, key size, the block cipher mode of operation information,
and the corresponding key generation and block cryptographic routine patterns were stored. Now the
cryptographic algorithm can be detected from the target executable using a pattern database consisting
of these patterns.

The cryptographic detection process is as follows. First, we selected an executable file to detect
the cryptographic algorithm. In general, software trace instrumentation to the target was almost
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impossible because the analyst could not obtain the source code of the executable to be analyzed.
Therefore, hardware tracing is performed on the executable without any preprocessing. After that,
only the branch packet was parsed from the generated trace, and patterns in the pattern database were
searched. If a matching pattern was found, the cryptographic algorithm was detected. It could detect
not only the type of cryptographic algorithm but also the block cipher mode of operation.

5. Implementation

This section describes how the proposed scheme is implemented. Section 5.1 introduces the
implementation environment, and Section 5.2 describes the details of the implementation approach.
We implemented a prototype of our scheme, and the source can be accessed at https://github.com/

Juhyunpark-paper.

5.1. Implementation Environment

Implementation was carried out in the Linux 19.10 64bit operating system environment. The Linux
kernel version was 5.3.0-51-generic, and the version of perf, a Linux monitoring tool that uses Intel
Processor Trace as a Performance Monitoring Unit (PMU), is 5.3.18. The CPU used was Intel (R)
Pentium Silver N5000 CPU @ 1.10GHz × 4 (Gemini Lake), which supports PTWRITE instruction [44],
the software trace instrumentation feature of Intel Processor Trace (from Broadwell to Sky Lake, Coffee
Lake, and Coffee Lake Refresh, did not support PTWRITE in our tests).

5.2. Proposed Scheme Implementation

Figure 4 shows an implementation of the pattern generation process. First, a cryptographic library
was selected to generate the cryptographic pattern. In the selected cryptographic library source code,
the PTWRITE instruction was inserted into the function that performed key generation (key.c) and
cryptographic function with the block cipher mode of operation (enc.c) in the form of inline assembly.
The PTWRITE instruction insertion was made before and after the line of the function call or at the
beginning of the function code and before the return statement. Depending on the format of the selected
cryptographic library, PTWRITE could be inserted using (inline-)assembly language or perl script.

Figure 4. Pattern generation process.

After PTWRITE was inserted into each function code to be analyzed, the source code was compiled
to build a library-provided executable. After that, a trace of executable was recorded using Intel

https://github.com/Juhyunpark-paper
https://github.com/Juhyunpark-paper
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Processor Trace. The tool used to utilize the Intel Processor Trace was perf. Perf is a user-level tool
included in the Linux kernel that provides various techniques for measuring system performance.
The execution information of the target executable was recorded through perf, which selected Intel
Processor Trace as a PMU event. The perf.data in Figure 4 are the output recorded through perf. This
trace data acquired after recording could be viewed by the perf record or perf script. We used the perf
script to convert the entire information into a dump file named result.dump.

Next, we examined the packet log where PTWRITE packets were generated. The section enclosed
by PTWRITE packets parsed with ‘*’ contained various information including timing, function call
address, exception, and interrupt target address, but only TNT packets were of interest in our scheme.
Thus, to obtain the pattern, we implemented the parser with python that only parsed TNT packets
between the PTWRITE packet pair and the outputs result.txt. The format of the TNT packet was
as follows.

Table 1 shows the format of the short TNT packet among four TNT packet formats (short/long
TNT and short/long partial TNT) that could be generated [18]. B1–B6 indicate the last conditional
branch or specific return instruction, such that B1 was oldest and B6 was youngest. The short TNT
packet could contain 1–6 TNT bits, and the long one could contain 1–47 TNT bits. If the TNT bit
value was 1, a conditional branch was taken or a specific return instruction was executed, and if it is 0,
a conditional branch was not taken—and the last green field bit was the header bit [18]. In the dump
file made through perf script, bit 1 was T and bit 0 was N. The implemented parser parsed T and N
between PTWRITE packet pairs from the dump file.

Table 1. Short TNT packet format [18].

7 6 5 4 3 2 1 0

0 1 B1 B2 B3 B4 B5 B6 0 Short
TNT

As a result of parsing, a key generation and a block cryptographic routine pattern were enclosed
with * characters in result.txt. These patterns were extracted and stored in pattern.txt. By repeating the
process so far with other cryptographic algorithms, pattern.txt became a pattern database in which
patterns were accumulated. Through these patterns, it was possible to detect the presence of encryption
operation and the type of cryptographic algorithm from the target executable. Occasionally, in the
case of a block cryptographic routine pattern, although different types of cryptographic algorithms
were used, similar or identical patterns were generated when the block cipher modes of operation
were the same. However, as we observed, the same key generation pattern and block cryptographic
routine pattern were never found in more than two different algorithms. Based on this observation,
for conservative point of view, we defined the following rule: the trace contained the routine for the
specific cryptographic algorithm only if 1): we found two pattern-matchings, key generation and
block cryptographic routine, and 2): the key generation pattern must precede the block cryptographic
routine pattern. Note that in block cryptographic routine pattern, at least k times matchings occurred
(k: threshold).

Figure 5 shows an implementation of cryptographic algorithm detection process. Using the
generated block cryptographic routine patterns and key generation branch patterns, the presence
of the encryption operation and the type of cryptographic algorithm were detected from the target
executable. To do this, a packet log had to be generated first by using Intel Processor Trace for the target.
The packet log dump file creation process was performed using perf script for perf.data in the same
way as the above pattern generation (the dump file is omitted from Figure 5 because of insufficient
space). However, unlike the cryptographic pattern generation, the analyst could not proceed with
the process of inserting the PTWRITE instruction because the source code of the executable to detect
cryptographic routine could not be obtained.
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Figure 5. Cryptographic algorithm detection process.

Next, necessary information was parsed from the generated packet log dump file. A PTWRITE
packet was not generated because PTWRITE instruction was not inserted. Therefore, only TNT
packets were parsed from the dump file. As a result of the parsing, a significant amount of TNT
packets was parsed into result.txt because all branches executed in the target executable were parsed,
unlike the cryptographic pattern generation process that only parsed TNT packets between PTWRITE
packet pairs.

If the target executable performed only the encryption operation, both the key generation and
the encryption operation were performed once. Otherwise, when both encryption and decryption
are performed, key generation was performed twice and the encryption operation was performed
once. Additionally, key generation occurred first, and then, after performing an encryption operation,
key generation was performed once more. The number and order of execution could vary depending
on the implementation method of the cryptographic library, but the commonality of all libraries was to
perform the key generation and encryption operation at least once, and the first key generation had to
precede the encryption operation. Therefore, when searching for a pattern, a key generation pattern
and a block cryptographic routine pattern must be searched in order.

Now, the patterns in the pattern database generated in the previous process (pattern.txt)
were searched in the generated TNT packets (result.txt). Both the key generation pattern and
the block cryptographic routine pattern had to be searched at least once, and the key generation
pattern had to precede the block cryptographic routine pattern. When a search was performed
in the TNT packet log of the target executable by applying these conditions, if a matching
exists, the target executable was detected as using the cryptographic algorithm corresponding
to the matching pattern. For example, in result.txt of Figure 5, the key generation pattern
“NNNNTNTNTNTNTNTNNNTNTNTNTNTNTNNT” preceded the block cryptographic routine
pattern “NN(TTN){5}TNT” and appeared once each. Because it matched the des_cbc pattern stored in
the pattern database, des_cbc was detected from the target executable.

6. Experimental Results

First, in Section 6.1, we show the experimental results on generating patterns for the cryptographic
routines on one of the most widely used cryptographic libraries, OpenSSL. Section 6.2 measures the
FPR (false positive rate), which is the case when a non-cryptographic executable file is falsely regarded
as containing cryptographic routines. Section 6.3 deals with the experimental results on anti-reversing
techniques. The experimental environments were already described in Section 5.1.



Electronics 2020, 9, 957 13 of 21

6.1. Generated and Detected Cryptographic Algorithms

In this experiment, we chose OpenSSL because it is one of the most widely used open-sourced
cryptographic libraries. We conducted experiments on pattern generation and encryption algorithm
detection. In this experiment, six OpenSSL versions were used: 0.9.8zh, 1.0.0s, 1.0.1u, 1.0.2u, 1.1.0l,
and 1.1.1e. For the cryptographic algorithms to generate patterns, 12 of the symmetric key encryption
algorithms were selected: AES, AES-NI (Advanced Encryption Standard-New Instructions, extension
of x86 instruction set), BF (Blowfish), CAST, DES, DES3 (DES-Triple), IDEA, RC2, RC4, ARIA, SM4,
and SEED. In addition, experiments were conducted on all the key sizes and block cipher modes of
operation supported by OpenSSL’s enc command for the selected cryptographic algorithms.

Table 2 lists the cryptographic algorithms that successfully generated patterns for the 6 OpenSSL
versions. The plaintext to be encrypted by the cryptographic algorithm was randomly generated
through Python. A random string with a length of 1000 bytes was generated by randomly selecting
digits, asci letters, and punctuation characters in the string module of python.

Table 2. Successfully generated cryptographic algorithms and the average elapsed time. BF: Blowfish;
DES3: DES-Tripe.

Cryptographic
Algorithm AES AES-NI BF CAST DES DES3 IDEA RC2 RC4 ARIA SEED SM4 Aver

age

Key
Generation O O O O O O X O O O X O

Block Crypto
Routine O O O O O O O O O O O X

Average
Elapsed Time (s) 3.249 3.163 3.177 3.176 3.172 3.177 3.184 3.207 3.183 3.202 3.179 3.177 3.187

In this table, the second and third rows indicate whether key generation and block cryptographic
routine patterns were successfully generated, respectively (O: success; X: failure). Experiments
showed that for 9 of 12 algorithms, we were able to generate both key generation patterns and block
cryptographic patterns. Key generation patterns could not be generated from the IDEA and SEED
algorithms and block cryptographic routine patterns could not be generated from the SM4 algorithms.
These were the cases when the cryptographic algorithm’s key generation or block cryptographic routine
was implemented to perform little or no branch instruction. Therefore, in our scheme, it was difficult
to detect the algorithm when it was difficult to generate a pattern because the branch instructions were
not sufficiently executed, such as with the IDEA, SEED, and SM4 algorithms of OpenSSL. The full list
of the generated patterns is in Appendix A.

The fourth row of Table 2 shows the average of the time taken for each pattern generation after 50
times of pattern generation for each cryptographic algorithm of OpenSSL (only the 1.1.1e version was
measured). The time for each pattern generation was a measure of the time taken to generate both key
generation and block cryptographic routine pattern. Additionally, time measurement was performed
for all key sizes and to block cipher modes of operation. For example, AES had three key sizes and two
block cipher modes of operation for each key size. Thus, pattern generation was performed 50 times
for a total of six AES encryption algorithms. Thus, the AES average elapsed time at the third row and
second column of Table 2 was obtained after the average time of pattern generation for the six AES
encryption algorithms was obtained, and then the average of those six values was calculated.

As a result of the experiment, the total average time for 50 pattern generations for each
cryptographic algorithm was 3.187 seconds.

Table 3 shows experimental results for measuring TP and FN. In this experiment, we set the
threshold k as 6. The first column of Table 3 lists the cryptographic algorithms that successfully
generated both key generation and block cryptographic routine patterns for the six OpenSSL versions.
The second column is the number of key sizes of the algorithm supported by the OpenSSL enc
command. The third column shows the number of block cipher modes of operation of the algorithm
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supported by the OpenSSL enc command. If there are two or more values, the number of block cipher
modes of operation supported by the enc command was different for each key size. Therefore, we
prepared target executables to include all the cases for different key sizes and different block cipher
modes of operation. Additionally, the plaintext encrypted by the target executable was set under the
same conditions as the pattern generation experiment in Table 2.

Table 3. The number of successfully detected symmetric-key cryptographic algorithms.

Cryptographic
Algorithm # of Key Size # of Block Cipher Mode

of Operation
# of Target
Executable # of Success

AES 3 2 6 6
AES-NI 3 2 6 6

BF 1 4 4 4
CAST 1 4 4 4
DES 1 4 4 4

DES3 2 3 (128 bits), 2 (192 bits) 5 5

RC2 3 1 (40 bits), 1 (64 bits),
4 (128 bits) 6 6

RC4 2 1 1 1

ARIA 3 4 (128 bits), 5 (192 bits),
5 (256 bits) 14 14

Total 50 50

As a result of the experiment, we were able to accurately detect the cryptographic algorithm from
all the target executables. The value in the last row of the fourth column is the total number of target
executables used in the experiment. The value in the last row of the fifth column is the number of
target executables that our scheme successfully detected the cryptographic algorithm. As defined in
Section 2, the value of |TP| is the value of the last column in the fifth row, and the value of |FN| is the
value of the last column of the fourth row minus the value of the last column of the fifth row. Therefore,
since |TP| = 50 and |FN| = 0, the recall was 1 when using these two values.

The time taken for detection is not indicated. The reason for this is that the detection process
for the trace of the target executable file was a simple string search with regular expression pattern,
and it took a very short time. For example, as a result of performing 50 pattern searches on a target
executable executing des-cbc, the average elapsed time was very short at 0.021 seconds.

6.2. Experimental Results for Executable Files that Do Not Use Cryptography

We conducted experiments for detecting cryptographic routines for the general executable files
that did not perform any cryptographic operations. The executables used in the experiment were GNU
coreutils v8.30 (ls, touch, cat, expr), calculator (bc v1.07.1), calendar (cal), image viewer (feh v3.2.1), text
editor (vim v8.1), and telnet, which are the most widely used tools in the Linux and do not perform
any cryptographic operations.

In Figure 6, the x-axis represents the threshold value k, and the y-axis represents the percentage of
false positive where the encryption algorithm pattern was falsely detected from the general executable
files. The line L1 is the case when the encryption algorithm was detected only with the block
cryptographic routine pattern, and the line L2 (our scheme) is the case when the encryption algorithm
was detected using both the block cryptographic routine pattern and the key generation pattern.
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Figure 6. Block crypto routine vs block crypto routine and key generation.

Figure 6 shows that the encryption algorithms were detected regardless of k values in the case of L1,
which identified the encryption algorithm from the general executable file through the block encryption
routine pattern. Since the normal executable files did not perform any encryption operations, the FPR
of L1 was 100%. However, as a result of testing with L2 that added the key generation pattern, it was
confirmed that the FPR decreased ask increases. From this experiment, we saw that when k value was
more than 6, our scheme had an extremely low FPR, and this was why we set k = 6 in the experiment
in Section 6.1.

Table 4 shows the results of the crypto-routine detection for the non-cryptographic executables
in Figure 6. Since these executables did not have a cryptographic routine, if our scheme detected a
cryptographic routine, it was FP, and if it did not, it was TN. The last row is a calculation of the FPR
through these two values, as defined in Section 2.

Table 4. False positive rate (FPR) of normal executable (X: no algorithm was detected).

L1
L2

1 2 3 4 5 6
(threshold)

bc multiple CAST CAST X X X X
cal multiple CAST CAST CAST X X X
cat multiple CAST CAST X X X X

expr multiple CAST CAST X X X X
feh multiple CAST, AES, AES-NI CAST CAST CAST CAST X
gcc multiple CAST, AES, AES-NI CAST, AES CAST CAST CAST X
ls multiple CAST CAST CAST X X X

touch multiple CAST CAST X X X X
telnet multiple CAST CAST X X X X
vim multiple CAST CAST X X X X
FPR 100% 100% 100% 40% 20% 20% 0%

In the case of L1, since multiple cryptographic algorithms were identified regardless of the number
of iterations of the block cryptographic routine, they were marked as multiple. In the case of L2, it was
classified according to the number of iterations of the block cryptographic routine, as in the table
above. In all cases where an encryption algorithm was detected, a CAST encryption algorithm with a
relatively short pattern length was detected. In addition, AES and AES-NI algorithms were detected in
feh and gcc, where the size of the hardware tracing result was relatively large.
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Through experimentation, it could be confirmed that the block cryptographic routine had to
be repeated at least six times in order to reduce the FPR to 0%, such that any false detection of the
cryptographic algorithm in the normal executable which did not perform encryption operation. Again,
we found that if k value was more than 6, our scheme had an extremely low FPR.

Since each algorithm had different input sizes and processing methods, it was difficult to specify
that k became 6 when the input plaintext size was more than a certain value. However, we could see
several times that the block cryptographic routine was repeated more than six times even for very short
input. For the conservative point of view, it was rare that the block cryptographic routine was executed
less than six times in an executable file that performed an encryption operation. Therefore, when the
threshold was set to six, it was estimated that true negatives were extremely rare to be undetected by
performing less than six block encryption routines, even though encryption was performed.

6.3. Experimental Results for Executables That Use Anti-Reversing Technique

Finally, an experiment was conducted on the executable files using anti-reversing techniques. Recall
that previous works have had demerits in the sense that they have used debuggers or DBIs that modify
the running environment. The proposed scheme was not detected by the anti-reversing technique
because hardware tracing did not modify the running environment. To verify this, experiments were
done for each analysis tool on the executable file to which the anti-reverse techniques were applied.

Table 5 shows the result of anti-reversing bypass for each detection tool for the executable file to
which the anti-reversing techniques were applied. The first row contains the dynamic analysis tools
used by the previous works and the proposed scheme. The first column corresponds to anti-reversing
techniques and tools to detect presence of the analysis work. O means that the analysis tool successfully
bypassed the anti-reversing techniques/tool. X means that bypassing failed.

Table 5. Comparison of anti-reversing bypass and dynamic binary instrumentation (DBI) detection
results with other detection tools.

GDB Valgrind [45] DynamoRIO Intel Pin Proposed Scheme

ptrace X O O O O
rdtsc X X X X O

PwIN [46] O X X X O

Ptrace detects the presence of a debugger in a Linux operating system. rdtsc (read time-stamp
counter) assembly instruction detects the presence of an analysis tool using the fact that it is consuming
more CPU cycles than when executing a normal instruction. PwIN is not an anti-reversing technique;
rather, it is a DBI detection tool implemented in Zhechev et al.’s study [46]. The analysis tools used in
the experiment consisted of one debugger (GDB v8.30) and three DBIs (Valgrind v3.15.0, DynamoRIO
v8.0.18386, and Intel Pin v3.13) widely used for binary analysis.

As a result of the experiment, GDB was detected in ptrace and rdtsc. Because PwIN was designed
to detect only DBIs, it could not detect GDB. Valgrind, DynamoRIO, and Intel Pin were not detected in
ptrace. However, rdtsc and PwIN detected them. The proposed scheme in this paper bypassed all
anti-reversing techniques and was not detected by the DBI detection tool.

7. Conclusions

In this paper, we proposed a new method to detect symmetric-key cryptographic routines for binary
with anti-reversing techniques. To address the problem that the previous works have suffered from
bypassing anti-reversing techniques, we utilized the latest CPUs’ hardware-supported functionality:
hardware tracing. Since hardware tracing provides very limited type of information and produces
large-sized logs, we identified the target cryptographic routines using hardware tracing-related
software trace instrumentation to extract the relevant branch information for the cryptographic routine.
Then, we generated the patterns in the form of regular expression for each cryptographic routine for
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matching. We conducted experiments on OpenSSL 0.9.8 zh, 1.0.0 s, 1.0.1 u, 1.0.2 u, 1.1.0 l, and 1.1.1
e—one of the most widely used cryptographic libraries. The experimental results showed that patterns
were generated and detected for 9 of the 12 symmetric-key cryptographic algorithms. Experiments
were also conducted on GNU coreutils v8.30 (ls, touch, cat, expr), Calculator (bc v1.07.1), Calendar
(cal), Image Viewer (feh v3.2.1), text editor (vim v8.1), and telnet, all of which are widely-used
non-cryptographic executable files that do not perform encryption operations, and it was confirmed
that the FPR became 0% when the number of repetitions of the cryptographic routine reached a certain
threshold. Additionally, experiments were conducted on the executable files to which the anti-reversing
techniques are applied. As a result, the analysis tools used for previous work could not bypass the
anti-reversing techniques. Our method successfully bypassed the anti-reversing techniques. From
this, if the proposed scheme is used to find cryptographic routines in malware/ransomware-containing
diverse anti-reversing techniques, we expect that analysts can reduce a significant amount of time in
analyzing important algorithms or finding cryptographic keys.
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Appendix A

Table A1. Regular Expressions of Generated Patterns.

Algorithm
Key
Size
(bit)

Block Cipher
Mode of

Operation

Generated Pattern
(Top: Key Generation Pattern

Bottom: Block Crypto Routine Patterns)
Note

AES

128
NNNTT

CBC NTTTT(NTTTTTT){k,}NTNT
ECB TTTTNT(TTTTTTTNT){k,}

192
NNNNNNT

CBC NTTTTT(NTTTTTTT){k,}NTNT
ECB TTTTTNT(TTTTTTTTNT){k,}

256
NNTNNNTTTTTTTN

CBC NTTTTTT(NTTTTTTTT){k,}NTNT
ECB TTTTTTNT(TTTTTTTTTNT){k,}

AES-NI

128
NNNNNNTTTTTTTTTT

CBC NTTTTTTTT(NTTTTTTTTT){k,}NNN
ECB NTTT(NTTTTT){k,}NTNT

192
NNNTNTTTTTTTT

CBC NTTTTTTTTTT(NTTTTTTTTTTT){k,}NNN
ECB NTTTT(NTTTTTT){k,}NTNT

256
NNTNTTTTTTTTTTTTT

CBC NTTTTTTTTTTTT(NTTTTTTTTTTTTT){k,}NNN
ECB NTTTTT(NTTTTTTT){k,}NTNT

BF 128

TTTTTTTTTTTTTTTTTNTTTTTTTTTTTTTTTTTN(T){1023}N
CBC N(T){k,}TNT
CFB N(NTNTTTTTTTTTTTTT){k,}NTNTTTTTTTTTTTTN
ECB T(NTTNT){k,}
OFB N(NTNTTTTTTTTTTTTT){k,}NTNTTTTTTTTTTTTNT

CAST 128

NNTTN
CBC NN(TTN){k,}TNT
CFB N(NNTNTTTTTTTTTTTTT){k,}NNTNTTTTTTTTTTTTN
ECB NT(NTTNNT){k,}

OFB N(NNTNTTTTTTTTTTTTT){k,}NNTNTTTTTTTTTTTTNT

—Duplicate with
DES-OFB, but can
be distinguished

with key
generation pattern
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Table A1. Cont.

Algorithm
Key
Size
(bit)

Block Cipher
Mode of

Operation

Generated Pattern
(Top: Key Generation Pattern

Bottom: Block Crypto Routine Patterns)
Note

DES 64

NNNNTNTNTNTNTNTNNNTNTNTNTNTNTNNT
CBC NN(TTN){k,}TNT
CFB N(NNTNTTTTTTTTTTTTT){k,}NNTNTTTTTTTTTTTTN
ECB NT(NTTNT){k,}

OFB N(NNTNTTTTTTTTTTTTT){k,}NNTNTTTTTTTTTTTTNT

—Duplicate with
CAST-OFB, but can

be distinguished
with key

generation pattern

DES3

128
(EDE)

NNNNTNTNTNTNTNTNNNTNTNTNTNTNTNNT

CBC N(NNTTTNTTNTTTTTTTTTTTTT){k,}NNTTTNTTNTTTTTTTTTTTTN

—In versions
before 1.1.0,

"NNTTNTNTNTNT
TTTTTTTTTTTTT

TTTTTTTTTTTTTT
TTTTTTT" appears
one time during an

intermediate
iteration pattern.

—Duplicate with
EDE3-CBC, can be
distinguished by

the number of key
generation patterns

(EDE: 2 times,
EDE3: 3 times)

CFB NN(TTTN){k,}TTNT

—In versions
before 1.1.0, "TTN"
appears one time

during an
intermediate

iteration pattern.
—Duplicate with
EDE3-CFB, can be
distinguished by

the number of key
generation patterns

(EDE: 2 times,
EDE3: 3 times)

OFB N(TNTTTNTTTTNTNTNTNTNTNT){k,}TNTTTNTTTTNTNTN
TNTNTNNT

—In versions
before 1.1.0,

"TNTTTNTTTNTN
TNTNTNTNT "

appears one time
during an

intermediate
iteration pattern.

192
(EDE3)

NNNNTNTNTNTNTNTNNNTNTNTNTNTNTNNT

CBC N(NNTTTNTTNTTTTTTTTTTTTT){k,}NNTTTNTTNTTTTTTTTTTTTN

—In versions
before 1.1.0,

"NNTTNTNTNTNT
TTTTTTTTTTTTTT
TTTTTTTTTTTTTTT

TTTTT" appears
one time during an

intermediate
iteration pattern.

—Duplicate with
EDE-CBC, can be
distinguished by

the number of key
generation patterns

(EDE: 2 times,
EDE3: 3 times)
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Table A1. Cont.

Algorithm
Key
Size
(bit)

Block Cipher
Mode of

Operation

Generated Pattern
(Top: Key Generation Pattern

Bottom: Block Crypto Routine Patterns)
Note

DES3
192

(EDE3)
CFB NN(TTTN){k,}TTNT

—In versions
before 1.1.0, "TTN"
appears one time

during an
intermediate

iteration pattern
.—Duplicate with
EDE-CFB, can be
distinguished by

the number of key
generation patterns

(EDE: 2 times,
EDE3: 3 times)

IDEA 128

CBC N(NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTT)
{k,}NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTNT

—Failed to generate
key generation

pattern

CFB N(NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNT
NTTTTTTTTTTTTT){k,}

ECB
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNT

(NTTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NT){k,}

OFB
(NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

TNTTTTTTTTTTTTT){k,}NNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNTNTTTTTTTTTTTTNT

RC2

40
NNNTTTTTNN(T){133}NN(T){122}N(T){63}N

CBC NTTTTNTTTTTTNTTTTTNN(TTTTTTNTTTTTTNTTTTTNN){k,}TNT

64
NNNTTTTTTTTNN(T){133}NN(T){119}N(T){63}N

CBC NTTTTNTTTTTTNTTTTTNN(TTTTTTNTTTTTTNTTTTTNN){k,}TNT

128

NNNNTTN(T){119}NNT(T){121}N(T){63}N
CBC NTTTT(NTTTTTT){k,}NNTNT

CFB NNTTTTNTTTTTTNTTTTTNNTN(TTTTTTTTTTTTTNTTTTNTTT
TTTNTTTTTNNTN){k,}TTTTTTTTTTTTN

ECB TTTTNTTTTTTNTTTTTNNT(NTTNTTTTNTTTTTTNTTTTTNNT){k,}

OFB NNTTTTNTTTTTTNTTTTTNNTN(TTTTTTTTTTTTTNTTT
TNTTTTTTNTTTTTNNTN){k,}TTTTTTTTTTTTNT

RC4
40

(T){63}NNNNNTTNNNTNTNNTNNTNTNNN(TTNNNNTTNNNTNTNNTNNTNTNNN){11}TTNNNNTTN
NNTNTNNTNNTNN

Stream N(T){k,}NT

128
(T){63}NNNNNTNNNNTNNNNTNNN(TTNNNNTNNNNTNNNNTNNN){15}TN

Stream N(T){k,}NT

ARIA

128

NNTTT
CBC NNTNTTTTN(TTNNTNTTTTN){k,}
CFB NNTNTTTTN(TNNTNNTNTTTTN){k,}
ECB NNTNTTTTN(TTTTNNTNTTTTN){k,}
OFB NNTNTTTTN(TNNTNNTNTTTTN){k,}

192

NNTNTNT
CBC NNTNTTTTTN(TTNNTNTTTTTN){k,}
CFB NNTNTTTTTN(TNNTNNTNTTTTTN){k,}
CTR NNTNTTTTTN(TTNNTNTTTTTN){k,}
ECB NNTNTTTTTN(TTTTNNTNTTTTTN){k,}
OFB NNTNTTTTTN(TNNTNNTNTTTTTN){k,}

256

NNNNNNNN
CBC NNNNNTTTTTTN(TTNNNNNTTTTTTN){k,}
CFB NNNNNTTTTTTN(TNNTNNNNNTTTTTTN){k,}
CTR NNNNNTTTTTTN(TTNNNNNTTTTTTN){k,}
ECB NNNNNTTTTTTN(TTTTNNNNNTTTTTTN){k,}
OFB NNNNNTTTTTTN(TNNTNNNNNTTTTTTN){k,}

SEED 128

CBC N(T){k,}NT —Failed to generate
key generation

pattern

CFB TNNT(NNTT){k,}NNNT
ECB T(TTNT){k,}
OFB NNT(NNTT){k,}NNNT

SM4 128 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTN

—Failed to
generate block
cryptographic

pattern
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