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Abstract: In this paper the problem of sampling the field radiated by a planar source observed over
a finite planar aperture located in the near-field is addressed. The problem is cast as the determination
of the spatial measurement positions which allow us to discretize the radiation problem so that the
singular values of the radiation operator are well-approximated. More in detail, thanks to a suitably
warping transformation of the observation variables, the kernel function of the relevant operator
is approximated by a band-limited function and hence the sampling theorem applied to achieved
discretization. It results in the sampling points having to be non-linearity arranged across the
measurement aperture and their number can be considerably lowered as compared to more standard
sampling approach. It is shown that the proposed sampling scheme works well for measurement
apertures that are not too large as compared to the source’s size. As a consequence, the method
appears better suited for broad-side large antenna whose radiated field is mainly concentrated in
front of the antenna. A numerical analysis is included to check the theoretical findings and to study
the trade-off between the field accuracy representation (over the measurement aperture) and the
truncation error in the estimated far-field radiation pattern.

Keywords: antenna testing; near-field measurements; sampling schemes

1. Introduction

Antenna testing is a fundamental and necessary step in the manufacturing process of any
transmission system. The most advanced testing procedures rely on near-field measurement techniques
that consist of measuring the field radiated by the antenna under test at a relatively short range within
an anechoic environment [1–3] and then to compute the far-field pattern from such measurements.
More in detail, near-field measurements are usually collected by mechanically scanning a measurement
surface [4] and then the measured data are processed by the so-called “near-field to far-field
transformations” [3,5–7], or related approaches [8,9], to obtain the antenna radiation pattern. For large
antennas, the number of required measurements may become extremely high. Therefore, in order to
control the acquisition time, it is crucial to reduce the number of measurements without compromising
the accuracy of the results [10–15].

The aim of this contribution is to address this question for the case of a planar source distribution
whose radiated field is measured over a planar aperture. For such a case, according to classical
plane-wave spectrum reasoning, the probe usually scans the measurement aperture with a sampling
step of half the free-space wavelength. The resulting sampling point number is herein assumed as the
benchmark against which to achieve data reduction.

From a general perspective, the task of reducing the spatial measurements can be cast as a sensor
selection problem [16], where one selects a finite number of positions among the ones available over a
generally very dense grid. As is well-known, this type of problem presents a combinatorial complexity
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and hence cannot be in practice addressed by an exhaustive exploration of the data space. To overcome
this drawback a number of methods have been developed, which are based on convex optimization,
greedy procedure and heuristics. By these methods, the selection is basically achieved by optimizing
some metrics which are related to the singular values of the radiation operator [17–21].

In this contribution, we propose a different approach which does not require to run any iterative
procedure. More in detail, it is known that the set of the radiated fields is ‘essentially’ of finite
dimension [22,23], the so-called number of degrees of freedom (NDF) [24], which depends on the source
and the measurement aperture sizes, their relative distance and the working frequency. Accordingly,
the sampling points are derived as the ones that allow us ‘to capture’ the features of such a subset of
the range of the radiation operator. More in detail, for the said A radiation operator, the problem is
cast as the discretization of the composed operator AA†, with A† being the adjoint of the radiation
operator. To this end, we extend to the present case the approach developed in [25] for strip currents.
Basically, thanks to a suitable variable transformation that ‘warps’ the spatial observation variables,
the kernel function ofAA† is approximated as a band-limited function and then the Shannon sampling
theorem [26] is used for the discretization. It is shown that the resulting sampling points are much lower
than the ones required by the common half the wavelength sampling and have to be non-uniformly
deployed across the planar measurement aperture. However, interpolation permits us to obtain the
field over a uniform and finer grid, so that the radiation pattern can be still computed by a standard
fast Fourier transform (FFT) procedure.

It is worth remarking that non-uniform sampling schemes have been suggested by other authors
by basically using a sensors’ selection method [15,21], or by leveraging on the ’local’ bandwidth of the
reduced field [10–14]. We remark that, as compared to these contributions, the proposed sampling
scheme does not require us to run numerical iterative procedures and address the sampling without
the need to split, since the outset, the problem along the so-called meridian and azimuth curves.

Another crucial aspect in planar near-field techniques concerns the choice of the planar
observation domain size, which, for obvious practical reasons, must be necessarily finite. This fact
entails that, depending on the type of the antenna under test, the far-field evaluation can suffer from the
so-called truncation error. This question was deeply addressed in [27] where a new valid angle criterion
was suggested. Here, this issue is relevant since it is shown that the sampling scheme depends on the
size (relative to the one of the source) of the planar measurement domain. More in detail, we show
that if the measurement aperture size does not exceed the source one, the warping transformation
‘factorizes’ and this greatly simplifies the problem of finding the sampling scheme. This advantage
must be traded-off with the truncation error that can arise from the constraint concerning the aperture
size. This sets some limitations on the current that can be dealt with and the method appears better
suited for broadside antennas whose radiated field mainly concentrates in front of the source.

The rest of the paper is organized as follows. In Section 2, the mathematical model describing
the radiation problem at hand is introduced along with a proper formulation of AA†. In Section 3,
the proposed sampling scheme is presented after the kernel function is suitably approximated and the
warping transformation introduced. Section 4 is devoted to showing an extensive numerical analysis in
order to check the validity and the limitations of the proposed approach in terms of both the estimation
of the singular value behavior and the quality of the radiation pattern estimation. Finally, conclusions
end the paper. The paper also includes an appendix which helps to clarify the theoretical derivation.

2. Problem Statement

Consider a magnetic current J of bounded finite planar support SD = [−Xs, Xs] × [−Ys, Ys]

(SD stands for source domain) located at z = 0 whose radiated field is observed over another planar
domain OD = [−X0, X0] × [−Y0, Y0] (i.e., the observation domain) located in near-field at z = zo.
The source is assumed to be directed in the x− y plane whereas only the tangential components of the
radiated field are collected. Under this framework, the problem can be split into two scalar problems
that can be addressed in the same way. Therefore, here we only consider the current directed along the
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x-axis, i.e., J = J(x, y)x̂, and collect the corresponding tangential y-component of the radiated field
(see Figure 1 for a pictorial view of the configuration).

Figure 1. Geometry of the problem.

If we omit an unessential scalar factor, the radiation problem is described in the frequency domain
by the following radiation operator

A : J(r) ∈ X = L2(SD)→ (AJ)(ro) = E(ro) =
∫

SD
K(ro, r)e−jΦ(ro ,r) J(r)dr ∈ Y = L2(OD), (1)

with L2(SD) and L2(OD) being the set of square integrable functions supported over the source and
the observation domains, respectively, ro ∈ OD and r ∈ SD are the field and the source points and k
the free-space wavenumber. Moreover, Φ(ro, r) = k|ro − r| and K(ro, r) = 1

|ro−r|2
[jk + 1

|ro−r| ] ≈
jk

|ro−r|2
,

where the last approximation is because |ro − r| ≥ zo ≥ λ, λ being the free-space wavelength.
We are concerned with the design of a sampling scheme for the observation variable ro which

allows to dicretize the data space in such a way to approximate the singular values of A up to
a certain index. As is well-known, the singular system {un, σn, vn}∞

n=0 of A, with σn being the singular
values and un and vn the singular functions that span the source and the field spaces, solves the
following equations {

σnvn = Aun

σnun = A†vn
, (2)

where A† is the adjoint of the radiation operator defined as

A† : f (r′o) ∈ Y = L2(OD)→ (A† f )(r) = g(r) =
∫

OD
K(r′o, r)ejΦ(r′o ,r) f (r′o)dr′o ∈ X = L2(SD), (3)

with f and g being two generic functions belonging to Y and X, respectively. However, for our
purposes, it is convenient to address the associated eigenvalue problem

σ2
nvn = AA†vn. (4)

Since its finite dimensional approximation entails to discretize ro only. Therefore, in the following
we focus on AA† whose explicit expression, apart from an unessential constant, is

(AA†vn)(ro) =
∫

OD
dr′o

∫
SD

drK(ro, r)K∗(r′o, r)vn(r′o)e
−j[Φ(ro ,r)−Φ(r′o ,r)]. (5)
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In order to devise the sampling scheme, the main idea it to recast the kernel function of AA† as
a Fourier-like transformation. To this end, it is convenient to rewrite the phase term as

Φ(ro, r)−Φ(r′o, r) =
∫ ν1

ν0

∇pΦ(p(ν), r)
dp(ν)

dν
dν, (6)

with ∇p denotes the gradient with respect to p, such that p(ν) is a curve whose starting and ending
points coincide with r′o and ro, respectively, that is p(ν0) = r′o and p(ν1) = ro. Now, the curve p(ν)
can be properly chosen in order to let the phase term resemble a Fourier kernel. This can be achieved,
for example, in the following way. Consider r̃o ≡ (xo, y′o) and then perform integration in (6) along the
polygonal line with nodes r′o, r̃o and ro, i.e., integration is performed along the segment joining r′o and
r̃′o and followed by the segment joining r̃′o and ro. Accordingly, we have that

Φ(ro, r)−Φ(r′o, r) = w(ro, r′o, r) · (ro − r′o), (7)

where · denotes the scalar product, w ≡ (wx, wy) and

wx(xo, r′o, r) =
∫ 1

0

∂Φ(px, y′o, r)
∂px

∣∣∣∣
px=x′o+ν(xo−x′o)

dν, (8)

wy(ro, y′o, r) =
∫ 1

0

∂Φ(xo, py, r)
∂py

∣∣∣∣
py=y′o+ν(yo−y′o)

dν. (9)

Now, it can be shown that ∀ro, r′o the transformation w : r → w(ro, r′o, r) is injective and the
corresponding Jacobian matrix full rank (the details concerning this point have been omitted for
brevity). This allows us to replace in (5) the integration in r with the integration in w, which yields

(AA†vn)(ro) =
∫

OD
dr′o

∫
Ω(ro ,r′o)

dwH(ro, r′o, w)vn(r′o)e
−jw·(ro−r′o), (10)

with

Ω(ro, r′o) = {(wx(xo, r′o, r), wy(ro, y′o, r)) : r ∈ SD}, (11)

being the corresponding integration domain in the w variable and

H(ro, r′o, w) =

∣∣∣∣ ∂(x, y)
∂(wx, wy)

∣∣∣∣K(ro, r(w))K∗(r′o, r(w)), (12)

is the corresponding amplitude term which includes the Jacobian determinant, i.e.,
∣∣∣ ∂(xo ,yo)

∂(wx ,wy)

∣∣∣, of the
variable transformation from r to w. To proceed further we focus on the kernel function of (10), which
is given by

kern(ro, r′o) =
∫

Ω(ro ,r′o)
dwH(ro, r′o, w))e−jw·(ro−r′o). (13)

In order to slightly simplify the previous expression, we note that, because H(ro, r′o, w) is a
constant sign function, Equation (13) clearly shows that the leading order contribution occurs for
ro − r′o = 0 [28]. This allows us to approximate the amplitude factor by its value assumed for ro = r′o,
that is

H(ro, r′o, w) ≈ H(r′o, r′o, w) = H(r′o, w) =

∣∣∣∣ ∂(x, y)
∂(wx, wy)

∣∣∣∣ |K(ro, r(w))|2. (14)

By observing that the Jacobian transformation yields
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∣∣∣∣ ∂(x, y)
∂(wx, wy)

∣∣∣∣ = [ k2z2
o

|ro − r|4

]−1

= 1/|K(r′o, r(w))|2, (15)

we finally have H(r′o, w) = 1 and the kernel function is eventually approximated as

kern(ro, r′o) =
∫

Ω(ro ,r′o)
e−jw·(ro−r′o)dw. (16)

It is interesting to highlight that (16) shows the kernel function as a 2D spatially varying
band-limited function [29], which allows us to expect a non-uniform sampling. This indeed has
been already reported in previous contributions [25,30–33] for one-dimensional currents.

3. Sampling Scheme

In order to devise the sampling scheme, we look for a sampling expansion approximation of the
kernel (16). To this end, we extend the approach in [25]. Here, the matter is much more difficult because,
unlike as in [25], both the size and the shape of the band Ω(ro, r′o) change with the observation variable.

To deal with the change in shape of Ω(ro, r′o) as ro and r′o range within OD, we content to
approximate (16) by considering a rectangular domain ΩR(ro, r′o) = [wmx − ∆wx, wmx + ∆wx] ×
[wmy − ∆wy, wmy + ∆wy] that contains Ω(ro, r′o). In order to determine ΩR(ro, r′o), we have to compute
the extreme points of Ω(ro, r′o) along wx and wy. This is equivalent in determining wmax

x (xo, r′o) =

maxr∈SD{wx(xo, r′o, r)}, wmin
x (xo, r′o) = minr∈SD{wx(xo, r′o, r)}, wmax

y (ro, y′o) = maxr∈SD{wy(ro, y′o, r)}
and wmin

y (ro, y′o) = minr∈SD{wy(ro, y′o, r)}. The latter is a tedious but not a complex task and is pursued
in Appendix A under the assumption OD ⊆ SD. Accordingly, once these extreme points have been
determined, the parameters of ΩR(ro, r′o) follow as

∆wx(xo, x′o) = (wmax
x − wmin

x /2
wmx(xo, x′o) = (wmax

x + wmin
x )/2

∆wy(yo, y′o) = (wmax
y − wmin

y )/2
wmy(yo, y′o) = (wmax

y + wmin
y )/2

. (17)

At this juncture, by extending the integration in (16) over the estimated rectangular domain
ΩR(ro, r′o), the following closed-form approximation of the kernel function is obtained

ˆkernR(ro, r′o) = 4e−jwm ·(ro−r′o)∆wx∆wysinc[∆wx(xo − x′o)]sinc[∆wy(yo − y′o)], (18)

with wm = (wmx, wmy) and sinc(x) = sin(x)/x.
The parameters of ΩR(ro, r′o) reported in (17) are spatially varying with the observation variable.

This dependence can be removed by introducing a suitable ‘warping’ transformation [34–36]. This task
is relatively easy under the assumption OD ⊆ SD (see Appendix A). Indeed, in this case the warping
transformation ‘factorizes’, in the sense that the observation variables xo and yo can be warped
independently from each other. In particular, such transformations are (see Appendix A for details)

ξx : xo → ξx(xo) =
k
2 [
√
(xo + Xs)2 + z2

o −
√
(xo − Xs)2 + z2

o ]

ξy : yo → ξy(yo) =
k
2 [
√
(yo + Ys)2 + z2

o −
√
(yo −Ys)2 + z2

o ],
(19)

and

γx : xo → γx(xo) =
k
2 [
√
(xo + Xs)2 + z2

o +
√
(xo − Xs)2 + z2

o ]

γy : yo → γy(yo) =
k
2 [
√
(yo + Ys)2 + z2

o +
√
(yo −Ys)2 + z2

o ].
(20)

Accordingly, Equation (18) rewrites as (see Appendix A for further details)

ˆkernR(ro, r′o) = 4e−j(γx(xo)−γx(x′o))e−j(γy(yo)−γy(y′o))∆wx∆wysinc[ξx(xo)− ξx(x′o)]sinc[ξy(yo)− ξy(y′o)]. (21)
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Basically, Equation (19) and Equation (20) transform the rectangular region in (xo, yo), i.e., the
actual observation domain OD = [−X0, X0]× [−Y0, Y0], into the rectangular domain [−∆ξx, ∆ξx]×
[−∆ξy, ∆ξy] of the (ξx, ξy) plane, with

∆ξx = (ξxmax − ξxmin)/2 = k
2 [
√

z2
o + (X0 + Xs)2 −

√
z2

o + (X0 − Xs)2]

∆ξy = (ξymax − ξymin)/2 = k
2 [
√

z2
o + (Y0 + Ys)2 −

√
z2

o + (Y0 −Ys)2],
(22)

with ξxmax and ξxmin being the maximum and the minimum of the function ξ over the allowed values
of xo, and ξymax and ξymin are the analogous for the ξy function.

Now, we can finally rewrite the eigenvalue problem in (10) in the warped domain (ξx, ξy) by
changing the integration variable from (xo, yo) to (ξx, ξy). Accordingly, the singular functions spanning
the field space can be expressed as

σ2
n v̄n(ξx, ξy) = (AA†v̄n)(ξx, ξy) =∫ ∆ξx

−∆ξx
dξ ′x

∫ ∆ξy

−∆ξy
dξ ′y4∆wx∆wy|

∂(xo, yo)

∂(ξx, ξy)
| ¯kern(ξx, ξy, ξ ′x, ξ ′y)v̄n(ξ

′
x, ξ ′y), (23)

where ξ ′x = ξx(x′o), ξ ′y = ξ ′y(y′o), v̄n(ξx, ξy) = vn(ξx, ξy)e−jγx(ξx)e−jγy(ξy), | ∂(xo ,yo)
∂(ξx ,ξy)

| is the Jacobian

determinant related to the transformation variables from (xo, yo) to (ξx, ξy) and

¯kern = sinc[ξx(xo)− ξx(x′o)]sinc[ξy(yo)− ξy(y′o)]. (24)

By employing similar reasoning used for the amplitude term in (16) we made Section 2,
we approximate ∆wx(xo, x′o) = ∆wx(x′o, xo) = ∆wx(x′o) and ∆wy(yo, y′o) = ∆wy(y′o, y′o) = ∆wy(y′o).
This yields

4∆wx∆wy|
∂(xo, yo)

∂(ξx, ξy)
| = 1, (25)

and (23) becomes

σ2
n v̄n(ξx, ξy) = (AA†v̄n)(ξx, ξy) =

∫ ∆ξx

−∆ξx
dξ ′x

∫ ∆ξy

−∆ξy
dξ ′y ¯kern(ξx, ξy, ξ ′x, ξ ′y)v̄n(ξ

′
x, ξ ′y). (26)

The advantage provided by reformulating the eigenvalue problem as in (26) is evident since
we are now allowed to use the standard sampling theorem (with respect to the introduced warped
variables) [26] to build the discrete version of AA† for eingenspectrum computation [37]. More in
detail, Equation (26) says that v̄n are band-limited functions (because ¯kern is a band-limited function)
and hence can be expanded as

v̄n(ξx, ξy) = ∑
m,l

v̄n(ξxm, ξvl)sinc[ξx − ξxm]sinc[ξy − ξyl ], (27)

with ξxm = mπ and ξyl = lπ being the sampling points and m and l integer indexes. Of course, since
the singular functions v̄n span the field space the same expansion holds true for the field. Hence,
Equation (27) is the sampling expansion we were looking for. In particular, in order to pass from the
sampling points in (ξx, ξy) to the ones in (xo, yo) (the actual observation variables), Equation (19) must
be used. For example, the sampling position along xo, i.e., xom, are obtained by solving for xom the
following equation

k
2
[
√

z2
o + (xom + Xs)2 −

√
z2

o + (xom − Xs)2] = ξxm = mπ, (28)

or equivalently
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k2x2
om

ξ2
xm
− k2z2

o
k2 − ξ2

xm
= 1. (29)

A similar equation of course holds true for the sampling points yom along the variable yo.
In order to appreciate the goodness of the proposed sampling scheme, we need to obtain the

discrete version of the eigenvalue problem (10). This is achieved by inserting (27) into (26), that yields

σ2
nvn = Bvn, (30)

where vn is the vectorized form of the matrix consisting of the samples of v̄n and the entries of the
matrix, Bα,β, are given by

Bα(m,l),β(s,t) =
∫ ∆ξx

−∆ξx
dξ ′x

∫ ∆ξy

−∆ξy
dξ ′y ¯kern(mπ, lπ, ξ ′x, ξ ′y)sinc(ξ ′x − sπ)sinc(ξ ′y − tπ). (31)

Note that the integer indexes m, l and s and t range over the two-dimensional sampling lattice
involved by (27) and the matrix entry indexes α and β vary according to the way the vectorization of
vn is achieved.

It is worth remarking that B describes an infinite discrete problem. However, since (27) must
be used to represent the field over the measurement aperture, we are allowed to retain only the
samples falling within [−∆ξx, ∆ξx]× [−∆ξy, ∆ξy], which corresponds to the observation domain OD.
Accordingly, in the sequel, we will consider a truncated version of B, i.e., BN of size N×N, which takes
into account only the samples falling within the observation domain. More in detail, N = Nx Nx and
Nx = [2∆ξx/π], Ny = [2∆ξy/π], [·] being the operator that takes the integer part. Indeed, for classical
band-limited kernels, N represents the so-called Shannon number (SN) which is known to give a good
estimation of the number of degrees of freedom [23,37]. In particular, in these cases, the singular values
exhibit a step-like behavior and the SN basically returns the number of singular values preceding the
abrupt decay. However, it also known that to properly capture that part of the singular value behavior,
and also to go a bit beyond the ’knee’, a slightly greater number of samples are required [37]. Therefore,
in the following numerical analysis, an oversampling factor of 1.3 is considered, that is to say, that the
sampling step (in ξx and ξy) is fixed at π/1.3.

4. Numerical Analysis

In this section, we check the previous theoretical findings by some numerical examples.
We start by first verifying if the proposed sampling scheme works in approximating the singular

values of the radiation operator. Note that the singular values of A are the square root of the
eigenvalues ofAA†. Therefore, in the sequel, we will speak about the singular values or the eigenvalues
without distinction.

We consider a source domain SD = [−8λ, 8λ] × [−4λ, 4λ] (with Xs = 8λ and Ys = 4λ) and
assume to collect the data over two measurement domains both located at zo = 7λ: the first
one is OD1 = [−10λ, 10λ] × [−6λ, 6λ] (with X0 = 10λ and Y0 = 6λ); the second one is OD2 =

[−30λ, 30λ] × [−15λ, 15λ] (with X0 = 10λ and Y0 = 6λ). The corresponding results are reported
in Figure 2. In particular, in panels (a) and (b) the sampling point distributions returned by the
proposed non-uniform sampling scheme are sketched for the two considered observation domains.
Panels (c) and (d) instead report the comparison between the eigenvalues of BN and AA†. According
to the theoretical derivation, we have a strict constraint on the size of the measurement aperture
which should not exceed the one of the source. Nonetheless, in both the cases considered in Figure 2,
the observation domain violates such a constraint, especially for the example reported in panels (b) and
(d). By looking at such a figure the following conclusions can be drawn. First, the proposed sampling
scheme is able to very well approximate the eigenvalues even when the observation domain OD
slightly exceeds the source domain SD (see panel (c) which refers to OD1). Instead, in panel (d), where
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OD2 is much larger than SD, it is evident that the number of degrees of freedom is underestimated
since the ‘knee’ of the eigenvalues starts before the actual one. This means that the sampling points
are not enough (and not properly located). However, the initial part of the eigenvalue behavior is
very well-approximated. Hence, we conclude that in this case, the proposed non-uniform sampling
strategy is able to approximate only a subset of all possible radiated fields, i.e., the ones spanned by
the singular functions corresponding to the singular values that are well-estimated. As a consequence,
it is expected that the non-uniform sampling can allow for a good radiated field approximation if the
field significantly projects on those singular functions, even when the constraint on the size of OD is
not strictly verified.

The second important point that must be highlighted is that the number of samples required by
the proposed sampling scheme is actually much lower than the ones arising from a λ/2 sampling.
Indeed, for the two cases, our method requires N = 462 and N = 840, respectively for OD1 and OD2,
whereas the λ/2 sampling requires 1025 and 7381 samples.

In order to appreciate the capability of the proposed sampling method of approximating the
radiated field, we use the following relative error metric (RE) computed over the measurement
aperture, that is

REdB(X0, Y0) = 20 log10
||E− Eλ/2||
||Eλ/2||

, (32)

where E is the near-field obtained by collecting the data according to the proposed non-uniform
sampling scheme and then interpolated over a λ/2 grid, Eλ/2 is the near-field data directly collected
over the uniform λ/2 grid and ‖ · ‖ is the Euclidean norm. In order to highlight the role of the type
of source, three different source distributions defined over (x, y) ∈ SD = [−8λ, 8λ]× [−4λ, 4λ] are
considered, that is

1. J1(x, y) = cos2 ( πx
2Xs

)ejk sin (π/20) cos (π/4)x cos2 ( πy
2Ys

)ejk sin (π/20) sin (π/4)y;
2. J2(x, y) = 1;
3. J3(x, y) = 4 cos [k sin (π/4) cos (π/4)x] cos [k sin (π/4) sin (π/4)y].

More in detail, the first source gives rise to very low side-lobes and hence it has been considered to
see if, and to what extent, they can be estimated by using the proposed sampling scheme. The second
source is constant and presents an abrupt decay at the edges of the source domain; its radiation
pattern is a sinc-like function. Finally, the third current leads to a steered multi-beam radiation pattern.
Basically, these examples present a growing level of difficulty, since moving from J1 to J3 the currents
project over a large number of singular functions.

In Table 1, the relative error RE is given in dB for the different sources under consideration and the
two measurement apertures addressed in Figure 2. As can be seen, for OD1 = [−10λ, 10λ]× [−6λ, 6λ],
the error is relatively low for all the sources. This means that the proposed sampling scheme returns
a good approximation for the near-field although the number of samples has been greatly reduced
as compared to the λ/2 sampling scheme. This was indeed expected since the proposed sampling
scheme works well if the observation domain OD is similar in size to the source domain SD. When the
measurement aperture is increased (see the third column of Table 1) the error decreases for J1(x, y) and
J2(x, y) and increases for J3(x, y). This is because the field radiated by J1 and J2 significantly projects on
the singular functions corresponding to the singular values that are well-approximated (see panel (d)
of Figure 2). Accordingly, the metric error benefits from the higher number of sampling points (that are
required since OD2 is larger than OD1) that can be used to perform the interpolation. On the contrary,
for J3, the error increases because the radiated field also projects on the singular functions of A which
are not well-approximated by our discretization scheme. In other words, the field radiated by J3 is also
relevant for the points of OD2 which exceed the limit of OD1 and hence of SD.
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Table 1. Relative error metric (RE) for different source types and measurement apertures.

Source Type REdB(10λ, 6λ) REdB(30λ, 15λ)

J1(x, y) −58.65 −81.07
J2(x, y) −31.53 −33.54
J3(x, y) −19.28 −8.5
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Figure 2. Illustrating the sampling points positions (a,b) and the eigenvalue behaviors (c,d). The source
domain parameters are Xs = 8λ and Ys = 4λ. Panels (a,b) refer to an observation domain of parameters
X0 = 10λ and Y0 = 6λ; (b,d) refer to an observation domain of parameters X0 = 30λ, Y0 = 15λ. In both
the cases zo = 7λ. In (a,b) the markers highlight the sampling positions. In (c,d) the blue lines show
the actual eigenvalue behaviors (i.e., the ones of AA†) whereas the red lines show the behaviors
corresponding to BN obtained by using the proposed sampling scheme.

We now pass to analyzing the radiation patterns which are obtained by Fourier transforming
(by means of a FFT procedure) the near-field data. The radiation patterns are reported as a function
of the spectral variables kx = k sin θ cos φ and ky = k sin θ sin φ, with θ and φ being the usual polar
angles, and shown only for the so-called ’visible’ domain, that is for k2

x + k2
y = k2. More in detail,

after collecting the field data according to the proposed non-uniform sampling scheme, the field is
interpolated over a uniform λ/2 grid and finally, Fourier transformed.

The radiation pattern corresponding to J1 is reported in Figures 3 and 4 for the measurement
aperture OD1 and OD2, respectively. For example, by comparing panels (a) and (b) of Figure 3 the
radiation patterns computed by using the proposed method and the usual uniform sampling look
very similar. This can be even better appreciated by looking at the cut-views shown in panels (c) and
(d), where the blue lines refer to the radiation pattern computed by using the uniform λ/2 sampling
and the red ones to the radiation pattern obtained by the proposed method. In particular, herein,
the actual radiation pattern (in green lines) is also reported for comparison purposes. Since for this
case, the non-uniform sampling succeeds in approximating well the near-field (see Table 1) this very
good match between the radiation patterns computed by using the two sampling schemes under
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comparison was indeed expected. In particular, they also exhibit a similar truncation error in the
very low side-lobe region along ky (see panel (d)). This, of course, is because the observation domain
is shorter along y axis. However, this error is dramatically reduced in Figures 4 where the larger
measurement aperture OD2 was considered. In fact, since in this case, the aperture has been enlarged
and the radiated field still projects well on the singular functions that have been well-approximated
through the non-uniform sampling, the three lines overlap very well and appear indistinguishable.
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Figure 3. Normalized amplitude of the radiation pattern of J1(x, y) with Xs = 8λ, Ys = 4λ,
zo = 7λ, X0 = 10λ and Y0 = 6λ. In (a), the radiation pattern is obtained by employing the
near-field data according to the proposed non-uniform sampling scheme over the grid shown in
(a) of Figure 2 and then interpolated over a λ/2 grid. In (b), the radiation pattern is obtained by directly
employing the near-field data over a uniform λ/2 grid. Panels (c,d) have been obtained by fixing
ky = k sin (π/20) sin (π/4) and kx = k sin (π/20) cos (π/4), respectively, and compare the radiation
pattern cut-views passing through the main-beam maximum. The green lines report the actual radiation
pattern, the blue lines the radiation pattern computed by using the uniform λ/2 sampling and the red
ones show the radiation pattern obtained by the proposed method. Noiseless case.

In Figure 5, we consider the same case as in Figure 4 but a complex white Gaussian noise is added
to the field data. In particular, a signal to noise ratio (SNR), defined as

SNR =
||E||
||N || , (33)

with E the field data and N the noise, of 20 dB is considered. As can be seen, the two sampling
schemes still return similar results (in particular look at panels (c) and (d)). Indeed, both succeed in
approximating the first side-lobe of the actual radiation pattern whereas the very low side-lobe region
is definitely affected by the noise. However, what matters here is that, though much fewer sampling
points have been used by our method, the two sampling schemes show a similar effect of the noise.

The results concerning J2 are reported in Figures 6–8. In particular, Figure 6 refers to OD1,
Figure 7 to OD2 and Figure 8 to OD2 with noisy data and SNR = 20 dB. By looking at Figure 6 it
can be appreciated that the radiation pattern computed by the two sampling schemes are still very
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similar and both exhibit a relevant truncation error (see panels (c) and (d)) since the returned radiation
patterns (red and blue lines) are considerably different from the actual one (green lines). This error,
however, is reduced to a large extent by increasing the measurement aperture as shown in Figure 7
where the three lines are indistinguishable. Moreover, the estimated radiation pattern through the two
sampling schemes shows similar stability against the noise as illustrated in Figure 8.
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Figure 4. Normalized amplitude of the radiation pattern of J1(x, y) with Xs = 8λ, Ys = 4λ, zo = 7λ,
X0 = 30λ and Y0 = 15λ. In (a), the radiation pattern is obtained by employing the near-field
data according to the proposed non-uniform sampling scheme over the grid shown in panel (b) of
Figure 2 and then interpolated over a λ/2 grid. In (b), the radiation pattern is obtained by directly
employing the near-field data over a uniform λ/2 grid. Panels (c,d) have been obtained by fixing
ky = k sin (π/20) sin (π/4) and kx = k sin (π/20) cos (π/4), respectively, and compare the radiation
pattern cut-views passing through the main-beam maximum. The green lines refer to the actual
radiation pattern, the blue lines to the radiation pattern computed by using the uniform λ/2 sampling
and the red ones show the radiation pattern obtained by the proposed method. Noiseless case.

-5 0 5

k
x

-5

0

5

k
y

-120

-100

-80

-60

-40

-20

0

-5 0 5

k
x

-5

0

5

k
y

-120

-100

-80

-60

-40

-20

0

b)a)

dB dB

Figure 5. Cont.
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Figure 5. Normalized amplitude of the radiation pattern of J1(x, y) with Xs = 8λ, Ys = 4λ,
zo = 7λ, X0 = 30λ and Y0 = 15λ. In (a), the radiation pattern is obtained by employing the
near-field data according to the proposed non-uniform sampling scheme over the grid shown in
(b) of Figure 2 and then interpolated over a λ/2 grid. In (b), the radiation pattern is obtained by
directly employing the near-field data over a uniform λ/2 grid. Panels (c,d) have been obtained by
fixing ky = k sin (π/20) sin (π/4) and kx = k sin (π/20) cos (π/4), respectively, and compare the
radiation pattern cut-views passing through the main-beam maximum. The green lines refer to the
actual radiation pattern, the blue lines to the radiation pattern computed by using the uniform λ/2
sampling and the red ones show the radiation pattern obtained by the proposed method. Noisy case
with additive complex white Gaussian noise and SNR = 20 dB.

-5 0 5

k
x

-5

0

5

k
y

-120

-100

-80

-60

-40

-20

0

-5 0 5

k
x

-5

0

5

k
y

-120

-100

-80

-60

-40

-20

0

-5 0 5

k
x

-60

-40

-20

0

d
B

uniform

non-uniform

actual

-5 0 5

k
y

-60

-40

-20

0

d
B

uniform

non-uniform

actual

a)

d)c)

b)

dB dB

Figure 6. Normalized amplitude of the radiation pattern of J2(x, y) with Xs = 8λ, Ys = 4λ, zo = 7λ,
X0 = 10λ and Y0 = 6λ. In (a), the radiation pattern is obtained by employing the near-field data
according to the proposed non-uniform sampling scheme over the grid shown in panel (a) of Figure 2
and then interpolated over a λ/2 grid. In (b), the radiation pattern is obtained by directly employing
the near-field data over a uniform λ/2 grid. Panels (c,d) have been obtained by fixing ky = 0 and
kx = 0, respectively, and compare the radiation pattern cut-views passing through the main-beam
maximum. The green lines refer to the actual radiation pattern, the blue lines to the radiation pattern
computed by using the uniform λ/2 sampling and the red ones show the radiation pattern obtained by
the proposed method. Noiseless case.
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Figure 7. Normalized amplitude of the radiation pattern of J2(x, y) with Xs = 8λ, Ys = 4λ,
zo = 7λ, X0 = 30λ and Y0 = 15λ. In (a), the radiation pattern is obtained by employing the
near-field data according to the proposed non-uniform sampling scheme over the grid shown in
(b) of Figure 2 and then interpolated over a λ/2 grid. In (b), the radiation pattern is obtained by directly
employing the near-field data over a uniform λ/2 grid. Panels (c,d) have been obtained by fixing
ky = k sin (π/20) sin (π/4) and kx = k sin (π/20) cos (π/4), respectively, and compare the radiation
pattern cut-views passing through the main-beam maximum. The green lines refer to the actual
radiation pattern, the blue lines to the radiation pattern computed by using the uniform λ/2 sampling
and the red ones show the radiation pattern obtained by the proposed method. Noiseless case.

Finally, Figures 9 and 10 show the results concerning J3. According to what was reported at the
beginning of this section, since for the case of OD1 the proposed sampling strategy allows to obtain a
good estimation of the near-field, the radiation patterns obtained by the non-uniform and the uniform
sampling schemes are very similar for the case of OD1 addressed in Figure 9. However, because
of the size of OD1, there is a relevant truncation error, as highlighted in panels (c) and (d) of such
a figure. The measurement aperture is enlarged at OD2 in Figure 10. Now, though the truncation
error is significantly reduced for both the sampling schemes, the actual pattern (green lines) is much
better approximated by the one returned by the uniform sampling (blue lines) (see panels (c) and (d)
of Figure 10). This is because, differently from J1 and J2, J3 presents relevant components over the
singular functions that are not well-approximated by the non-uniform sampling scheme. This clearly
highlights the role of the type of source.

Summarizing, regardless of the type of source, the proposed sampling strategy returns a good
estimation for the near-field when the observation domain, OD, is equal or ‘slightly’ larger than the
source domain, SD. When the measurement aperture is much larger than SD, the representation
error depends on the type of sources and is relevant if the source significantly projects on the singular
functions of A that are not well-approximated by the proposed discretization strategy. In the latter
case, the estimated radiation pattern can suffer from a large deviation from the actual one. Therefore,
it can be concluded that the method is better suited to broadside antennas and further theoretical work
is required to generalize the sampling scheme to the case of beam-steered antennas.
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Figure 8. Normalized amplitude of the radiation pattern of J2(x, y) with Xs = 8λ, Ys = 4λ,
zo = 7λ, X0 = 30λ and Y0 = 15λ. In (a), the radiation pattern is obtained by employing the
near-field data according to the proposed non-uniform sampling scheme over the grid shown in
(b) of Figure 2 and then interpolated over a λ/2 grid. In (b), the radiation pattern is obtained by
directly employing the near-field data over a uniform λ/2 grid. Panels (c,d) have been obtained by
fixing ky = k sin (π/20) sin (π/4) and kx = k sin (π/20) cos (π/4), respectively, and compare the
radiation pattern cut-views passing through the main-beam maximum. The green lines refer to the
actual radiation pattern, the blue lines to the radiation pattern computed by using the uniform λ/2
sampling and the red ones show the radiation pattern obtained by the proposed method. Noisy case
with additive complex white Gaussian noise and SNR = 20 dB.
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Figure 9. Normalized amplitude of the radiation pattern of J3(x, y) with Xs = 8λ, Ys = 4λ, zo = 7λ,
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X0 = 10λ and Y0 = 6λ. In panel (a), the radiation pattern is obtained by employing the near-field
data according to the proposed non-uniform sampling scheme over the grid shown in (a) of
Figure 2 and then interpolated over a λ/2 grid. In (b), the radiation pattern is obtained by directly
employing the near-field data over a uniform λ/2 grid. Panels (c,d) have been obtained by fixing
ky = k sin (π/4) sin (π/4) and kx = k sin (π/4) cos (π/4), respectively, and compare the radiation
pattern cut-views passing through the main-beam maximum. The green lines refer to the actual
radiation pattern, the blue lines to the radiation pattern computed by using the uniform λ/2 sampling
and the red ones show the radiation pattern obtained by the proposed method. Noiseless case.
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Figure 10. Normalized amplitude of the radiation pattern of J2(x, y) with Xs = 8λ, Ys = 4λ,
zo = 7λ, X0 = 30λ and Y0 = 15λ. In (a), the radiation pattern is obtained by employing the
near-field data according to the proposed non-uniform sampling scheme over the grid shown in
(b) of Figure 2 and then interpolated over a λ/2 grid. In (b), the radiation pattern is obtained by directly
employing the near-field data over a uniform λ/2 grid. Panels (c,d) have been obtained by fixing
ky = k sin (π/4) sin (π/4) and kx = k sin (π/4) cos (π/4), respectively, and compare the radiation
pattern cut-views passing through the main-beam maximum. The green lines refer to the actual
radiation pattern, the blue lines to the radiation pattern computed by using the uniform λ/2 sampling
and the red ones show the radiation pattern obtained by the proposed method. Noiseless case.

5. Conclusions

In this paper, the problem of sampling the field radiated by a planar source and observed over
a finite planar aperture located in the near-field has been addressed. The problem has been cast as
the determination of the measurement spatial positions for which the singular values of the radiation
operator are well-approximated. Thanks to suitable variable transformations, which ‘warp’ the spatial
observation variables, the kernel function of AA† has been approximated as a band-limited function
and hence the standard sampling theorem used to discretize the problem. Basically, the new content
conveyed by this paper consists in the introduction of a sampling scheme which allows us to reduce the
number of measurements as compared to the most used sampling scheme in the industry for antenna
characterization, to avoid to use of numerical iterative procedures for selecting the measurement
positions, to extend our previous results which were concerned for the simpler case of strip currents.
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The developed theory rigorously works for measurement apertures that are not too large as
compared to the source’s size. Therefore, it has been concluded that the proposed method is better
suited to broadside antennas. In this regard, it must be emphasized that the mentioned limitations
arise because in the derivation we assumed SD ⊇ OD. This greatly simplified the problem because it
allowed us to find factorized warping transformation and the related sampling scheme. Accordingly,
this contribution can be seen as a preliminary contribution that must be generalized in order to deal
with larger measurement apertures and general source types. In view of the great reduction in the
number of data points, we are stimulated in addressing this question in future developments.

Finally, it worth remarking that besides the radiation pattern estimation, determining how
to sample the radiated field is inherently connected to the inverse source problem [38] and also
to the computation of the information content that can be ’communicated’ from a source to an
observation domain. In fact, it is well-known that the information content (quantified by the Shannon
or the Kolmogorov metrics) are explicitly dependent on the singular value behavior of the radiation
operator [39].
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Appendix A

In order to evaluate wm, ∆wx and ∆wy which are relevant for estimating ΩR(ro, r′o)
described in Section 3, we have to compute wmax

x (xo, r′o) = maxr∈SD{wx(xo, r′o, r)},
wmin

x (xo, r′o) = minr∈SD{wx(xo, r′o, r)}, wmax
y (ro, y′o) = maxr∈SD{wy(ro, y′o, r)} and wmin

y (ro, y′o) =

minr∈SD{wy(ro, y′o, r)}. Since the Jacobian of the transformation w : r→ w(ro, r′o, r) is full rank, both
wx and wy cannot have stationary points inside SD. Therefore, their maxima and minima must be
looked for over the boundary of the observation domain. By assuming SD ⊇ OD and after simple but
tedious calculations, it results that

wmax
x (xo, r′o) = wx(xo, r′o,−Xs, y = y′o)

wmin
x (xo, r′o) = wx(xo, r′o, Xs, y = y′o)

wmax
y (ro, y′o) = wy(ro, y′o, x = xo,−Ys)

wmin
y (ro, y′o) = wy(ro, y′o, x = xo, Ys),

(A1)

from which it readily follows that

wmax
x (xo, x′o) =

1
xo−x′o

∫ xo
x′o

k px+Xs√
(px+Xs)2+z2

o
dpx

wmin
x (xo, x′o) =

1
xo−x′o

∫ xo
x′o

k px−Xs√
(px−Xs)2+z2

o
dpx

wmax
y (yo, y′o) =

1
yo−y′o

∫ yo
y′o

k py+Ys√
(py+Ys)2+z2

o
dpy

wmin
y (yo, y′o) =

1
yo−y′o

∫ yo
y′o

k py−Ys√
(py−Ys)2+z2

o
dpy.

(A2)

In particular, Equation (A2) allows to highlight that wx and wy range within intervals that depend
only on xo, x′o and yo, y′o, respectively. This is a very important aspect since it leads to the ’factorized’
sampling expansion presented in Section 3. More in detail, by using (A2) in (17), we obtain
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∆wx(xo, x′o) =
k

2(xo−x′o)

∫ xo
x′o
[ px+Xs√

(px+Xs)2+z2
o
− px−Xs√

(px−Xs)2+z2
o
]dpx

wmx(xo, x′o) =
k

2(xo−x′o)

∫ xo
x′o
[ px+Xs√

(px+Xs)2+z2
o
+ px−Xs√

(px−Xs)2+z2
o
]dpx

∆wy(yo, y′o) =
k

2(yo−y′o)

∫ yo
y′o
[

py+Ys√
(py+Ys)2+z2

o
− py−Ys√

(py−Ys)2+z2
o
]dpy

wmy(yo, y′o) =
k

2(yo−y′o)

∫ yo
y′o
[

py+Ys√
(py+Ys)2+z2

o
+

py−Ys√
(py−Ys)2+z2

o
]dpy.

(A3)

In particular, by solving the integrals

∆wx(xo, x′o) =
k
[√

(xo+Xs)2+z2
o−
√

(x′o+Xs)2+z2
o−
(√

(xo−Xs)2+z2
o−
√

(x′o−Xs)2+z2
o

)]
2(xo−x′o)

wmx(xo, x′o) =
k
[√

(xo+Xs)2+z2
o−
√

(x′o+Xs)2+z2
o−
(√

(xo−Xs)2+z2
o+
√

(x′o−Xs)2+z2
o

)]
2(xo−x′o)

∆wy(yo, y′o) =
k
[√

(yo+ys)2+z2
o−
√

(y′o+ys)2+z2
o−
(√

(yo−ys)2+z2
o−
√

(y′o−ys)2+z2
o

)]
2(yo−y′o)

wmy(yo, y′o) =
k
[√

(yo+ys)2+z2
o−
√

(y′o+ys)2+z2
o−
(√

(yo−ys)2+z2
o+
√

(y′o−ys)2+z2
o

)]
2(yo−y′o)

.

(A4)

Finally, by using the warping transformations presented in (19) and (20), it readily follows that
wmx(xo − x′o) = γx(xo)− γx(x′o), wmy(yo − y′o) = γy(yo)− γy(y′o), ∆wx(xo − x′o) = ξx(xo)− ξx(x′o)
and ∆wy(yo − y′o) = ξy(yo)− ξy(y′o), and hence from (18) the kernel expression in (21) is obtained.
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