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Abstract: Individual recognition among instruments of the same type is a challenging problem and it
has been rarely investigated. In this study, the individual recognition of violins is explored. Based on
the source–filter model, the spectrum can be divided into tonal content and nontonal content, which
reflects the timbre from complementary aspects. The tonal/nontonal gammatone frequency cepstral
coefficients (GFCC) are combined to describe the corresponding spectrum contents in this study.
In the recognition system, Gaussian mixture models–universal background model (GMM–UBM)
is employed to parameterize the distribution of the combined features. In order to evaluate the
recognition task of violin individuals, a solo dataset including 86 violins is developed in this study.
Compared with other features, the combined features show a better performance in both individual
violin recognition and violin grade classification. Experimental results also show the GMM–UBM
outperforms the CNN, especially when the training data are limited. Finally, the effect of players on
the individual violin recognition is investigated.

Keywords: individual violin recognition; tonal/nontonal content; Gaussian mixture models–universal
background model; violin grade classification

1. Introduction

Musical instrument recognition is a process to identify the type of musical instrument from the
audio, which can be achieved through timbre analysis between different instruments. It has many
practical applications, such as music information retrieval, audio content analysis and automatic
music transcription.

In developing musical instrument recognition, two promising and challenging directions have
emerged recently. One is applying the musical instrument recognition to the real-life situation.
Instead of the isolated notes [1,2], more recent research deals with solos and multi-instrument
music [3–5]. Another is restricting the instrument models to specific types and making a refined
classification. Much research has been done to distinguish similar instruments within a family.
For example, Banerjee et al. examined features and classification strategies for identifying four
instruments of the string family [6]. Fragoulis et al. explored the discrimination between piano notes
and guitar notes [7]. Avci et al. studied the machine learning-based classification of violin and viola
sounds in the same notes [8]. Lukasik investigated the identification of individual instruments of the
violin family [9].

The aim of this study is to tackle the problem of individual instrument recognition of the same
type on the solo phrases. Owing to the same structure and shape, these individuals have similar
timbre that is hard to be distinguished even by the experienced musicians. According to the results
of individual recognition, the targeted individual will be identified among many instruments with
identical appearance. For example, the solos played by the world-famous individual can be retrieved in
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the music database automatically. This can also help people search for the lost instruments through the
audio. Furthermore, the similarity of timbre between individuals can be derived from the recognition
results, which is an essential basis to classify quality grade of the instruments.

We choose violins for the individual recognition research. The violin was first known in
16th-century, and it is an important instrument in a wide variety of musical genres. Many researchers
have sought explanations for the difference of the violins by investigating varnish and wood properties,
plate tuning systems and the spectral balance of the radiated sound [10]. Violin performers were
also required to rate violins for playability, articulation and projection [11]. However, acoustics and
players are unable to provide an absolutely reliable standard for identifying and evaluating the violins.
For example, even the experienced players cannot distinguish the individual of the Stradivari from
other violins under the double-blind conditions [12]. The individual recognition of violin in our
research may help address these issues.

In this study, the timbre analysis of the violin is investigated based on the source–filter model.
A new set of the features are proposed, which are extracted using the tonal content and nontonal
content. Inspired by speaker verification [13], a system based on Gaussian mixture models–universal
background model (GMM–UBM) is built to recognize different violins. A solo dataset of violin is
created in order to evaluate the recognition task of violin individuals. In addition to individual violin
recognition, the experiments on grade classification of violins are conducted and players’ influence on
individual recognition is discussed as well.

The remainder of this study is organized as follows: Section 2 reviews the related works. Section 3
describes the source–filter model of the violin. Based on the model, the tonal and nontonal features are
extracted in Section 4. Section 5 introduces the GMM–UBM recognition system. In Section 6, the solo
dataset created for violin recognition is described. The experimental results and performance analysis
are presented in Section 7. Finally, we draw the conclusions in Section 8.

2. Related Works

The traditional approach of instrument recognition is to extract acoustic features from the music
signal and classify them using pattern recognition algorithms [14]. The existing feature sets include
perception-based, temporal, spectral and timbral features [15]. For example, Essid et al. dealt with
real music using autocorrelation coefficients, amplitude modulation features, mel-frequency cepstral
coefficients (MFCC), spectral centroid, spectral slope, frequency derivative of the constant-Q coefficients,
etc. [16]. In [17], the performance of 13 features was compared, including MFCCs, MPEG-7 features [18]
and perception-based features. Among the individual feature schemes, the MFCC feature scheme
gave the best classification performance. Experiments in [19,20] also favored the MFCCs over other
features. Inspired by the MFCC, Duan et al. proposed the mel-scale uniform discrete cepstrum as
the feature, which can model the timbre of mixture music [21]. For the audio signals with multiple
sources, Costa et al. presented a sparse time–frequency feature by combining different instances of the
fan–chirp transform [22].

In addition to the feature extraction module, there has been considerable interest in the classification
module. For example, Diment et al. [23] trained a Gaussian mixture model (GMM) for the combination
of the MFCCs and phase-related features. As the GMM cannot model dynamic evolution of the features,
Zlatintsi et al. explored the hidden Markov model (HMM) in classification task [24]. In [25], a pairwise
strategy was used in the classification task and the SVM was shown to outperform the GMM. Joder et al.
conducted a large number of experiments to assess the impact of temporal integration on instrument
recognition systems, and the classifiers consisted of the SVM, GMM and HMM [26]. Recently, Yip and
Bittner made an open-source solo classifier using random forests for better performance [27].

More recently, deep learning techniques have been increasingly used owing to their superior
performance. Han et al. used a convolutional neural network (CNN) to recognize predominant
instrument in mixture music, which achieved higher accuracy than the conventional methods using
SVMs [4]. In [28], Hilbert spectral feature and MFCCs were employed as inputs of a CNN to classify
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the predominant instrument at different time intervals. Koszewski et al. proposed a CNN-based
automatic instrument tagging method, which provided promising recognition scores even for noisy
recordings [29]. Hung et al. explored the CNNs with constant-Q coefficients and harmonic series
feature for frame-level instrument recognition and pitch estimation [30,31]. Yu et al. also proposed
to construct a CNN in a pattern of multitask learning, which used the auxiliary classification to
assist the instrument classification [32]. Deep architectures can also implement feature extraction and
classification in an end-to-end manner, which outperformed the traditional two-stage architectures
in many tasks of recognition. For example, Li et al. showed that feeding raw audio waveforms to a
CNN achieved 72% F-micro in discriminating instruments, whereas the MFCCs and random forest
only achieved 64% [33].

The performance of instrument recognition approaches depends a lot on the annotated data,
especially the deep learning methods. There are some efforts in the direction of datasets, such as the
MUMS [34], RWC [35], ParisTech [26], UIOWA [36], MedleyDB [37], IRMAS [38] and MusicNet [39].
Currently, the annotated dataset for individual recognition is quite limited. In this study, we focus on
individual violin recognition and create a dataset of violin individuals.

3. Source-Filter Model of Violin

The source–filter model originated from speech production has been used for decades in speech
coding and synthesis. Similar to the speech signal, the music signal can be modeled as a combination
of excitation and resonator [40]:

x(t) = p(t) × h(t), (1)
where t denotes time, x(t) stands for the music signal, p(t) the excitation friction, h(t) the impulse
response of resonator. Here “source” refers to vibrating strings and “filter” represents the resonance
structure of the rest of violin. When a string vibrates, the bridge rocks and transmits the vibration to
the resonance box. Then each component is amplified according to the resonance generated at that
frequency. In the source–filter model, the excitation and resonator both determine the unique timbre of
each violin.

The harmonic sequence is a typical structure in the spectrum of the music signal. The pitch is
what is perceived as the tone, and its value can be determined according to the positions of harmonics
for the violin. If two violins are playing the same note, the positions of two harmonic sequences will
be the same. Under this simplified assumption, it will therefore be the envelope that makes the two
sounds different. Hence, the timbre feature is often obtained through extracting the shape of the
spectral envelope.

According to the sinusoids plus noise model, the pitched sound can be modeled as a sum of
harmonics and noise residual [41]. The residual part is often ignored because of its low energy. In the
“source” of the violin, the stable harmonics result from the main modes of vibration of the strings.
The residual noise is generated by the sliding of the bow against the string, plus by other nonlinear
behavior in excitation. Therefore, an improved source–filter model based on the sinusoidal plus
residual decomposition is proposed [42]. The music signal x(t) can be modeled by

x(t) = {
R∑

r=1

Ar(t) cos[θr(t)] + e(t)} × h(t), (2)

where Ar(t) and θr(t) are the instantaneous amplitude and phase of the rth sinusoid in the excitation,
respectively, e(t) is the noise component in the excitation, and h(t) is the impulse response of resonator.
According to Equation (2), the music signal can be divided into two parts, the tonal component xT(t)
and the nontonal component xN(t). As shown in Equations (3) and (4), each part is produced by its
own excitation, but the resonator is same.

xT(t) = {
R∑

r=1

Ar(t) cos[θr(t)]} × h(t), (3)



Electronics 2020, 9, 950 4 of 18

xN(t) = e(t) × h(t), (4)
The approximate process in frequency domain is illustrated in Figure 1. Considering the

significance of the harmonics, the spectral envelope extracted from the music signal x(t) is similar to
the envelope of the tonal part in Figure 1d. As shown in Figure 1d, the shape of the spectral envelope
is determined at the positions of partials, which is equivalent to a sampled envelope. The noise e(t) is a
stochastic signal and the spectral envelope of the nontonal component contains more comprehensive
information about resonator. In Figure 1, the envelope shape of the nontonal part has big difference
with that of the tonal part, which captures complementary information of timbre.
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4. Feature Extraction

4.1. Tonal/Nontonal Content Extraction

The tonal part has been widely used in musical instrument classification by identifying the
harmonic series from spectrum [17,20,43]. On the contrary, the research on nontonal content is quite
limited [44,45]. The nontonal part refers to the non-harmonic residual, which is often used to describe
the frequency components located between the partials [8].

We extract the tonal and nontonal contents in the frequency domain. The multiple pitch estimation
algorithm based on harmonic product spectrum [46] is used to obtain the fundamental frequency of
the music signal. For the fundamental frequency f 0, the position of the nth harmonic is around nf 0.
Around each of these harmonic peaks, a region is defined to cover the peak. Here the region width of
each peak is set to 0.3f 0, so the nth harmonic peak interval is [(n − 0.15)f 0, (n + 0.15)f 0]. Figure 2 shows
an isolated tonal lobe of a violin note, whose fundamental frequency is about 329 Hz. By resaving the
spectral regions in each harmonic peak interval, all the tonal lobes are obtained.
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The nontonal content can be extracted by eliminating the tonal lobes from the spectrum. First,
all the amplitude values in each harmonic peak interval are zeroed. Then the zero-magnitude points in
spectrum will be spline interpolated. After the moving operation on the whole spectrum, a curve of
nontonal content is obtained.

Figure 3 shows the original spectrum of a violin note E4 and its envelopes. The fundamental
frequency of note E4 is about 329 Hz and the corresponding harmonic structure is obvious in Figure 3.
The envelope of tonal content is similar to that of original spectrum. There is a difference between
the envelopes of original spectrum and nontonal content. Compared with the envelopes of original
spectrum and tonal content, several new peaks appear in the nontonal content, such as an obvious one
located at 2000 Hz. Therefore, it is feasible to extract complementary timbre information from tonal
content and nontonal content.
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Figure 3. Spectrum and envelopes of the violin note E4.

4.2. Feature Extraction

Based on the source–filter model, the cepstral coefficients are usually used to parameterize the
spectral envelope. The MFCC emphasizes perceptually meaningful frequencies using Mel scale and
provides a more compact representation than the cepstral coefficients.

Similar to the MFCC, the gammatone frequency cepstral coefficient (GFCC) is derived using
gammatone filters with equivalent rectangular bandwidth bands (ERB) [47]. The gammatone filterbank
could model the human cochlear filtering better than the Mel filterbank. In speech recognition [48],
speaker identification [49] and music retrieval [50], the GFCC performs substantially better than the
conventional MFCC. Many researches also indicate that the GFCC exhibits superior noise robustness
to the MFCC [51,52].

The impulse response of a gammatone filter centered at frequency f is given by

g( f , t) =
{

ta−1e−2πbt cos(2π f t), t ≥ 0
0, else

, (5)

where t denotes time, a is the filter order; rectangular bandwidth b increases with the center frequency
f. With the designed gammatone filterbank, a time–frequency representation can be obtained from
the outputs of the filterbank. Taking the log operation on the power spectrum and applying discrete
cosine transform (DCT) on the log spectrum, the GFCC extraction is finished.

In this study, two timbre features named tonal GFCC and nontonal GFCC are introduced.
These two features are extracted as in Figure 4. A tonal/nontonal content extraction block is inserted
after the traditional FFT. Here the gammatone filterbank is modified by attenuating the “tails” of the
response further away from the filter’s center frequency.
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Figure 4. Extraction process of the tonal gammatone frequency cepstral coefficients (GFCC) and
nontonal GFCC.

Figure 5 shows the MFCC, tonal GFCC and nontonal GFCC consisting of vectors with dimension
40, respectively. All these features are extracted from violin A and violin B. Each subfigure contains
features of 300 frames from solo Humoreske and the bold line corresponds to the average value.
An excellent feature should show a significant difference between different individuals while keep
stable in one violin. As shown in Figure 4, the tonal and nontonal features tend to better satisfy the
above-mentioned requirements than the MFCC. The variances of the MFCC are 256.4, 283.6 for the
violins A and B in the left column of Figure 5, whereas the variances of tonal GFCC are 163.7, 140.9
and the variances of nontonal GFCC drop to 102.5, 68.9 for the violins A and B, respectively. In the
comparison of two rows, the MFCCs of two violins are similar while the nontonal features of A and B
are easy to distinguish. For example, there is a valley around the seventh coefficient in the nontonal
GFCC’s average line of the violin A, whereas the counterpart of the violin B is in an increasing trend.
To extract the timbre information more comprehensively, the tonal GFCC and nontonal GFCC are
concatenated as the combined features. Among the combined feature vector, the first 40 components
come from the tonal GFCC and the last 40 components come from the tonal GFCC.
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5. Individual Violin Recognition System

The recognition system is built using a UBM for general violin representation and maximum a
posteriori (MAP) adaption to derive individual violin models from the UBM. The basic components of
the GMM–UBM recognition system are shown in Figure 6.
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As a front-end processing stage in the system, the music is segmented into frames by a short
window of 93 ms and features are extracted from the frames. The UBM is a single GMM trained to
represent the individual-independent distribution of features. A number of solos from different violins
are pooled as the background music data and a sequence of feature vectors are extracted for training
a UBM. For the sequence of feature vectors Y = {y1, y2,..., yT}, the likelihood function of the UBM is
defined as

p(Y
∣∣∣λUBM ) =

T∏
t=1

p(yt

∣∣∣λUBM ), (6)

where p(yt

∣∣∣λUBM ) is the weighted linear combination of M unimodal Gaussian densities:

p(yt

∣∣∣λUBM ) =
M∑

m=1

cUBM
m N(yt

∣∣∣µUBM
m , ΣUBM

m ), (7)

In the density, cUBM
m is the weight of mixture m. The mth Gaussian component

is parameterized by a mean vector µUBM
m and a covariance matrix ΣUBM

m . Denoted as
λUBM =

{
cUBM

m ,µUBM
m , ΣUBM

m |m = 1, 2, . . . , M
}
, all the parameters of the UBM are estimated via

the iterative expectation–maximization (EM) algorithm [53].
Then a hypothesized violin model is trained using training data of the specified individual. Unlike

the standard training of a model for the specified violin directly, our basic idea is to derive the violin’s
model by updating the parameters in the UBM via a MAP adaption. In this case, the components of
the adapted GMM retain correspondence with the mixtures of the UBM.

Given the training feature vectors Z = {z1, z2, . . . , zT} from the specified individual, the details of
adaptation are as follows. Similar to the EM algorithm, we first compute the posterior probability for
the mixture m in the UBM:

p(l = m|zt ;λUBM) =
cUBM

m N(zt
∣∣∣µUBM

m , ΣUBM
m )

M∑
n=1

cUBM
n N(zt

∣∣∣µUBM
n , ΣUBM

n )

, (8)

where l is a latent variable to represent the index of Gaussian components. Then the sufficient statistics
for the weight, mean and variance of the mth Gaussian component of the feature vector zt are computed
as follows:

Nm =
T′∑

t=1

p(l = m|zt ;λUBM), (9)

Fm =
T′∑

t=1

p(l = m|zt ;λUBM)zt, (10)
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Sm =
T′∑

t=1

p(l = m|zt ;λUBM)z2
t , (11)

Next, the hypothesized violin model is derived from the UBM. The parameters of the mth mixture
are updated using these new sufficient statistics:

cvn
m = [αmNm/T′ + (1− αm)cUBM

m ]ρ, (12)

µvn
m = βmFm + (1− βm)µ

UBM
m , (13)

Σvn
m = γmSm + (1− γm)[ΣUBM

m + (µUBM
m )

2
] − (µvn

m )2, (14)

where αm, βm, γm are adaption coefficients for the weight, mean and variance, respectively. Coefficient
ρ is a scale factor computed over all adapted weights cvn

m to ensure they are summed to unity.
To simplify the process of adaption, all the Gaussian components in the individual violin model

share the same variance and weight parameters with the UBM. Only the mean µvn
m is updated here.

Defining the mean adaption coefficient βm as:

βm =
Nm

Nm + r
, (15)

where r is a relevance factor in the range of 8 to 20, the mean vectors of the hypothesized violin model
can be updated as:

µvn
m =

NmFm + rµUBM
m

Nm + r
, m = 1, 2, . . . , M (16)

For the hypothesized violin model λvn =
{
cUBM

m ,µvn
m , ΣUBM

m |m = 1, 2, . . . , M
}
, the log-likelihood

ratio for test sequence W = {w1, w2, . . . , wT”} is computed as the test score:

Score =
1

T′′

T′′∑
t=1

lnp(wt
∣∣∣λvn ) − lnp(wt

∣∣∣λUBM ) (17)

Finally, a decision threshold is determined for accepting or rejecting the hypothesized violin
model. The corresponding violin will be selected as a candidate when its score exceeds the threshold.
The scores of all candidate models will be sorted and the highest one is the optimal recognition result.

6. Violin Dataset for Individual Recognition

A solo dataset of violin is developed in order to evaluate the individual violin recognition system.
The dataset consists of solo recordings from 86 violins with various characteristics. According to the raw
material, production process and tonal quality, the violins are divided into low-grade, medium-grade
and high-grade, respectively. The dataset includes violins of the three grades, whose prices range from
100 to 20,000$. More details of the violin dataset are given in Table 1.

Table 1. Details of the violin dataset.

Grade of Violins High Medium Low

Price range [$] 3000–20,000 1000–2000 100–500
Number of violins (NV) 10 60 16
Number of performers per violin (NPV) 1 3 5
Number of solo contents (NSC) 3 4 4
Number of solos per violin (NSV = NPV × NSC) 3 12 20
Total number of solos (TNS = NV × NSV) 30 720 320

A total of 68 violin performers participated in the recoding. The performers have 3 to 55 years
of experience on playing violin. Each performer played 3 or 4 excerpts of different content using the
same violin. The music excerpts cover the classical music, popular music and Chinese folk music.
For each violin, the solos of same content were performed by different players. For example, there are
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60 medium-grade violins and each violin was played by 3 performers. In this case, each player
performed 4 music excerpts, including Turkish March, Humoreske, Can You Feel My Love and Early Spring.
It should be noted that the number of performers for high-grade violins is quite limited, because each
valuable violin was only played by its owner.

All the solo excerpts were played indoor in a quiet environment. The audio files were recorded at
44.1 kHz sampling frequency with a resolution of 32 bits per sample. After the recording sessions, all the
music data were reviewed and processed to remove silence at the beginning and end of the recordings.
Each solo excerpt lasts about 3 min and the 1070 files contain more than 50 h of audio signals.

7. Experiments and Results

7.1. Individual Violin Recognition

In order to obtain a general violin representation independent of the dataset, 140 solos of unknown
violins were downloaded from the Internet as the background data. All files in the violin dataset were
divided into two groups referred to as the training data and test data. Three partitioning ways of data
are shown in Table 2. For each violin, at least one solo file was randomly chosen as the training set.
In this way, 86 violin models were derived. The remaining solo excerpts for each individual were
collected as the test set.

Table 2. Data partition of the training and test sets.

Train1 Train2 Train3

Training set Number of solos per violin 1 2 ≥1
Total number of solos 86 172 535

Test set Total number of solos 984 898 535

All the music data were segmented into the frames by a 93 ms window progressing at a 46.5 ms
frame rate. The 40-dimensional tonal GFCC and 40-dimensional nontonal GFCC were concatenated
as the combined features, which were fed into the recognition system. In the GMM–UBM system,
the models of 64 Gaussian components were trained. The relevance factor r was fixed at 16 in the
process of adaption.

We also carried out the experiments using other features and classifiers. The features for
comparison contain the MPEG-7, linear prediction cepstral coefficients (LPCC) and MFCC, which
are widely used in instrument classification. Specifically, the MPEG-7 set includes seven feature
descriptors: harmonic centroid, harmonic deviation, harmonic spread, harmonic variation, spectral
centroid, log attack time and temporal centroid.

The classifiers used for comparison are GMM and CNN. For each violin, a GMM of 64 Gaussian
components was trained via the EM algorithm. The CNN model was based on the Inception-v3 [54].
Its architecture and parameters are shown in Appendix A. The CNN took 15-frame features as the
input. For the n-dimensional feature, the dimension of input was n × 15 × 1. The CNN had 86 units in
the output layer, corresponding the 86 violins. We also trained a CNN in an end-to-end manner, which
employed the raw audio waveforms as input. The CNN had the same architecture and parameters as
the sample-level network given in [55]. The raw waveform input was set to 59,049 samples (2678 ms at
22.05 kHz sampling frequency), and the dimension of output was 86.

Considering that the training set were chosen randomly, all the experiments were repeated 10 times
to obtain the average. The accuracy of individual violin recognition is shown in Table 3. The accuracy
is the fraction of correct solo excerpts among all the test excerpts, which is equal the micro-averaged
measure F-micro in this multi-label problem. We also used the macro-averaged measure F-macro [56] to
evaluate the performance of recognition across 86 classes. The F-macro of individual violin recognition
is presented in Table 4.
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Table 3. Accuracy of individual violin recognition (%).

Classifier MPEG-7 LPCC MFCC Combined
Features

Raw
Waveform

Train1
GMM–UBM 55.04 58.35 62.05 63.98 –

GMM 29.96 34.48 38.16 45.50 –
CNN 24.82 30.79 36.81 40.06 39.32

Train2
GMM–UBM 62.72 66.81 70.23 73.41 –

GMM 41.73 49.41 55.27 60.61 –
CNN 29.74 40.98 51.65 56.37 57.64

Train3
GMM–UBM 67.94 69.83 78.22 82.35 –

GMM 43.91 58.53 64.37 74.57 –
CNN 36.93 42.72 59.28 66.47 66.87

Table 4. F-macro of individual violin recognition (%).

Classifier MPEG-7 LPCC MFCC Combined
Features

Raw
Waveform

Train1
GMM–UBM 53.82 57.09 60.51 62.97 –

GMM 28.16 33.17 35.83 45.29 –
CNN 21.33 29.64 35.99 38.44 37.51

Train2
GMM–UBM 61.51 66.03 69.67 72.91 –

GMM 39.89 46.88 53.53 58.47 –
CNN 25.07 36.70 48.45 54.32 55.87

Train3
GMM–UBM 67.01 68.21 77.02 79.36 –

GMM 41.14 52.86 60.74 72.89 –
CNN 28.47 33.43 52.50 62.12 62.91

Among all the extracted features in Tables 3 and 4, the combined features perform best regardless
of the type of classifier and the amount of the training data. The performance of the GMM–UBM
system is superior to that of the GMM system. The UBM can model the individual-independent
distribution of the features using background data, so the GMM–UBM performs better. As the number
of training samples increases, the differences between the performance of the GMM and GMM–UBM
become smaller. When the training data are more abundant, the superiority of the UBM is less obvious.
In “Train1” and “Train2”, the performance of the CNN system is inferior to that of the two GMM-based
systems. This is largely due to the small amount of training data limits the performance of the CNN.
In “Train3”, the performance of the CNN system is still unsatisfactory. One of the reasons is that the
training data of “Train 3” is class-imbalanced. For example, there are only 3 solos for each high-grade
violin in the dataset. The training data for each high-grade violin are less than other violins. We can
also observe that the end-to-end CNN system’s performance is similar to or even superior to that
of the CNN with the combined features. This indicates that the CNN could learn some effective
representations from the raw waveform audio signals.

On the metrics of accuracy and F-macro, we further performed the paired t-test to compare the
performance of proposed features and MFCC. The p-values are presented in Table 5. Most of the
p-values are smaller than 0.05, which demonstrates that the superiority of the combined features to the
MFCC is statistically significant.
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Table 5. p-value between the combined features and MFCC in individual violin recognition.

p-Value (Accuracy) p-Value (F-macro)

Train1
GMM–UBM 0.0753 0.0496

GMM 0.0027 0.0019
CNN 0.0375 0.0520

Train2
GMM–UBM 0.0199 0.0260

GMM 0.0165 0.0121
CNN 0.0114 0.0098

Train3
GMM–UBM 0.0487 0.0561

GMM 0.0004 <0.0001
CNN <0.0001 <0.0001

7.2. Violin Grade Classification

Considering the grade information instead of the individual label, the classification of violin grades
could be implemented similarly. The system’s output was three grades rather than 86 individuals.
With the same partitioning of the training and test sets given in Table 2, we carried out the classification
experiments. The accuracy and F-macro of violin grade classification are presented in Tables 6
and 7, respectively.

Table 6. Accuracy of violin grade classification (%).

Classifier MPEG-7 LPCC MFCC Combined
Features

Raw
Waveform

Train1
GMM–UBM 81.13 83.83 86.34 89.35 –

GMM 65.94 70.84 76.62 80.97 –
CNN 65.67 70.53 71.46 77.56 71.87

Train2
GMM–UBM 84.99 88.16 92.04 94.18 –

GMM 72.20 74.38 86.61 90.35 –
CNN 72.87 78.91 82.75 86.83 86.93

Train3
GMM–UBM 88.32 91.42 96.77 97.96 –

GMM 75.36 80.89 91.08 94.49 –
CNN 76.05 78.64 88.42 93.81 92.02

Table 7. F-macro of violin grade classification (%).

Classifier MPEG-7 LPCC MFCC Combined
Features

Raw
Waveform

Train1
GMM–UBM 63.35 65.42 74.69 80.82 –

GMM 41.42 50.01 59.56 64.20 –
CNN 41.70 45.48 52.57 60.23 50.67

Train2
GMM–UBM 68.37 72.94 76.98 84.09

GMM 51.32 55.77 68.18 77.64 –
CNN 50.88 59.09 66.68 73.54 73.75

Train3
GMM–UBM 74.73 82.69 92.45 93.90 –

GMM 57.79 64.26 78.64 86.98 –
CNN 50.09 56.38 79.52 83.59 82.89

According to the results in Tables 6 and 7, we can draw a conclusion similar to that in individual
violin recognition. For each classifier, the combined features lead to better performance than other
features. The GMM–UBM’s superiority to the GMM and CNN is still obvious. Compared with the
results shown in Tables 3 and 4, all the systems perform better in violin grade classification than
individual violin recognition. The grade of violins is a broader category than individual, which is
responsible for better performance. We could also observe a big difference between the values of
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accuracy and F-macro in Tables 6 and 7. The accuracy aggregates the contributions of all test solo
excerpts to compute a metric, whereas the F-macro computes the metric independently for each class
and then take the average. When the classification results of the three grades differ a lot, there is an
obvious difference between the overall accuracy and F-macro.

In the violin dataset, 60 violins belong to the medium grade and the solos in this grade account
for 67% of the total data. For the majority grade, the accuracy of violin grade classification is presented
in Table 8. Compared with the results shown in Table 6, all the systems obtain higher accuracy metrics
on the medium-grade data. This is largely due to the training data of the medium grade are more
sufficient than other grades. In “Train3”, the CNN performs better than the two GMM-based systems
on the classification of medium-grade violins. We believe that the CNN can be a promising model
when the training data are sufficient and balanced.

Table 8. Classification accuracy of the medium-grade violins (%).

Classifier MPEG-7 LPCC MFCC Combined
Features

Raw
Waveform

Train1
GMM–UBM 81.79 84.34 94.14 96.14 –

GMM 79.93 81.32 84.87 89.51 –
CNN 79.63 84.10 81.48 88.79 75.62

Train2
GMM–UBM 88.09 91.15 96.94 98.31 –

GMM 82.65 85.51 92.34 95.23 –
CNN 83.16 88.27 91.16 91.66 90.29

Train3
GMM–UBM 89.27 91.51 98.59 98.86 –

GMM 86.74 89.97 95.51 96.19 –
CNN 89.58 91.98 98.61 98.96 98.26

A paired t-test was also conducted to compare the performance of the classification systems using
the combined features and MFCC. As shown in Table 9, the p-values demonstrate that the superiority
of the combined features to MFCC is statistically significant.

Table 9. p-value between the combined features and MFCC in violin grade classification.

p-Value (Accuracy) p-Value (F-macro)

Train1
GMM–UBM 0.0363 0.0351

GMM 0.0018 0.0048
CNN 0.0057 0.0056

Train2
GMM–UBM 0.0590 0.0082

GMM 0.0086 0.0037
CNN 0.0096 0.0187

Train3
GMM–UBM 0.0240 0.0423

GMM 0.0207 0.0058
CNN <0.0001 0.0008

7.3. Effect of Performer

The effect of the violin performer was also discussed in the individual violin recognition systems
using the combined features. According to the label information of the player, two set of experiments
were conducted. In the same-performer scheme, the training data and test data for each violin were
performed by the same player. In the different-performer scheme, the training data and test data for
each violin were from different players. The corresponding ways of data partitioning are shown in
Table 10.
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Table 10. Data partition of the two performer-based schemes.

Same-Performer Different-Performer

Train1 Train2 Train1 Train2

Training set
Number of solos per violin 1 2 1 2

Total number of solos 86 172 86 172

Test set Total number of solos 248 162 736 736

The recognition accuracy rate (%) of the two schemes are presented in Table 11. There is a
huge divide between the results of the same-performer scheme and the different-performer scheme.
The accuracy rate has a prominent improvement when all the training data and test data are played by
the same person. This indicates that the classifiers are overfitted to some extent. The classifiers are
too closely fit to the limited training set, so the same-performer scheme obtains a better performance.
In the comparison of the results between the two performer-based schemes, the difference of the
GMM–UBM system is smaller than that of the GMM system. This is due to that the UBM could model
the performer-independent distribution of the features using background data, which mitigates the
overfitting of GMM. For each violin in the dataset, all solos played by the specific performer are of
different contents. The high accuracy of the same-performer scheme also shows that, the influence of
the performer is more prominent than the solo content in the recognition experiments.

Table 11. Comparison of performance between the two performer-based schemes.

Same-Performer Different-Performer

GMM–UBM GMM CNN GMM–UBM GMM CNN

Train1 92.72 86.72 64.23 56.39 33.66 33.23
Train2 96.91 89.49 76.49 64.95 47.42 50.27

8. Conclusions

This paper proposed the combined features consisting of tonal GFCC and nontonal GFCC,
which could capture more comprehensive information about timbre. Utilizing the proposed features,
a framework based on the GMM–UBM was built to identify different violins. The framework employed
a UBM to represent the violin-independent distribution of the combined features and a MAP adaption
to derive individual violin models.

In order to evaluate the performance of individual violin recognition, a solo dataset consisting
of 86 violins was developed. Among all the extracted features in this paper, the proposed features
performed best in both individual violin recognition and violin grade classification. The GMM–UBM’s
superiority to the CNN was more obvious when the size of training set was smaller. The success of
deep learning often hinges on the availability of sufficient training data, and the small amount of
training data limited the performance of the CNN. The UBM could model the individual-independent
distribution of the features using background data, so the GMM–UBM performed better with limited
training data. Considering the great influence of players, the performer-independent individual
recognition and a more robust model are promising in the future.
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