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Abstract: The power system worldwide is going through a revolutionary transformation due to
the integration with various distributed components, including advanced metering infrastructure,
communication infrastructure, distributed energy resources, and electric vehicles, to improve the
reliability, energy efficiency, management, and security of the future power system. These components
are becoming more tightly integrated with IoT. They are expected to generate a vast amount of
data to support various applications in the smart grid, such as distributed energy management,
generation forecasting, grid health monitoring, fault detection, home energy management, etc.
With these new components and information, artificial intelligence techniques can be applied
to automate and further improve the performance of the smart grid. In this paper, we provide
a comprehensive review of the state-of-the-art artificial intelligence techniques to support various
applications in a distributed smart grid. In particular, we discuss how artificial techniques are applied
to support the integration of renewable energy resources, the integration of energy storage systems,
demand response, management of the grid and home energy, and security. As the smart grid involves
various actors, such as energy produces, markets, and consumers, we also discuss how artificial
intelligence and market liberalization can potentially help to increase the overall social welfare of the
grid. Finally, we provide further research challenges for large-scale integration and orchestration of
automated distributed devices to realize a truly smart grid.

Keywords: smart grid; artificial intelligence; distributed energy resources; distributed grid
intelligence; demand response; home energy management; electricity market liberalization; energy
storage system

1. Introduction

Increasing population worldwide demands more and more facilities, which in turn mandates
the energy service providers to escalate their generation. Unfortunately, power generation globally is
dominated by fossil fuels, which are the main contributor to CO2 in the atmosphere. Increasing CO2

emission threatens the world by global warming, as pointed out in the “World Energy Outlook 2019”
by the International Energy Agency [1]. To cope with global warming due to increasing CO2 emission
from the traditional power system, governments around the world are encouraging renewable electric
energy sources. For example, contributing the green energy, motivated by declining capital costs
and the government tax benefits, the United States added 72 gigawatts (GW) of new wind and solar
(photovoltaic) capacity between 2018 and 2021 [2]. Similar renewable sources addition is carrying out
across the globe today.

Many types of research are being conducted in this domain, and recommendations are fluxing
in the market. In accordance with the international target for the environment, the application of
renewable energy sources (RES) can provide the alternative source to the dependence on fossil fuels
by generating green energy options for the hazardous gas emission reduction and controlling the
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peak load graph. The smart grid (SG) technology can support RES integration in future power
systems. With advances in information communication technology (ICT) connected with consumer
data, it can transform the electric power grid with high penetration of distributed generations in
power systems [3]. Smart energy markets fascinated with artificial intelligence (AI) techniques can
make it easier to design good policy incentives and allow consumers/utility to make decisions
about their consumption/generation in an efficient way that contributes to the reduction of CO2

emissions. The challenges for AI in the electrical power system are designing automation technologies
for heterogeneous devices that learn to adapt their consumption against pricing signals with user
constraints, developing means of communication between humans and controllers, and designing
simulation and prediction tools for consumers and suppliers.

As the energy sector is increasingly becoming complex, intelligent tools/mechanisms are needed
to manage the system effectively and make timely decisions. In general, the artificial neural network
(ANN), reinforcement learning (RL), genetic algorithm (GA), and multi-agent systems are well-known
AI techniques to solve the problems of classification, forecasting, networking, optimization, and control
strategies [4]. Due to the lack of advanced automatic controllable resources, many system operations
are still performed manually or at a basic level of automation. However, the inclusion of AI in the
grid system would introduce innovations and give new directions to the electrical grid. The overall
distributed SG concept with AI techniques is presented in Figure 1. Optimization of controllable
loads using intelligent techniques results in cost reduction. For example, Neves et al. [5] propose
a genetic algorithm for the management of standalone microgrids (MGs) to optimize the controllable
loads. With increases in computing power and accessible data storage, AI techniques are offering
much more efficient and powerful ways to handle the limitation of the traditional grid system.
Besides, the application of distributed computing algorithms in SG has triggered many security
issues. Physical and cyber attacks are the threats which can lead the infrastructure failure, privacy
breach, disturbance, and denial of service (DoS) [6]. This paper reviews the current advances and
challenges in the smart grid, distributed intelligence for future energy generation, and the role of
distributed energy resources (DERs) in the future power system.

The remainder of the paper is organized as follows. Section 2 discusses the requirements for the
future energy system. Sections 3–7, respectively, present AI techniques to support applications in
distributed grid intelligence, renewable energy source integration, energy storage system integration,
demand response management, and home energy management. Section 8 discusses economic aspects
and market liberalization in the smart grid. Section 9 presents AI for security applications. Finally,
Section 10 concludes the paper with a future outlook aimed to provide some insights into future
research directions.
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• Multi-agent system-based microgrid operation strategy for DR [42]
• Distributed grid intelligence using FREEDM system to manage the DERs [52]
• ANN for optimizing distributed grid operation [31]
• Consensus-based distributed intelligence for optimizing SG control [50]
• Optimization of distributed generation operation using GA [60] • ANN for forecasting local energy demand [55]

• Central Information Model (CIM) for implementing VPP communication and control architecture in SCADA [42]
• Deep Learning (Support Vector Regression (SVR), Recurrent Neural Network (RNN)) for electricity price forecasting [98]
• Markov Decision Process and RL based smart energy community management [22]
• Meta-heuristic algorithm for regulating voltage profile [43]
• ANN for detecting energy fraud [28, 67] 
• Multi-service energy storage for providing shared ownership of ESS between local network operator andcustomers [86] • ANN for DSM for smart consumers [31]

• ANN for forecasting day-ahead load profile [26]
• Machine Learning (support vector machine, ANN) for predicting electricity price [98]
• Deep learning (Conditional Restricted Boltzmann Machine (CRBM)) for forecasting building energy consumption  [29]
• ANN and dynamic differential evolution for demand side management [111]
• ANN and RL for demand response of HEM [30]Electrical flow              Charging/DischargingInformation flowNuclear Power PlantIndustrial Power PlantEV ESSSolar Panel Wind Turbine Forecaster MarketOperator ForecasterESS HEM SystemSmart MeterSubstations

Distribution/Transmission Network Customer Network

Home/BuildingEVSolar Panel
Distributed Energy Resources

Grid Operation 

Figure 1. Overview of AI techniques in distributed smart grids.

2. Future Energy System

Today’s provision of non-stop high-quality electricity safely and efficiently cannot be supported
by the aged and crowded conventional distribution networks. Independent system operator (ISO)
or regional transmission organization (RTO) heavily relies on a distributed management system to
revamp the reliability and efficiency of the grid [7]. With the increase in consumption and generation,
the electrical grid is going through a significant shift in the presence of intelligent techniques. Secure,
ascendable, and always available bidirectional flow of power and real-time information are the souls of
the future SG. The large-scale integration of DERs in the mainstream grid during the last two decades
has changed the implementation and operational structure of the power system across the globe.
The utility service providers ought to manage the fluctuating generations for DERs, which do not have
advance inter-communicational resources. SG is a promising solution to enhance the existing electrical
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grid infrastructure by embedding with ICT more systematically, thus allowing greater integration of
distributed components [8–15].

According to the definition of EU commission Task Force for Smart Grid, “Smart Grid is an
electricity network that can cost-efficiently integrate the behavior and actions of all users connected
to it—generators, consumers and those that do both—to ensure a low-loss, economically viable,
sustainable power system with high quality and security of supply.” [16]. From NIST, the eight priority
areas for standardization of the smart grid are [17]:

1. Demand response and consumer energy efficiency: Targets numerous customer segments to
involve them in making efficient energy consumption by controlling and scheduling their
consumption pattern.

2. Wide-area situational awareness (WASA): Provides the network operators accurate information at
the right time to make appropriate decisions.

3. Energy storage: Stores energy for later use to facilitate consumers with cheaper electricity.
It provides more flexibility and helps to balance the grid by providing back-up to the intermittent
renewable energy sources.

4. Electric transportation: Provides economical energy, saves the environment, enhances living
standards, and drives economic growth via various electric vehicles, e.g., plug-in electric vehicles
(PEVs), battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs).

5. Network communications: Integrates smart energy components via bidirectional communication
channels.

6. Advanced metering infrastructure (AMI): Gathers and analyzes information from smart meters
and provides efficient/intelligent management opportunities to the consumers.

7. Distribution grid management: Improves the stability of the grid and reduces the losses.
8. Cybersecurity: Protects data collected from the smart grid via ICT from various cyber-attacks.

More recently, utilities are applying various distributed computing algorithms to coordinate
distributed components of their power systems. Distributed Internet of Things (IoT) devices
communicate, analyze, and control their operations individually or in collaboration with other devices
through high-speed and bi-directional communication protocols in a distributed and independent
manner [18]. Smart meters (SMs) and IoT connected via the Internet can improve the overall efficiency
of the system, from simple load management of a household to complex power quality management of
the grid system. These smart devices can interact with other devices and self-learn to make autonomous
decisions. The growing digitization in the power system due to the advancement of distributed
intelligent techniques has improved the overall system operation and reliability, including motoring,
fault detection, maintenance, and RES integration. However, an increasing number of distributed
devices with enabling technologies like AMI, to make multi-directional communication among devices
and systems, has made the SG more complex and vulnerable to cyber terrorists [19]. Therefore, in this
paper, we provide a comprehensive review of the AI techniques in various applications in the SG,
namely distributed grid intelligence, renewable energy source integration, energy storage system
integration, demand response management, and home energy management. In addition, we discuss
the role of the distributed smart grid in market liberalization and present security issues in the SG.

3. Distributed Grid Intelligence

Distributed grid intelligence leverages energy management based on advanced communication
means. An intelligent, cooperative architecture can optimize the energy resources/services to gain the
maximum benefits. Intelligent algorithms can help to handle energy management, the configuration
of new resources added to the system, and detect and recover from anomalies. The introduction of
distributed generations adds new dimensions to the smart grid architecture as traditionally, the grid in
most of the world act as a sink for the generations and have limited capacity to accept new penetration
of resources. Intelligent distribution network comprises of three layers ranging from residential



Electronics 2020, 9, 1030 5 of 25

consumer to system level. In the first layer, the smart devices manage the energy at a smart home,
which includes smart meter (SM), home energy management system, inverters, and EV chargers.
The second layer accomplishes the objectives such as group load management, information sharing,
and grid reliability improvement at the community level with the help of smart devices like relays and
smart switches. The system-level grid intelligence includes advanced monitoring and control devices
throughout the distribution system, which respond to the information and responses from the first
two layers [20].

3.1. Distributed Intelligence: Prosumer Side

The advancement in the power system allows a bidirectional flow of energy in SG.
Domestic energy users can produce and consume (prosumers) electricity and also share with other
energy users in the grid [21]. Millions of people share their energy resources from renewable sources
on their residential, commercial, and industrial premises. The concept of centralized and fossil-fueled
generation is to be replaced with an intelligent cooperative DER powers system where the prosumers
share the electricity to harness maximum economic benefits. A smart residential community model is
suggested in [22] that consists of domestic users and a local energy pool, where consumers are free to
trade with the local energy pool and enjoy economic energy without investing in multiple RES units.

The use of AI techniques has rushed in the energy market with a potentially practical solution to
make efficient use of distributed energy resources, support real-time and quick demand response since
the last decade. The grid operators are striving for “all the decisions to be made in the power grid” from
the switching of relays to large generators controls so that unwanted harmonics in the system could be
mitigated through a mesh of sensors embedded across all the systems to deliver full efficiency of the
power system. For this reason, intelligent algorithms are formulating and implementing with foresight,
self-learning, and resilience to cope with random and systematic disturbances. AI is still striving for
developing computationally efficient algorithms that can predict the generation and consumption
data of smart prosumer with real-time electricity prices accurately so that profitable electricity trading
decisions could be made [23]. For the last few years due to the rapid advancement of AI technology,
expert system, ANN and fuzzy logic, have been utilized in the energy sector, to overcome technical
issues [24], price prediction [25], energy forecasting [26,27], and fault detection [28]. These techniques
are also useful in energy management in residential areas [29], inside a smart home leveraging
DR program [30], and overall demand-side management (DSM) [31]. Qiao et al. [32] proposed an
optimization for electric energy meter based on independent and identical distributed area load
conditions. The error diagnosis analysis model and fault library model based on a deep learning
approach are proposed in their work that can deeply predict the cause of error measured by the meter
and can ensure to train the smart meter.

3.2. Distributed Intelligence: Generation Side

The challenges for today’s power distribution systems are coordinating distributed energy
resources, increasing acceptability for RES penetration, establishing proper plans, and defining
operational strategies that can increase demand while reducing global greenhouse gas emissions.
This may be achieved by optimizing resource adequacy, considering socio-economic impacts,
and enhancing grid reliability [33,34]. These complex issues can be well addressed in SG technology
since it aims to make the power system more resilient, self-organizing, and troubleshooting [10,35,36].
Installation of intelligent decentralized energy units, the smart grid has a lot to do in: distributed
generation and storage capacity, distributed system automatic regulation and optimization,
bidirectional flow of information and electricity, plug-in hybrid electric vehicles (PHEVs) [37].
This means there is a need for more and more intelligent and smart controllers beyond DERs to
monitor and manage the distribution grid too. Much research and studies have been carried out
regarding the operation and control of distributed generation [38–40]. If a certain benchmark is
crossed, the system becomes unstable due to livability constraints. Distributed grid management can
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provide energy management, monitoring, and fault detection [41]. Another issue concerning these
days regarding online voltage control is well addresses in [42]. The work presents a distributed grid
synchronization concept, where fluctuation of voltage profile due to mass integration of distributed
and renewable resources escalates the complexity of power controllers, which were typically designed
by the passivity hypothesis. This problem has been traditionally handled using complex non-linear
programming approaches, which depend upon the centralized computing schemes [43].

Several advanced, decentralized, intelligent, and highly pervasive computing frameworks
addressing such issues have been introduced in [44,45]. The promotion of cooperative controllers in
the SG for online voltage control distributes the operations among distributed units, which increases
processing speed and improve the reliability and efficacy of controllers. The centralized controllers
had been used to manage the information gathering and compute control solutions in DER [46,47],
which increased the burden (communication and computation) on the central controller thus making
the system more vulnerable. To tackle this issue, researchers have proposed various decentralized
control techniques that deal directly with the dispersed individual controller of the distributed
units, and control actions are taken in response to the local information [48,49]. In real-time
large-scale optimization problems, centralized algorithms may face challenges in managing rapidly
changing system conditions, such as high variability of renewable based distributed generators
(DGs) and controllable loads (CLs). Further, centralized algorithms may encounter computation
and communication bottlenecks while handling a large number of variables. A consensus based
dimension-distributed computational intelligent technique is proposed for real-time optimal control in
smart distribution grids in which a large number of DGs and CLs are presented in [50].

Distributed operation of power system architectures consists of energy management, power
management, converters management, and fault detection and restoration. Conventionally,
the supervisory control and data acquisition (SCADA) system is used to handle energy resources,
but this centralized architecture proved to be practically infeasible because of security and retard
operations [51]. These systems have become less effective because they typically involve human
interference for routine operations, as today, the grid and its inter-connectivity have become more
complex and require high speed and processing of data. Distributed load balancing algorithms are
designed to optimize loads of different peers in a distributed system. The nodes participating in the
load balancing algorithm communicate with each other and DERs for load shifting from a zone with
high consumption to a zone with low load. This migration normalizes their loads, thereby making the
system stable and resilient [52]. Monti et al. [53] focus on the control of electricity networks based on
distributed state estimation (LQR controller) and distributed intelligent systems. AI and blockchain
technology are helpful in distributed data storage in SG security [54]. Eck et al. [55] demonstrate the
progress of AI techniques deployment, to support distribution grid operators in handling mass RES
penetration based on the market for local energy trading. Table 1 summarizes the AI techniques used
for distributed grid management.

Table 1. AI techniques for distributed grid management.

Ref. Year Objective Used Techniques Limitation

Johannesen
et al. [27] 2019

Load forecasting by
correlating lower
distinctive categorical
levels (season and day
of the week) and
weather parameters

Random forest regression,
k-nearest neighbor regression,
linear regression

Growth factors of population
and income which also drive the
load demand is not considered

Neves et al.
[5] 2018 DR optimization goals

on an isolated microgrid
GA, linear programming
optimization

A small number of appliances
considered and integration of
PV is not considered
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Table 1. Cont.

Ref. Year Objective Used Techniques Limitation

Ahmad et al.
[56] 2018 Energy demand forecast

Compact decision tree (CTD), fit
k-nearest classifier (FitcKnn),
linear regression model (LRM),
stepwise linear regression model

Applicable in small systems like
buildings and small utility
companies, but not efficient in a
complex system and long-term
forecasting

Mocanu et al.
[29] 2016 Energy prediction at the

customer level

Conditional restricted
Boltzmann machine (CRBM)
and factored conditional
restricted Boltzmann machine
(FCRBM)

The reduced number of steps
from the original CRBM (i.e.,
three) can reduce the
performance when there are
increased number of variables

Utkarsh et al.
[50] 2016

Minimize active power
losses in the power
system

Consensus based distributed
computational intelligent
algorithm

Decision variables assigned to
different agents is not part of the
designer degrees of freedom,
security issues may arise due to
inadequate communication
channel

Macedo et al.
[31] 2015

DSM to classify the load
curve patterns of each
consumer to give
financial benefits

ANN User comfort reduced for
incentives

Ford et al.
[28] 2014 Energy fraud detection ANN

Non-technical losses on the
consumer premises are ignored
while designing the model

Vaccaro et al.
[43] 2013 Voltage regulation in

active networks
Distributed consensus
algorithm, Simulated annealing

Load mobility, fast-switching
devices and loose connection
problems are not considered

Asare et al.
[26] 2013 Day-ahead load

prediction ANN

Integration of HEM system,
demand side management, and
demand response applications
are not considered

Ma et al. [45] 2013

Maintaining the voltage
profile and economic
operation of the power
systems

GA
Slow convergence speed, within
limited searching time may not
provide high-qualified solutions

Samadi et al.
[46] 2012

Smart pricing based on
DSM and power
companies data sharing

Vickrey–Clarke–Groves
Appliance scheduling may
reduce the comfort level of
consumers

Colson et al.
[48] 2011 Microgrid energy

management Multi-agent system (MAS) Observer agent algorithm is not
shown

4. Integration of Renewable Energy Source

A mass movement from rural to urban areas across the globe in search of better opportunities
resulted in an exponential increment in demand and supply. Currently, 55% of the world’s population
residing in cities which will project to 68% by 2050, according to the United Nations [57]. Increasing
demand for clean, sustainable, secure, and efficient sources of electricity requires integrating RES into
existing power system infrastructure. There global RES share in electricity can attain a remarkable
ratio in the coming years. As shown in Figure 2, there has been continuous growth in the generation of
energy by RESs across the globe. The hydropower contributes the most at 1190 GW, followed by wind
energy generation at 623 GW, and solar energy at 586 GW. There are some small contributions from
biomass energy and geothermal energy at 14 GW and 500 MW, respectively, as shown in Figure 2.
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Figure 2. Energy generation capacity by RES [58].

4.1. RES Integration: Prosumer Side

The integration of renewable and storage energy resources at consumer premises is one of the
key features of SG. Another key attribute is sharing the responsibility of managing the flow and
consumption of energy by leveraging the enabling bidirectional communication technologies [21].
The RES, especially solar, produce on-site energy, which reduces large-scale, long-distance transmission
line losses and large investment operating costs (for transformation and transmission of power).

Macedo et al. [31] integrate PV and energy storage system (ESS) with the local grid in a smart
home to optimize energy consumption. For high energy consumption buildings, like hospitals, hotels,
educational institutions, and commercial buildings, smart grid systems, together with RES and ESS,
manage total energy consumption efficiently [59]. Elkazaz et al. [60] design an intelligent optimization
algorithm for the optimal online operation of DERs (hybrid FC and PV) for residential applications.
The reliability of the power system increased by reducing peaks and cost-saving for smart homes
using RES is achieved in [61] when GA, binary particle swarm optimization (PSO), and Cuckoo
search algorithms are embedded in the HEM system. Melhem et al. [62] propose mixed integer linear
programming (MILP) to integrate PV system, micro-wind turbine system, battery storage, and gridable
vehicles for residential energy management. Distributed energy appreciates maximizing the use of
renewable energy sources and power generation technology to improve application efficiency and to
reduce environmental hazards.

4.2. RES Integration: Generation Side

Due to the rising global temperature, we need non-fossil fuel based alternative energy solutions.
Renewable generations are closer to where it is utilized and currently gaining popularity in the power
systems arena. Due to the increasing deployment of renewable energy technologies, the power system
dynamics are shifting to a new level that requires variable energy supply, bidirectional electricity
flow, storage facilities, and processing of a huge amount of data. Navigant Research forecasts
global microgrid (MG) generation capacity to grow from 1.4 GW in 2015 to 7.6 GW by 2024 [63].
Their intermittent behavior and limited storage capabilities present a new challenge to power system
operators to maintain power quality and reliability.
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Due to the lack of AI techniques, many system operations are still performed manually or done
with a basic level of automation. However, numerous hindrances and challenges, such as complex
end-to-end control techniques and customer participation, still need a lot of considerations [64].
Fault detection and safety analysis of DERs and MGs are discussed in [65] and encouraged the
deployment of ESS and inverter controller during operation. Two MG operational approaches during
an emergency, i.e., regarding inverter control mode and auxiliary energy source (STATCOM) mode,
are also briefed in the paper. Kim et al. [66] analyzed the advantages of an advanced power distribution
system loop structure from the perspective of loss reduction and voltage regulation. Furthermore,
they presented a loop path selection algorithm for loss minimization. In the conventional system,
one of the techniques for isolating a failure unit of generations from the grid was the islanding method.
Darab et al. [67] deploy an AI technique to detect the fault and exact point of occurrence of a fault in
DERs for rapid islanding of the affected unit.

Widespread AI techniques have been contributing to almost all the types of RES for the
policy-making, design, estimation, optimization, management, and distribution [68]. Application of
AI techniques in the wind, solar, geothermal, hydro, bio-energy, and hybrid RES are briefly discussed
in [69–74]. Economic energy trading has been focused on by all the power system operators since its
inception. Depending on the power forecasted by ANN, the MG energy trading model determines
the optimal schedule for all the units by utilizing a genetic algorithm [75]. Development in the
power system has shifted from a micro-energy network with a centralized supply to distributed
and decentralized energy generations to achieve a ubiquitous state. Alsafasfeh et al. [76] propose
distributed saddle point dynamics to optimize the power flow in a PV system. The industrial MG
model with DERs in manufacturing industrial area in Ireland provided cheaper energy and steady grid
operation than only grid operation [77]. Table 2 summarizes the AI techniques used for the integration
of RES.

Table 2. AI techniques for the integration of RES.

Ref. Year Objective Function Used Techniques Limitation

Darab et al.
[67] 2019

Lighting strike
detection, fault location
detection, and islanding

Traveling wave method,
impedance based method, ANN,
support vector machine, fuzzy
logic, genetic algorithm

Extra load due to islanding DG
unit may reduce reliability on
other DERs

Blake et al.
[77] 2018 Optimization of DERs,

load forecasting
ANN, Levenberg–Marquardt
training algorithm

Optimal sizing of ESS, operation
of a CHP unit in a site with
varying load, and control of
charging/discharging of ESS
need further elaboration

Javaid et al.
[61] 2017

Economical energy
management with RES
integration

Binary PSO, GA, cuckoo search
algorithm

Consumers trade their
consumption priorities for
cheaper electricity price

Elkazaz et al.
[60] 2016

Online optimal
operation of DG for
residential applications

GA

Considers only a small number
of houses (i.e., 4) and residential
sector consumers have varying
consumption behavior

Jaramillo
et al. [59] 2016 Optimal scheduling of

DERs MILP
Peak power cost is not
considered in the objective
function

Melham et al.
[62] 2016

Integration of RESs in
SG for residential
energy management

MILP Residential consumer with DR
program not considered

Changsong
et al. [75] 2009 Energy trading and

coordination of DERs ANN, GA Operation and degradation
issues are not considered

Al-Alawi
et al. [74] 2007

Minimizing fuel
dependency, engine
wear and tear, and
greenhouse gas
emission

ANN Integration of DERs is not
considered
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5. Integration of Energy Storage System

5.1. ESS Integration: Prosumer Side

Energy storage systems (ESS) are expected to play a major role in the future smart grid. They
provide a back-up to the intermittent renewable sources and ensure continuous electricity supply
to the consumers. Locally, they help in the management of the distribution grid by improving its
efficiency and reducing costs. ESS helps in mitigating the peak residential energy demand on the local
grid. Numerous incentive based demand response programs have been proposed in [78] to encourage
the usage of such alternatives. Home ESS stores energy during the off-peak hours and deliver energy
to the users in on-peak hours, which decreases the stress on the main power system and increases
financial benefits. According to a report by Statistica, nearly 75.4 billion interconnected devices will be
operating through the Internet globally by 2025 [79]. Batteries form the vital core of electric cars and
mobile phones, helping us curb carbon emissions and stay connected. The large-scale deployment of
ESS in the power system will give 600 million people access to electricity till 2030, which will help to
reduce carbon emission in the power sector and transportation by 30% [80].

Using ESS with RES is the best way of reducing current fossil fuel consumption and utilizing
green energy. It is an alternative solution for the intermittent power output of RESs, where storing
excess generation to provide it in peak time, to fulfill the demand [81]. The three areas in which
the batteries are increasingly playing important roles are: reducing CO2 emission in generation and
transportation, getting rid of fossil-fueled power system by making renewable power generation as
a dispatchable energy source and off-grid access to electricity. ESS provides a value-added economic
dispatch solution as market price and other economic system variants have a great impact on SG
operation [82]. ESS is contributing its role in the smart city vision as the Park et al. [83] propose
a micro-distribution ESS based smart LED streetlight system that utilizes dispersed/distributed
storage devices and Intelligent LED system to energize the streetlights of the city. Storage sharing
can reduce both space and investment costs for the user. Rahbar et al. [84] propose an algorithm that
optimizes the energy-charged/discharged using the shared ESS concept to profit the consumers.

5.2. ESS Integration: Generation Side

Conventional grid designs focus less on data and energy storage, but a SG truly values both.
The ESS is an integral component that can transform the current grid structure and operation.
Intelligent energy management strategies capable of managing the dynamics of the distributed
grid are required to ensure effective implementation and efficient usage of ESS [82]. It can provide
targeted energy to all the components of the grid at a different level making the grid reliable and
smarter. The authors encourage the deployment of energy storage systems within the electric grid
system, supported with effective regulatory and financial policies for development and deployment
within a storage based SG system in which storage is placed in a central role [85]. Beside lower
wholesale energy prices to consumers, it also supports to reduce the low voltage distribution network
investment [86].

Forecasting of voltage and frequency helps a lot in the SG concept as it assures the reliability
of the grid. The integrating issues (regarding voltage and frequency) of ESS and local low-voltage
distribution grid at a point of common coupling is addressed in [87] using ANN technology to forecast
both voltage and frequency matching. Real-time distributed algorithm is proposed in [88], for the
operator with distributed ESS, to balance the energy demand through charging and discharging of ESS.
The work in [89] presents a simultaneous optimization using non-sequential quadratic programming
algorithm for DG and ESS in grid-connected and standalone medium voltage MG, to minimize the
energy losses in the distributed system. Table 3 summarizes the AI techniques used for integration
of ESS.
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Table 3. AI techniques for the integration of ESS.

Ref. Year Objective Function Used Techniques Limitation

Massi et al.
[87] 2018

Forecasting voltage and
frequency at point of
common coupling (PCC)
between ESS and local
grid

ANN

Stability issues during
under/over voltage and
frequency condition is not
considered

Ahmad et al.
[90] 2017

Optimized HEM system
with RES and ESS for
residential sector

GA, binary PSO, wind-driven
optimization (WDO), bacterial
foraging optimization (BFO),
hybrid GA-PSO (HGPO)
algorithms

User satisfaction and peak to
access ratio of the existing
techniques is better than the
proposed algorithm

Sfikas et al.
[89] 2015

Minimization of total
annual energy loss and
cost of energy

Sequential quadratic
programming

Integration of RES and losses at
PCC are not considered

Rahbar et al.
[84] 2016 Shared ESS

management
Convex optimization technique,
profit coefficient technique

Fixed load profile of each user is
considered

Sun et al. [88] 2014

Using Distributed ESS
to provide real-time
power balancing service
for an electric power
grid

Lyapunov optimization,
Lagrange dual decomposition,
fast iterative
shrinkage-thresholding
algorithm (FISTA)

Mechanism for communication
between demand and supply
while power balancing not
elaborated

6. Demand Response and Energy Management System

The term demand response (DR) is used for the programs designed to encourage end-users
to make short-term reductions in energy demand in response to a price signal from the hourly
electricity market, or a trigger initiated by the electricity grid operator [90]. DR changes the power
consumption pattern of energy customers to match the demand and supply better. It provides
consumers an opportunity to take part in grid operations by reducing or shifting their electricity usage
patterns during peak consumption periods and emergencies in response to an hourly pricing scheme
[36,91]. The smart consumers are also offered financial incentives. In Incentive based programs,
the consumers are offered fixed or time-varying financial benefits in response to the reduction in
their electricity consumption during peak times and contingencies [92]. Several other approaches
regarding DR implementation have been actively investigated in recent years [93,94]. Gong et al. [95]
propose a privacy-preserving scheme for incentive based demand response programs in the smart
grid, which enables the demand response provider to compute individual demand curtailments and
demand response rewards while preserving customer privacy. The scheme preserved customer privacy
by separating the real identity and the fine-grained metering data, i.e., the DR can only learn either the
real identity or the fine-grained metering data at a time but cannot link them together.

Following the advancement in ICT, the DR has also entered the arena of digitization,
where intelligent techniques are embedded in the pool. This makes communication between the energy
management system (EMS) and utility smarter. Kim et al. [96] propose two cloud based DR for speedy
communication between the slave (EMS and SM) and master (utility). The data-centric communication
and topic based group communication use a publisher/subscriber architecture in a cloud based
demand model rather than traditional IP-centric communication. Making a DR program for islanded
DERs is a complex task due to the absence of grid connection and market price signals. Ali et al. [97]
propose a distributed DR program for islanded multi-MG networks based on welfare maximization
by optimal power-sharing among different units without using any central entity. Different methods
of forecasting electricity pricing from a linear statistical approach to the computational intelligent
prediction model are discussed in [98].

Due to the availability of enough customer data, computing resources, and potential training
algorithms, AI has now matured enough to forecast the electricity price even in the complex
environment to the customer. A comparative analysis of such intelligent schemes has been investigated
in this research focusing on deep learning (DL) and support vector regression (SVR). DR is the change



Electronics 2020, 9, 1030 12 of 25

in electricity consumption pattern by end-users from their usual pattern according to the price of
electricity over the time proposed by the utility, or to get financial incentives to compromise the
power system reliability due to peak demand [99]. In SG, the demand prediction helps to decide on
how much-generating units to be utilized efficiently so that the burden could be shared optimally
to improve the reliability of the generators. Recently, many researchers have focused on leveraging
AI techniques for energy demand prediction [56,100]. Lu et al. [30] propose an hour-ahead DR
algorithm using reinforcement learning and ANN to overcome the uncertainty in future electricity
prices, considering the user comfort and consumption behavior. In the presence of consumers and
utility data, AI techniques can be utilized to model the load and demand prediction [101], as demand
and supply prediction helps make many other decisions in SG. The types of energy management
system in the smart grid with enabling techniques reviewed in this paper is shown in Figure 3.
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Figure 3. Energy management system in the SG system.

7. Home Energy Management System

Energy management includes monitoring, controlling, and saving of energy [102]. A HEM system
is a combination of hardware and software program that allows the end-users to monitor their energy
usage and production (for prosumers) and to manage the energy inside a home. A HEM system is
an integral part of SG that can potentially enable DR applications for end-users. In a smart home,
it manages and controls the energy utilization by scheduling the home appliances according to the
scheduler technique embedded in the HEM controller [103]. The HEM controller, on the bases of
information sent by the power service provider and smart meter, decides the pattern of the appliances
on the smart home considering the constraints. According to the most recent DR and Advanced
Metering Assessment published by the Federal Energy Regulatory Commission, more than half of
customers’ electricity meters across North America are now SM [104].

Energy management is essential in the SG. HEM system, dynamic pricing, and load shifting are
different applications that have been implemented by researchers in the past few years for efficient
energy management at the demand side. It helps the end-user with cost-saving for society resources
conservation and climate protection in the large sphere by integrating and optimally coordinating
various energy resources without compromising work processes [105]. In the traditional grid,
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the consumption readings were retrieved physically once in a month to calculate the electricity
bill. The SG presents a network of SM that can collect, share, and provide updates (e.g., consumption
pattern, pricing, priorities, network status, etc.) [106]. Several utility companies in the energy
sector have deployed smart metering systems in residential and commercial sectors that provide
consumer’s consumption behavior in real-time and allow utility companies to monitor the appliances
remotely. Smart meters installed in the private home sphere are smart in the sense that the consumers
can beneficially manage their electricity consumption based on consumers and utility parameters.
The smart meter learns the consumer’s lifestyle, appliances the switching pattern, and communicates
the information with the utility [107].

A HEM controller lacking a smart home becomes an organizational hassle because the user has to
control every appliance in the home manually, which may result in excessive traffic on the distribution
network and energy wastage. To address these problems, an integrated controller is needed to connect
and manage smart devices. Jo et al. [108] proposed an integrated model that uses learning and
training the intelligent efficient energy service (IE2S) model on the base of information generated
by smart devices. Squartini et al. [109] propose an optimization algorithm for HEM scheduler to
reduce electricity cost in a smart home with a renewable energy source and medium-size energy
storage considering dynamic pricing. Kazmi et al. [110] evaluate the comparative performance of
the HEM controller embedded with three different heuristic algorithms: harmony search algorithm,
enhance differential evolution, and harmony search differential evolution.

AI is quickly becoming an essential part of our power sector and HEM system today, encouraging
us to develop more efficient and safe energy production and management techniques. ICTs are
an integral part of the HEM system for designing an optimal scheduler and making strategies
for intelligent energy management. ANN and optimization algorithms are embedded in HEM
controllers to integrate the battery storage and RES with the grid to reduce the energy cost for the
smart consumers [111]. Different wireless sensor technologies have been used to communicate home
appliances with the HEM controller. In the smart home, appliances are integrated through a wireless
network like ZigBee, Bluetooth, and WiFi to collect data from them and communicate with the utility
[112,113]. An intelligent HEM controller using ZigBee based on standard IEEE 802.15.4 has been
designed to intelligently schedule an air-conditioner, heating system, and two-way communication
flow for smart consumers in [114]. Recently, various AI techniques have been implemented in HEM
controllers in smart homes to manage the load. The most commonly used AI techniques in HEM
schedulers are ANN, fuzzy logic control (FLC), and adaptive neural fuzzy inference system (ANFIS).
An ANN based residential thermal control strategy for a single-family home is developed in [115]
to create a more comfortable thermal environment. A hybrid approach of GA and ANN algorithms
is developed for weekly appliance scheduling to optimize electricity consumption in a residential
sector with renewable sources (PV and wind generations) to maintain energy demand during peak
hours [116]. A similar efficient hybrid algorithm of Lightning search algorithm (LSA) and ANN selects
the optimum number of neurons of ANN hidden layers to make an efficient decision for scheduling
air conditioner, water heater, washing machine, and refrigerator in a smart home [117]. It can reduce
the peak load while guaranteeing user comfort. They have validated their better performance by
comparing the results with a similar approach of hybrid PSO-ANN algorithm proposed in [118].
In another study, Sheikhi et al. [119] propose a model to utilize the cloud computing technology in
DSM among a group of Smart Energy Hub. The purpose is to manage communications of data among
various endpoints in scalable, online, and highly secure and propose efficient electricity management
on the consumption side in the smart hub harnessing the benefits of cloud computing technology and
game theory. Table 4 summarizes the AI techniques used for the demand response and HEM system.
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Table 4. AI techniques for demand response and the HEM system.

Ref. Year Objective Function Used Techniques Limitation

Lu et al. [30] 2019 Hour-ahead DR
algorithm for HEMs RL, ANN RES integration and peak

shaving is not considered

Atef et al.
[98] 2019 Electricity price

forecasting SVR, DL Separate price is needed for
industrial and residential users

Ali et al. [97] 2019
Distributed demand
response program for
islanded MG

Diffusion strategy, consensus
algorithm

Residential user comfort is not
considered

Ahmad et al.
[100] 2019

Bulk energy
consumption prediction,
control, and
management for utilities

Polak–Ribiére gradient back
propagation networks
(PRGBNNs), gradient with
descent adaptive learning rate
momentum backpropagation
(GDALBNNs)

End users are not considered

Kazmi et al.
[110] 2017

Demand side
management for smart
home

Harmony search algorithm,
enhance differential evolution
and harmony search differential
evolution

Integration of RES is not
considered

Ahmed et al.
[117] 2016 Home energy

management scheduling
Lightning search algorithm
(LSA), ANN

Limited number of appliances
are considered and efficiency
decrease with an increased
number of devices

Yuce et al.
[116] 2016 Appliance scheduling in

smart home ANN, GA, ANN-GA User comfort and electricity
price not considered

Di Santo et al.
[111] 2018 Active DSM of smart

home with PV and ESS ANN
Number of appliances and their
specifications in the smart home
need to be considered

Gong et al.
[95] 2015

Privacy-preserving
scheme for incentive
based DR

Zero-knowledge proof,
Pedersen commitment

Pricing scheme and RES
integration are not highlighted

Angelis et al.
[93] 2013

Energy management
system for smart home
with RES, ESS, and
domestic thermal
system

MILP
Peak formation during high
consumption period of the day
on utility side is not considered

Logenthiran
et al. [103] 2012

Day-ahead DSM
strategy based on load
shifting technique

Evolutionary algorithm
User comfort, integration of RES,
and economical benefits are
not discussed

Kim et al.
[96] 2011

Architectural and
algorithmic aspects for
large scale and fast
demand response

Cloud based demand response
(CDR), bisection method, Illinois
method

Consumers behave as
price-taker and cannot exercise
market power

Moon et al.
[115] 2010

Thermal control of
residential building
(including air
temperature and
humidity)

ANN Economic benefits of consumers
is not considered

Parvania et al.
[92] 2010

Scheduling reserves
provided by DR
resources in wholesale
electricity market

Stochastic mixed-integer
programming (SMIP)

Adding a large number of
binary variables associated with
DRP reserves does not add any
significant
computational efficacy

8. Economic Aspect and Market Liberalization in Smart Grid

Transformation in power systems due to technological advancements budges institutional changes
in it. Cooperative mechanisms of technical, institutional economics, and social aspects are required
to put the smart grid in practice [120]. The RTO/ISOs are struggling for an efficient market based
decision system since inception, keeping all stakeholders on the account. The key idea is to make
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electricity market-liberal and truly open where new ISO/RTOs could access this industry, which will
take electricity to medium and small-scale users’ accessibility. This will help to shift the centralized
fossil fuel generation to green and clean energy too and provide new competition in the market,
which may lead to innovations. There is a direct relationship between the consumer’s lifestyle
and energy issues. The works in [121–124] discuss the pro-sustainability attitudes and values of
electricity transition and consumption using various technological advancements, especially SM.
Market liberalization has brought many changes in the energy sector with far-reaching technical and
economic consequences. Due to increased digitization, the policymakers and market operators are
striving to apply efficient techniques to catch up with the advancements. Xu et al. [125] propose energy
market design architecture enabled with AI techniques and big data that can incorporate, coordinate,
and manage complex systems of the power industry. A SG can decrease the amount of electricity
consumed by houses and buildings and improve the reliability, security of the grid infrastructure by
the integration of RES [110].

Advanced communication devices and huge data of consumers and utility service management
collected by SM and ICT play an essential role in providing new services. It will also help to manage the
electricity price in the market. The continuous liberalization of the electricity market, i.e., shifting from
the monopoly system to competitive market structures, draws more and more attention from the
investors in the power sector [126]. Through the virtual power plant (VPP) concept, DERs can get access
and exposure across all energy markets. They can take benefit from VPP market intelligence to optimize
their place to expand the potential of their revenue generation [127]. The essential feature of the modern
smart grid is the electricity prices forecasting, as the market dynamics directly affect the behavior of
grid operators such as GENCOs, traders, RTO/ISOs, and independent power producers (IPPs) in the
diverging electrical market [128]. Increasing development in decentralized renewable generations
will have a remarkable influence on deciding the future of the electricity market since they have been
financed/purchased electricity from them without any compact agreements. Future electricity markets
should be flexible enough to optimally handle the dynamics and uncertainties of RES generation along
with dynamic and flexible benefits on the demand side. The small-scale smart prosumers should be
encouraged to take part in policy-making to uplift the overall social welfare [129].

9. Smart Grid Security

The SG comprises various components located at many different locations, such as smart home
appliances, distributed generating units, smart meters, and energy storage systems, providing numerous
entry points to the grid. The physical security of the grid is equally vital to cybersecurity to withstand
against moderate disasters. With the advanced control and communication system, SG is striving its
best to ensure the security of distributed components using ICTs [130]. McLaughlin et al. [131] explain
how malicious code can be embedded into smart appliances to get access to any part of the grid and how
important data like user authentication keys can be hacked. In the real world, all the systems, including
the SG, have vulnerabilities and complexities. Numerous issues arise in the grid system when cyber and
physical systems are integrated with it, besides factors like human behavior, regulatory and political
policies, and commercial interests. The integration and deployment of information communication
technology in the SG network for collecting, storing, and analyzing using different sensors and smart
measuring devices attract the intruders to access the grid and modify the operations.

Through AI techniques like ANN, the cyber-physical system (smart grid) can be made secure
against cyber-attacks [132]. Critical issues related to the SG are individual privacy, security,
and reliability in terms of communication and performance, and denial of service. Dogaru et al. [133]
focus on a deep neural network to mitigate the impact of cyber-attack at a different level in the power
grid and successfully identify through a case study the point of attack. Threats mean various possible
actions (artificial or natural) that are capable of influencing the performance of the system [134].
These threats are hazardous if appropriate actions are not taken on time. The most prevalent threat is
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breaching of consumer’s data privacy and malicious control of the devices and appliances in the smart
home [135].

To enumerate all possible threats in the SG is not possible due to system complexities and the
unidentifiable nature of sophisticated attacks. Lu et al. [136] categorize malicious threats in three
different types based on their goals, i.e., network availability, data integrity, and information privacy.
Besides technical challenges, the SG poses regulatory challenges too. Stakeholders and policymakers
strive for their dominance due to which changes are expected randomly [6]. Smart devices designers
need to ensure the standards of the SG.

9.1. Data Integrity and Information Privacy

User data stored and utilized in the smart grid has increased exponentially since the last decade.
The ownership of data is also a big challenge in the smart grid from which almost every stakeholder
takes benefit. Data integrity objective refers to preventing the data from modification of unauthorized
person or a system like in smart grid the sensors data, SM data, and operator commands [137].
Privacy preservation techniques aim to prevent information disclosure to any unauthorized person
or system without legal permission. Both the generation and consumer side data need to be secured
from any intruder. The consumer’s behavior, appliances data, authentication keys, and utility plant’s
data are always vulnerable due to a large number of interconnected devices. Shi et al. [138] propose
a privacy-preserving aggregation of time-series data, in which a group of nodes uploads encrypted
information of users to the data aggregator. The aggregator can only calculate the collective values of
users periodically but cannot reveal any beneficial information. SMs are highly targeted by the hackers
as it is the hub between utility and consumer and where all data about the consumer is stored and
transferred [139]. The service provider facilitates the consumers on the base of information provided
by the SM.

9.2. Denial of Service

Currently, with the exponential expansion of the Internet, a large portion of resources and
communications in the smart grid are available online, which has provided the attackers with
more scope for their malicious activities. A SG framework needs to guarantee its (resources and
communications) inaccessibility to unauthorized persons or systems. An attack to make a SG network
and resources unavailable to its destined users is called a puppet attack where the attacker target
a particular node name as puppet node to enter the AMI network [140]. Large scale deployment of
interconnected devices via the Internet in the smart grid exposes it to the IP based attackers. They can
make the power system partially or totally unavailable for the consumers [141]. The adversaries can
jam the communication channel by flooding the network traffic to launch a DoS attack, which makes
the power system unstable. Lui et al. [142] investigate the effect of such an attack on load frequency
control in the power grid by applying switch system theory. Boumkheld et al. [143] develop and
intrusion detection system using data mining techniques to detect the DoS attack, which they termed
as black hole attack in the smart grid. Different threats and issues related to grid security, along with
potential solutions, are summarized in Table 5.
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Table 5. AI techniques for various security challenges.

Domain Challenges Potential Solution

Architecture
Protection of smart grid, substations, and
ICT gadgets from various cyber attacks AI based load estimator using sensors [144]

Power theft ANN based fraud detection [28]

Operation
Fault detection and separation Coordination among DERs, smart sensors [145],

smart device standards [6]

Reliability and resiliency Pervasive computing architecture using
ubiquitous devices based on a trust model [146]

Data management

Data integrity and consumer privacy Data encryption

Data security against cyber-attacks (active
and passive) Distributed data randomization [138]

Secure generation, monitoring, storing, and
analysis of data Online voltage control using SCADA [42]

Denial of Service (DoS) Hybrid fuzzy set based feed forward neural
network [147]

Environment
Consideration of environmental factors,
responding to natural disasters Smart grid forensic science [130]
(earthquakes, lightnings, tree falling, etc.)

Market liberalization
and regulatory policies

Consumers awareness about the benefits of
smart grid, RND investment, planning and
regulatory policies by stakeholders,
government support and private sector
coordination in implementation, market
liberalization and IPPs attraction

Social marketing, social norms approach [123]

10. Conclusions and Future Outlook

In this paper, we presented a comprehensive review of the state-of-the-art artificial intelligence
techniques designed to support various applications in the future distributed SG, including the
integration of renewable energy sources, integration of energy storage systems, demand response
management, home energy management, and security. These techniques are expected to improve the
performance further and ease the management of the SG. We also identified some limitations of the AI
techniques presented in the literature. Some general areas of limitations are scalability, consideration
of user satisfaction/preference, algorithm efficiency, security and privacy, stability under failures,
algorithms efficiency, understanding of the intelligent tools by users and network operators, etc.

There remain some important research challenges to overcome these limitations and fulfill the
requirements of the future distributed SG. Some of these challenges are outlined below:

• Self-learning system: AI and cloud computing utilization for predicting electricity generation and
consumption can minimize outages and enhance SG security. With the changing input variables
of the distributed agents, the system learns and adopts the required operation. Every node
in the grid will be responsive, eco-sensitive, flexible, adaptive, and price-smart. Self-learning
algorithms can help to update the system configurations after every event/operation to enhance
the grid intelligence. Huge data availability with machine learning algorithms will increase the
self-learning ability of the power system.

• Complete automation: SG can further advance by fully automating the network from electricity
generation to distribution and grid service management. Currently, most of the operations in
the power system are done manually or with a basic level of automation. Using distributed
automation techniques, the speed, cost, outage management, reactive power management,
preventive equipment’s activation, and DERs’ integration can be improved. The following
areas are still striving for high-level intelligence to make the SG system completely automatic:
remote devices monitoring, fault detection and restoration, automated feeder switching, voltage
regulation, Non-technical losses reduction, real-time load balancing, DER integration, etc.
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• Self-healing grid: SG equipped with automated controllers, sensors, and enabling techniques
can utilize the real-time data for detecting and isolating anomalies and for reducing the
burden on utilities and customers. Human intervention for recovery solution takes time,
which can be shortened (frequency and duration of outages) using self-healing technology.
Some potential research challenges are online self-assessment of the grid’s operating status,
prompt implementation of precautionary control, and detection and rapid diagnosis of
concealed faults.

• Plug-and-play: SG plug-n-play technology can facilitate and encourage customers to share energy
generated on their premises with other smart users. Efficient distributed algorithms may be
embedded in distributed controllers to manage energy among the DG units economically using
plug-n-play operation.

• Cybersecurity: Security protocols need to explore new machine learning, information theory,
and knowledge detection based techniques. Some potential research challenges are the
application of the existing security protocols according to the requirements of SG applications,
self-healing/adaptive security techniques, and integrative security protocols for distributed
components.

• Skilled workforce: With the evolving technologies and standards in the SG, the workforce for
the future power system operators needs advanced skills in various areas, such as intelligent
techniques for monitoring and control of smart devices, cybersecurity, distributed system
communication protocols, DER integration, regulatory issues, IPPs goals, utility decision-making
applications, etc.

In sum, the application of AI techniques can be leveraged to reduce the power losses in the
distribution grid to enhance power quality. Moreover, AI techniques can provide improved and
automated management of distributed resources, enhancing the scope of smart grid services to build
an even smarter grid.
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Abbreviations

The following abbreviations are used in this manuscript:

ANFIS Adaptive neural fuzzy inference system
AI Artificial intelligence
ANN Artificial neural network
BEV Battery electric vehicle
CL Controllable load
DER Distributed energy resource
DG Distributed generator
DoS Denial of service
DR Demand response
DSM Demand side management
EMS Energy management system
EV Electric vehicle
ESS Energy storage system
FLC Fuzzy logic control
GA Genetic algorithm
HEM Home energy management
ICT Information communication technology
IoT Internet of Things
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ISO Independent system operator
IPP Independent power producer
LSA Lightning search algorithm
MG Microgrid
MILP Mixed integer linear programming
PCC Point of common coupling
PEV Plug-in electric vehicle
PHEV Plug-in hybrid electric vehicle
PSO Particle swarm optimization
PV Photovoltaic
RES Renewable energy source
RL Reinforcement learning
RTO Regional transmission organization
RND Research and development
SM Smart meter
SG Smart grid
SVR Support vector regression
VPP Virtual power plant
WASA Wide-area situational awareness
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